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Chronic wounds that stall at the inflammatory phase of healing may create several life-
threatening complications such as tissue damage, septicemia, and organ failures. In order
to prevent these adverse clinical outcomes and accelerate the wound healing process, it is
crucial to monitor the wound status in real-time so that immediate therapeutic interventions
can be implemented. In addition, continuous monitoring of the wound status can prevent
drug overdose at the wound site, leading to on-demand and personalized drug delivery.
Inflammatory mediators, such as Interleukin-6 (IL-6) and Interleukin-10 (IL-10) are
promising indicators for the progression of wound healing and predictors of disease
severity. Toward this end, this work reports a flexible wound patch for multiplexed
monitoring of IL-6 and IL-10 at the wound site in order to provide real-time feedback
on the inflammation phase of the wound. An optimized composition of gold nanoparticles
integrated multiwalled carbon nanotube was demonstrated to improve sensor
performance substantially. The sensor also exhibited excellent repeatable, reversible,
and drift characteristics. A miniaturized Internet-of-things (loT)-enabled potentiostat
was also developed and integrated with the flexible sensor to realize a wearable
system. This loT-enabled wearable device provides a smart and cost-effective solution
to improving the existing wound care through continuous, real-time, and in-situ monitoring
of multiple wound biomarkers.

Keywords: chronic wounds, electrochemical sensor, smart wound dressing, wearable sensor, multiplexed sensor,
internet-of-things, IL-6, IL-10

1 INTRODUCTION

Wounds are ruptured skin caused by accidents or chronic conditions, including diabetes mellitus,
vascular diseases, infection, cancer, or surgery (Sen et al., 2009). Wound healing is a four-step
process: hemostasis, inflammation, proliferation, and maturation (Williams and Barbul, 2003; Darby
et al, 2014; Han and Ceilley, 2017; Serra et al., 2017; Pourshahrestani, et al., 2020). The successful
completion of these four stages is essential for wound healing, while interrupting one or more steps
causes prolonged non-healing wounds, otherwise known as chronic wounds, which fail to proceed
through the normal phase of recovery (Tonnesen et al., 2000; Menke et al., 2007; Gurtner et al., 2008;
Mehmood et al., 2014; Farahani and Shafiee, 2021). Approximately 1.5-2 million people in Europe
are suffering from chronic wounds, whereas in the US, the number has crossed 6.5 million,
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presenting a significant economic burden on the healthcare
system with the treatment cost reaching up to 25 billion USD
per year (Zimlichman et al., 2013; Phillips et al., 2016). As obesity
and diabetes increase in the elderly population, chronic wound
cases are increasing more rapidly among aged people (Clayton
and Elasy, 2009; Sen et al., 2009; Standl et al., 2019).

Recent research thrust on chronic wounds has identified
several wound biomarkers, which can be categorized into
physicochemical parameters, enzymes, metabolites, and
bacterial pathogens (Brown et al, 2018; O’Callaghan et al,
2020; Mota et al., 2021). Wound temperature, moisture, pH,
and oxygenation are classified as physicochemical parameters,
while uric acid and lactic acid are identified as metabolites. In
addition, the presence of different bacteria, including P.
aeruginosa, E. coli, and B. fragilis at the wound sites, results in
an accumulation of pyocyanin, which is the primary bacterial
metabolite (McLister et al., 2017; Mota et al., 2021). However, to
date, studying the real-time immune regulation of skin wound
healing is heavily unexplored. The immune cells secrete a cascade
of signaling molecules (known as inflammatory mediators)
including pro-inflammatory cytokines such as tumor necrosis
factor-a (TNF- a), Interleukin-13 (IL-1P), Interleukin-6 (IL-6),
and Interleukin-12 (IL-12), and anti-inflammatory cytokines
such as Interleukin-10 (IL-10), Interleukin-4 (IL-4), and
Interleukin-13 (IL-13) (Péha and O’Neill, 2014). The primary
function of anti-inflammatory cytokines is to mediate/suppress
the inflammation. A delicate balance between the pro-and anti-
inflammatory responses is crucial to the orderly and timely
healing of wounds (Kolaczkowska and Kubes, 2013;
Mantovani et al., 2013; Novak and Koh, 2013; Wilgus et al,
2013; McLister et al., 2014; Oliveira et al., 2016; McLister et al.,
2017; Kundu, et al., 2020). Therefore, it is noteworthy that real-
time detection and monitoring of both pro-and anti-
inflammatory elements of the immune system is essential for
the effective management of chronic wounds.

Conventional treatment for chronic wounds involves drug-
loaded wound dressings tailored to the wound status (Brown
et al.,, 2018). However, these dressings fail to provide real-time
feedback on the progression and healing of wounds, thereby
delaying the treatment and subsequent recovery. Traditional
wound monitoring relies on physical inspection and
microbiological assessment (Bandodkar et al., 2016; Li et al,
2021). Physical examination involves successive bandage removal
that suffers from a lack of accuracy. Although the microbial assays
provide a more conclusive result, they are time-consuming,
invasive, and ineffective, particularly for detecting bacterial
pathogens that invade deeper tissues (Brown et al, 2018). In
contrast, wearable wound patches can provide accurate, non-
invasive, real-time, and continuous monitoring of the dynamics
of chronic wounds. Existing smart wound dressings employ
colorimetric methods to detect pH (Kassal et al., 2017; Pan
et al, 2019), fluorometric methods to detect bacteria (Zhou
et al.,, 2018), O, (Ochoa et al,, 2020), and H,O, (Wu et al,
2020), and electrochemical techniques to monitor lactate and
oxygen (Ashley et al., 2019). Clinical translation of these wearable
devices requires careful consideration of several aspects,
including  biocompatibility, flexibility, and connectivity
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(Bandodkar et al, 2016; Li et al., 2021). However, these
sensors do not provide a real-time indication of the immune
system response and progression at the wound site. Therefore,
smart wound dressings that can non-invasively monitor the
elements of the immune system at the wound site and send
feedback to physicians in real-time are crucial to get a
fundamental understanding of the interplay among different
molecules and develop an effective wound management protocol.

This work reports a smart wound patch comprising a
multiplexed electrochemical transduction wunit and an
integrated data processing and transmission framework.
Figure 1 shows the overview of the entire system. The
electrochemical sensor was screen-printed on a flexible
polyethylene terephthalate (PET) sheet attached to a sterile
wound dressing. The electrode surface faced down, toward the
wound site (Figure 1A). The sensor features multiplexed
monitoring of IL-6 and IL-10 on a single chip. Gold
nanoparticles integrated multiwalled carbon nanotube (AuNP-
MWCNT) bundles were synthesized and optimized to improve
the sensitivity, limit of detection, and stability of the
electrochemical measurements (Silva et al., 2018). The versatile
properties of MWCNT including ultra large active surface area,
fast electron mobility, high strength, and chemical inertness,
make them ideal for developing new generation of highly
sensitive and stable sensors to detect ultralow levels of analytes
in body fluids (Oliveira and Morais, 2018). The MWCNT
nanocomposite created a three-dimensional matrix on the
electrode surface, thereby enhancing the loading of
immobilized layers and antibody molecules. Incorporation of
AuNPs introduced additional attachment sites in the MWCNT
matrix. The complete system also included a custom-made data
processing and internet-of-things  (IoT)-based  wireless
transmission unit (Figures 1B,C). Optical images of the
complete wearable system are shown in Supplementary
Figure S1. The incorporation of IoT-based monitoring enables
the real-time tracking of IL-6 and IL-10 levels at the wound site.
The sensor was also tested for mechanical deformations to justify
its practical use. Overall, the integrated system demonstrates the
potential for real-time and continuous measurements of
inflammatory mediators at the wound site.

2 MATERIALS AND METHODS

2.1 Reagents

Simulated wound fluid exudate (BZ292) was obtained from Bio
Chemazone (Alberta T6B 3P3 Canada) while the other reagents
such as Prussian blue (PB), potassium hexacyanoferrate (IIT) {K;
[Fe(CN)¢]}, potassium chloride (KCl), hydrochloric acid (HCI),
iron (III) chloride (FeCls, thiol cross-linker acid solution, N’-
ethylcarbodiimide hydrochloride (EDC), N-Hydroxysuccinimide
(NHS), bovine serum albumin (BSA), graphene ink, silver/silver
chloride (Ag/AgCl) paste, hydrogen tetrachloroaurate (III)
hydrate (HAuCl,), and trisodium citrate were purchased from
Sigma Aldrich (St. Louis, MO). The multi-walled carbon
nanotube (MWCNT) was obtained from ACS Material
(Pasadena, CA). The Interleukin-6 and Interlukin-10 protein
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FIGURE 1 | (A) Schematic illustration of the flexible smart wound dressing placed at the wound site for multiplexed monitoring of IL-6 and IL-10. (B) Optical image of
the front and back side of the developed loT-enabled potentiostat. (C) Block diagram of the loT-enabled chronic wound analysis system. ADC: Analog-to-digital
converter, DAC: Digital-to-analog converter, LPF: Low-pass filter, and TIA: Transimpedance amplifier.

and antibody were purchased from R&D Systems (Minneapolis,
MN). IL-6 and IL-10 proteins were spiked in simulated wound
fluid (SWF) at varying concentrations ranging from 0.1 pg/ml to
1,000 pg/ml.

2.2 Instrumentation
Cyclic voltammetry (CV) and chronoamperometry analyses
were performed through CHI 660E electrochemical
workstation (CH Instruments, Inc.). The following
parameters were used for CV: range, —0.2-+2.0V; scan
rate, 50 mV/s; incremental potential, 0.01 V. The following
parameters were used for CA: pulse amplitude, 0.5 V; time
interval, 0.1 s, and run time, 20 s. It is to be noted that, similar
CV results were obtained with our custom-made potentiostat
(Figure 1B), as explained under the Results and Discussion
section. A PrismCut Vinyl Cutter (USCutter) was used for
cutting and screen printing the electrodes. For characterizing
mechanical deformations of the sensor, a compact, motorized
translation stage (Thorlabs) was used. The motorized base was
programmed to bend the sensor from 0° to 90° angle and
return to the initial 0° position. This entire cycle of bending
was conducted 100 times.

Zeiss Supra 55VP scanning electron microscope (SEM) and
Nicolet Avatar 360 E.S.P. ATR-FTIR spectrometer were utilized
to characterize the AuNP decorated MWCNT coatings.

2.3 Design of the Multiplexed Electrodes
The electrochemical sensor design contained four layers: 1)
Screen-printed electrodes (SPEs) having two working

electrodes (WEs) for detecting two cytokines, one counter
electrode (CE), and one reference electrode (RE), 2) a
hydrophobic polyethylene terephthalate (PET) sheet patterned
with the SPEs, 3) a medical-grade sterile wound dressing as the
underlying substrate, and 4) a second medical-grade porous
gauge for protecting the electrode surface.

A low-cost and roll-to-roll technique was used to manufacture the
sensors on a large scale (Figure 2A) (Pereira et al., 2021). Figure 2B
demonstrates the stepwise fabrication of the SPEs. The electrode
patterns were designed in AutoCAD Fusion 360 software and then
imported to a benchtop craft cutter for cutting the electrode patterns
on an 85 um thick polyvinyl chloride (PVC) sheet (HTVRont). The
PVC sheet was covered with a transfer tape that worked as the
masking layer. Firstly, the taped PVC sheet was loaded into the craft
cutter, and the SPE patterns were cut through the sheet (Figures
2Bi-iii). The optimized parameters for the cutter blade were force
45N and speed 30 mm/s. The blade was run twice over the PVC
sheet to generate a precise pattern. Next, the transfer tape was peeled
off from the WEs and the CE areas, and graphene ink was uniformly
screen-printed to the exposed regions with a squeegee (Figure 2Biv).
Likewise, the exposed regions of RE were screen printed with Ag/
AgCl paste (Figure 2Biv). The electrodes were cured at 100°C
temperature for 60 min in a convection oven. Afterward, the SPE
pieces were removed from the base and transferred to a pre-cut
125 um thick PET sheet (Grainger) (Figures 2Bv, vi). Finally, the
PET sheet was placed on a sterile cotton dressing. A second medical-
grade porous gauge was attached on the electrode surface such that
wound exudates can get absorbed by the gauge and flow to the
electrode surface, while simultaneously protecting the delicate wound
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FIGURE 2 | (A) Roll-to-roll production of the flexible multiplexed sensor array. Scale bar, 2 cm. (B) Stepwise fabrication process of the screen-printed electrodes.
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FIGURE 3 | (A) Cross-sectional view of the electrochemical sensor fabricated on a wound dressing pad. The wound fluid diffuses to the sensor surface through a
porous gauge. Inset of (A) shows the SEM images of the 0.5% (w/v) AuNP decorated MWCNT coating on the two working electrodes. The scale bar corresponds to
100 nm. (B) SEM images showing the morphology of four (0.1, 0.5, 1.0 and 2.0%) different dispersions of AUNP decorated MWCNT coating. All the scale bars represent

1 um. (C) Characterization of the AUNP-MWOCNT coating using FTIR.

area from foreign body response (due to the sensor electrodes). The
cross-section of the sensor is shown in Figure 3A. The overall
dimension of the sensing area was 2cm X 1.4cm. The screen-
printing method with a benchtop craft cutter enables low-cost and
rapid bulk manufacturing of the electrodes.

2.4 Preparation of AUNP-MWCNT Coating
To selectively detect IL-6 and IL-10, the WEs were immobilized

with a number of chemical layers. This work features gold
nanoparticles decorated multiwalled carbon nanotube (AuNP-
MWCNT) composite coating as the protein-sensitive layer.
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Preparation of the AuNP-MWCNT dispersion started with the
formation of AuNPs using the Turkevich method (Turkevich
et al,, 1951; Shakila and Pandian, 2006). Briefly, 30 ml of 0.01%
(w/v) tetra chloroauric (IIT) acid (HAuCl,) was set to boil on a
hotplate with constant stirring. After the boiling started, 1 ml of
1% sodium citrate was added slowly. The solution was stirred for
15 min to complete the reaction. The obtained dispersion was
centrifuged at 14,000 rpm for 20 min to remove the unreacted
HAuCl; and sodium citrate. The resulting precipitate was
collected, which was redispersed in 200 ml of Milli-Q water.
The above procedure resulted in mean AuNPs of 25nm
(Turkevich et al,,1951), which was also confirmed through
scanning electron microscope images (Figure 3). We selected
this specific size of AuNPs because it provided highest current
response, as described in the Supplementary Table S1 and
Supplementary Figure S2.

Synthesis of -OH functionalized MWCNT was carried out by
treating the MWCNT with 3M nitric acid solution under
constant stirring for 24 h. The functionalized MWCNT was
washed thoroughly with Milli-Q water and subsequently dried
at 80°C for 12 h in a convection oven (Ghica and Brett, 2013; Silva
et al., 2018).

The AuNP-MWCNT composite coating was synthesized by
dispersing equal volumes of AuNP and MWCNT stock solutions
in 1% (w/v) chitosan dissolved in 1% (v/v) acetic acid solution
and sonicating for 8h. Four different AuNP-MWCNT
dispersions (0.1, 0.5, 1 and 2% (w/v)) were prepared by
following this procedure.

2.5 Chemical Functionalization of Working

Electrodes

The WEs were first electrodeposited with Prussian Blue (PB)
(worked as a redox mediator) and AuNP-MWCNT by running
200 voltammetric cycles for potential ranging from -0.3 to +1.2 V
at a scan rate of 50 mV/s in a plating solution containing 2.5 mM
K; [Fe (CN)g], 2.5 mM FeCl;, 0.1 M KCl, 0.1 M HCI and 1 mg
ml™" AuNP-MWCNT. Four different dispersions of AuNP-
MWCNT, 0.1, 0.5, 1 and 2% (w/v), were used to do
electrodeposition on four electrodes (Shakila and Pandian,
2006; Noushin and Tabassum, 2022).

Secondly, the AuNP-MWCNT-PB immobilized WEs were
coated with a thiol cross-linker [HS (CH,),~COOH]. The
thiol functional groups of the linker formed Au-S bonds with
the AuNPs, while the carboxyl groups facilitated covalent binding
to EDC molecules of the next layer to form an intermediate
O-acylisourea. A 1 mM of thiolated linker solution was prepared
in PBS (pH = 7) and 4 pL of this solution was drop cast on
the WEs.

Thirdly, the WEs were functionalized with anti-IL6/anti-IL10
molecules via EDC-NHS coupling chemistry (Ali et al, 2018). In
this regard, 0.2M EDC and 0.05M NHS solutions were mixed with a
1 mg/ml antibody solution at a 1:1 volume ratio. The NHS molecules
reacted with primary amines of antibody to form amine-reactive
stable NHS ester. A 4 uL of antibody solution was drop cast on the
WESs that were stored inside a humid chamber at 4°C for 12 h. This
step allows the conjugation of antibodies to the WE surface.

loT-Enabled Integrated Smart Wound Sensor

Finally, 2 mg/ml solution of bovine serum albumin (BSA) was
drop-cast on the WEs to block the non-specific binding sites.

3 RESULTS AND DISCUSSION

3.1 Characterization of the Chemically

Functionalized Electrode
The AuNP-MWCNT coated and uncoated electrodes were
characterized by scanning electron microscopy (SEM), Fourier
transform infrared (FTIR) spectroscopy, cyclic voltammetry
(CV), and chronoamperometry (CA).

3.1.1 Scanning Electron Microscopy

The size, distribution, and morphology of AuNP decorated
MWCNT network was visualized by scanning electron
microscopy (SEM). Figure 3A shows the cross-section of the
fabricated sensor and the SEM image of the formation of AuNP-
MWCNT coating on the working electrodes. Figure 3B illustrates
a comparative analysis of the four AUNP-MWCNT coatings,
which support our selection of 0.5% (w/v) coating for protein
tests (as is explained later under Results and Discussion and
shown in Figure 5). The coatings prepared from 0.1 to 0.5% (w/v)
dispersions exhibited homogeneous and uniform surface
morphology, whereas the denser dispersions (i.e, 1.0 and
2.0%) resulted in non-homogeneous, uncontrolled, and
multiple-layered coatings. As a result, a significant number of
the AuNPs were buried inside the MWCNT layers, which
reduced the electrochemical  conductivity of  the
nanocomposite. Therefore, as is also explained under Results
and Discussion, the denser MWCNT layers resulted in poor
sensor performance (see Figure 5). The average size of the AuNPs
was found to be 25.2 + 4.7 nm.

3.1.2 Fourier Transform Infra-Red Spectroscopy

The AuNPs decorated MWOCNT nanocomposite was
characterized with an Attenuated Total Reflectance (ATR)-
FTIR spectrometer. Absorption spectra were recorded at a rate
of 16 scans per sample in the 500-4,000 cm ™" wavenumbers range
(Figure 3C). Omnic software was used to analyze the recorded
spectra. The absorption peaks between 3,500 and 4,000 cm™
confirm the presence of the -OH functional groups, while the
peaks in the 2,975-3,065cm”', 1,390-1700cm~’, and
1,100-1,160 cm™" range represent the C-H bonds. The
presence of C-O and C = O bonds are confirmed by the peaks
at 1,200 and 1790 cm™', respectively. The single peak at
~750cm™"  corresponds to Au-S bonds from gold
nanoparticles. The additional peaks in the 1950-2,210 cm™
range represent the artifacts of the diamond ATR setup (Fang
et al, 2018). The FTIR results are in good agreement with
previous reports (Thamri et al., 2016), confirming the presence
of gold decorated -COOH functionalized MWCNTs in the
coating.

3.1.3 Electrochemical Characterization
Unless otherwise stated, all sensor characterizations were
performed in SWF (pH = 7.4). Cyclic voltammetry (CV)
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FIGURE 4 | (A) Cyclic Voltammetry (CV) plots for sequentially deposited coatings on the sensor surface. (B) CV characteristics of the AUNP-MWCNT coated and
planar sensors. (C) CV characteristics as a function of scan rate. The inset demonstrates the diffusion-limited behavior of the sensor. (D) Chronoamperometry (CA)
characteristics of the planar and AUNP-MWCNT coated sensors.

technique was used to investigate the redox performance of the
sensor for different immobilized coatings. Figure 4A
demonstrates the CV plots for bare graphene WE and after
sequentially adding AuNP-MWCNT, linker acid, antibody,
and BSA on the electrode surface. The voltammograms were
performed in the potential range of —0.2-+2.0 V, with a scan rate
of 50 mV/s. The addition of different layers reduced the redox
current due to the insulating property of the immobilized layers
that slowed down electron transfer (Silva et al., 2018). The
oxidation and reduction peaks occurred at 0.55 and 0.4V,
respectively. Figure 4B illustrates the CV scans for one AuNP-
MWCNT-coated and one uncoated sensor. It is evident from the
CV plots that the AuNP-MWCNT-coated sensor exhibited a ~5-
fold increase in redox current than the sensor without any AuNP-
MWCNT coating (also called planar/uncoated sensor). AuNP-
MWCNT enhanced the electrostatic interactions owing to the
abundance of electroactive surface area and attachment sites (Luo
et al., 2001; Elgrishi et al., 2018) Next, the CV technique was
conducted for different scan rates to analyze electron transfer
kinetics through the composite coating (Figure 4C). As the scan
rate increased from 10 to 100 mV s, the oxidation current
increased while the reduction current decreased. The peak
current increased linearly with +/scanrate (shown at the inset
of Figure 4C), representing a diffusion-controlled and reversible
process (Ali et al, 2018). Our experimental analysis is
corroborated by the Randles-Sevcik equation, which describes
the effect of scan rate on the peak current in a diffusion-limited
process:

2
nFv Do) )

ip =0.446nFACO( RT

Where n, A, Do, and co are the number of the transferred
electrons, electrode area, diffusion coefficient, and analyte
concentration, respectively. i, represents the peak oxidation
current, and v is the scan rate (Bard and Faulkner, 1980; Ali
et al., 2020).

In addition, the chronoamperometry (CA) technique was
employed to investigate further the sensor’s redox reactivity
with and without the AuNP-MWCNT coating. The CA was
carried out by applying a fixed potential of 0.5V between the
working and reference electrodes. The CA results in Figure 4D
verified that the AuNP-MWCNT-coated sensor exhibited a
higher redox current, as was also measured from the CV tests
illustrated in Figure 4B. The sensor with gold decorated
MWCNT showed a response time of 6s, while the planar
sensor’s response time was found to be 2's. This minimal time
lag may be attributed to the additional diffusion kinetics of the
charge carriers through the AuNP-MWCNT nanocomposite
matrix.

3.2 Electrochemical Behavior of IL-6 and
IL-10 Sensors Under Different Electrode
and Wound Parameters

The effects of different parameters including changes in the
coating composition, wound pH, and bending motions, on the

electrochemical behaviour of the sensors are explained in this
section.

3.2.1 Influence of Different AUNP-MWCNT Dispersions
The central layer of our sensor is the AuNP-MWCNT
nanocomposite coating. Therefore, we investigated the
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FIGURE 5 | CV plots from the 0.5% (w/v) AUNP-MWCNT-coated sensor for eight different concentrations of (A) IL-10 and (B) IL-6. (C) Calibration curves by
plotting current versus protein concentrations for four different AUNP-MWOCNT coatings. (D) Calibration plots showing the performance comparison of planar and AuUNP-
MWOCNT-coated IL-6 sensors. Error bars represent three repeated measurements for each protein concentration.

influence of different AuNP-MWCNT dispersions on the
performance metrics of the sensor, i.e., sensitivity and limit of
detection. Four different dispersions of AuNP-MWCNT, 0.1, 0.5,
1 and 2% (w/v) were drop-cast on four identical IL-10 sensors
(where we only varied the concentration of MWCNT and used
the same 25nm of AuNPs). For the electrochemical
measurements of IL-6 and IL-10, eight different
concentrations (ranging from 0.1 pg/ml to 1,000 pg/ml) of
each protein biomarker were prepared in Simulated Wound
Fluid (pH = 7.4). Figures 5A, B depicts the CV responses of
the 0.5% (w/v) AuNP-MWCNT coated sensor spiked with
varying concentrations of IL-10 and IL-6, respectively. With
increasing protein concentrations, the redox current decreased
due to the formation of a thicker immunocomplex layer via the
binding of increased number of protein molecules with the
antibodies on the sensor surface. The sensor presented a linear
range of response from 0.1 pg/ml to 1,000 pg/ml protein
concentrations.

It is evident from the calibration plots in Figure 5C that the
sensor coated with 0.5% (w/v) of AuUNP-MWCNT exhibited
the highest sensitivity (implying the calibration plot with the
largest slope) and lowest detection limit. The limit of detection
(LoD) was calculated using the following equations (Ali et al,,
2020), where “c” is the intercept of the calibration curve of the
Sensor:

LoB = Mean of signal (blank sample) + 1.645 x (Std dev of
blank sample) 2)

Limit-of-detection of the signal (YLoD) = LoB + 1.645 x (Std

TABLE 1 | Performance comparison of the IL-10 sensor for different AUNP-
MWGCNT dispersions.

AuNP-MWCNT Sensitivity (A (pg/mL)~" cm™3) LoD (pg/ml)
0.1 WA% 138.709 0.04
0.5 W% 273.23 7.76 x 107°
1wh % 122,195 05
2 WA % 132.442 15

Table 1 shows the performance comparison of the sensor for
four different AuNP-MWCNT dispersions. The 0.5% (w/v)
AuNP-MWCNT resulted in the highest sensitivity of
27323 pA (pg/mL)™' cm™ and the lowest LoD of 7.76 x
107 pg/ml. In light of these results, 0.5% (w/v) AuNP-
MWCNT was selected as the optimized coating for all the
subsequent protein tests. Table 2 shows the performance
comparison of the IL-6 sensor with and without the 0.5 w/v %
AuNP-MWCNT coating.

Moreover, Figure 5D shows the comparative analysis of the
calibration plots for the 0.5% (w/v) AuNP-MWCNT coated
and uncoated IL-6 sensors. The results verified a steeper
calibration curve with the AuNP-MWCNT-coated sensor
compared to the uncoated sensor. The sensitivities and
LoDs of the IL-6 sensors with and without the AuNP-
MWCNT coating are tabulated below:

3.2.2 Influence of Varying pH

Depending on the severity (healthy versus acute versus

dev of target at low concentration 3 .
f targ ) ® chronic wounds), wound pH can range from 4 to 8.9,
LoD = (YLoD - c¢)/slope of the sensor calibration (4) wherein acidic values (pH = 4-6) imply healthy wounds
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TABLE 2 | Performance comparison of the IL-6 sensor with and without the AUNP-MWCNT coating.

uncoated sensor

Sensitivity (A (pg/mL)™" cm™3) LoD (pg/ml)
60.786 0.06
653.279 9x107°

0.5 w/v% AuNP-MWCNT-coated sensor

Current (HA)

FIGURE 6 | (A) CV plots from the 0.5% (w/v) AUNP-MWCNT-coated IL-10 sensor in a pH = 7 solution. (B) Calibration plots in SWF solutions with varying pH (=6, 7,
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and alkaline values (pH > 7) represent chronic wounds
(Momoh et al., 2015; Bazbouz and Tronci, 2019). To
simulate the effect of varying wound pH on the sensor
performance, protein concentrations in SWF with different
pH values (pH = 6, 7, 8, and 9) were prepared by adding the
required amount of 0.01M HCl or 0.001M NaOH. A reduction
in the oxidation peak current with increasing pH was observed
(as shown in Supplementary Figure S3 and Figure 6). This
behavior was due to the presence of negative charges on the
WE surface, originating from the citrate capped AuNPs and
the carboxyl groups in the MWCNT (Zi et al., 2012). With the
increase of pH, the supply of positive charges to the protein
molecules declined, resulting in a decrease in the effective
electrostatic interactions between the protein and the AuNP-
MWCNT-modified electrode (Ardakani et al., 2009). Hence, a
decline in the peak oxidation current was observed with an
increase in the solution pH.

Thus, there is a direct relation of the amperometric signal
with the pH: peak current increased while the slope of the
calibration plot decreased with a more acidic solution
(i.e., decreasing pH). Nevertheless, the sensor demonstrated
satisfactory performance under different pH conditions. The
calibration plots with a slope of —8.5838 + 4.41 pA (pg/mL)~"
and intercept of 92.995 + 2.14 pA were measured within a
linear pH range (from pH = 6-9). Taking pH = 6.5 as the
reference (which is the pH of healthy wounds), the correction
factors for slope and intercept (i.e., fgope and fiptercept) under
different pH environments can be calculated using the
following equations (Wiorek et al., 2020).

3.2.3 Effect of Bending

The sensor’s performance was evaluated under different bending
deformations to simulate the mechanical motions of human
body. The sensor was placed in a motorized translation base,
which was moved back and forth at a speed of 4 mm/s (Figures
7A,B). The sensor was bent at a maximum angle of 90°. After
every bending cycle, the sensor response returned to its relaxed
state in 5 s. The calibration plots of the IL-10 sensor after 50 and
100 cycles of bending are shown in Figure 7C. The sensor
response underwent minimal variations due to the PET
substrate’s flexible nature coupled with the unique flexibility
and porosity of the underlying textile-based wound dressing.
The coefficient of variance in the intercept and slope values for
the calibration plots was <8%, indicating the negligible sensor
response variability to bending.

The mechanical flexibility of the sensor was further investigated
with the finite-element method (FEM) based software COMSOL
Multiphysics. The Solid Mechanics module was used to perform
time-dependent simulation under different bending conditions. The
geometry was imported from AutoCAD Fusion 360 software, and
boundary conditions were applied by fixing geometry at the two
opposite edges. A sinusoidal bending force was applied to evaluate the
stress and displacement characteristics of the sensor. The distribution
of stress along the sensor surface is shown in Figure 7D. The highest
stress was encountered by the middle of the sensor due to the highest
bending force applied in that region. Additionally, the displacement
of the sensor with respect to the relaxed state is shown in Figure 7E.

3.3 Performance Evaluation of the

Slope (pH .
fiope = #((16)5)) Custom-Made loT-Enabled Potentiostat
) ) We developed an IoT-enabled potentiostat capable of measuring
Fintercept = 1.;1tercep t(pH) (5) cyclic voltammetry responses with a predefined potential sweeping
intercept (6.5) from —0.2 to 2.0V and a scan rate of 50 mV/s. The detailed block
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FIGURE 7 | (A) Setup for the motorized translation stage. (B) Evaluation of the sensor’s performance under different degrees of bending, with 90° being the
maximum bending angle. (C) Calibration plots of the IL-10 sensor after 50 and 100 cycles of bending. Measurements were repeated three times for each protein
concentration. Modeling (D) stress and (E) displacement of the electrodes under sinusoidal bending. The double arrow in (D) shows the direction of bending.
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FIGURE 8| CV plots for different concentrations of (A) IL-6 and (B) IL-10, using the developed potentiostat. Calibration curves were generated by plotting current
responses as a function of (C) IL-6 and (D) IL-10 concentrations. Measurements were repeated three times for each protein concentration.

diagram is shown in Figure 1C and explained in Supplementary  application (Figure 1C). Figures 8A,B show the cyclic
Figure S4. The entire electronics was enclosed in a 3D printed box that ~ voltammograms in response to IL-6 and IL-10 concentrations,
was wearable on the arm (Supplementary Figure S1). The wearable  respectively, while the resulting calibration curves are shown in
potentiostat was used to measure the CV responses of the sensor for ~ Figures 8C,D. The CV calibration curves obtained by the custom-
eight different concentrations of IL-10 and IL-6. The Blynk IoT  developed potentiostat were nearly the same as the calibration plots
interface was used to transmit the data wirelessly to a smartphone  generated by the commercial CHI 660E potentiostat. Error bars
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FIGURE 9 | (A) Dynamic sensor response for increasing IL-10 concentrations. (B) Validation of the sensor in accurately estimating unknown IL-10 concentrations.
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FIGURE 10 | (A) Sensor reproducibility test using four identical sensors. (B) Repeatability test conducted with the same sensor. (C) Reversibility test with cyclic
variations in IL-10 concentrations. Measurements were repeated three times for each protein concentration.
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TABLE 3 | Comparative analysis of the developed sensor and the previous works.

Working electrode Sensitive coating Detection range (pg/ml) LoD (pg/ml) References
SPGE AuNPs 1-15 x 10° 0.33 Tertis et al. (2017)
GCE p-ABA, p-ATP and AuNPs 5-1 x 10° 1.6 Tertis et al. (2019a)
ITO PPyr-NHS 0.03-22.5 0.01 Aydin et al. (2020)
GSPE ProtG-MBs 1-1 x 10° 0.3 Tertis et al. (2019b)
Au CMA 1-15 — Baraket et al. (2017)
Graphene AUNP-MWCNT 0.1-1 x 10° 9x 1078 This Work

represent the three consecutive measurements taken for each protein
concentration. The coefficient of variance between the redox currents
measured by the two systems (CHI 660E vs. the developed
potentiostat) was < +1%.

3.4 Dynamic Response Measurements

The developed potentiostat was also used to measure the dynamic
response of the sensor, as shown in Figure 9A. The sensor was spiked
with increasing IL-10 concentrations ranging from 0.1 pg/ml to
1,000 pg/ml. Four consecutive readings were taken for each
concentration in a 6-min timeframe where the sensor response
was stable. We determined the sensor’s accuracy for analyzing
unknown protein concentrations in SWF. The sensor could
accurately estimate the concentrations, with a high Pearson
correlation coefficient of 0.997, suggesting the excellent reliability
of the sensor (Figure 9B).

3.5 Reproducibility, Repeatability, and

Reversibility Analysis

The reproducibility, repeatability, and reversibility characteristics
were analyzed using the CV technique. In order to test for the
reproducibility of our device, four identical sensors were tested

with the same set of IL-10 levels, and the calibration curves were
plotted accordingly (shown in Figure 10A). Our sensor indicated
an acceptable reproducible behavior with a less than 8%
coefficient of variance among the four calibration curves,
which is vital for on-body measurements.

Sensor repeatability was tested by repeating the calibration of
the same sensor four times in an interval of 1h. Figure 10B
demonstrates the four calibration plots obtained with the same
sensor. Although the coefficient of variance of the intercept was
calculated to be <0.1%, the slope values showed a nearly 10%
deviation. This might be due to the continuous exposure of the
sensor surface to an uncontrolled humid environment for more
than 4h. Such exposures can be avoided during on-body
applications because a medical gauge covers the sensor surface
(also explained in the Materials and Methods section). The
similar calibration curves demonstrated the repeatable nature
of the sensor.

The sensor also demonstrated excellent reversibility, as is
illustrated in Figure 10C. The sensor was exposed to
increasing, followed by decreasing concentrations of IL-10
protein biomarker, and the cycle was repeated four times. The
peak oxidation current was almost the same for different cycles
with less than 0.1% deviation.
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3.6 Drift Analysis

The drift characteristic of the sensor was analyzed using three IL-
10 concentrations, including 0.1 pg/ml, 50 pg/ml, and 1,000 pg/
ml. The voltammograms were measured every hour over 12h
(Figure 11A). The sensor was stored at 4°C between two
consecutive test sessions. The overall coefficient of variance
was <0.5% indicating the minimal drift displayed by the
sensor. The drift behavior was further analyzed in 5min
interval for the same set of IL-10 concentrations over an hour
(Figure 11B). Again, a minute drift was observed with a
coefficient of variance of only 0.001%.

3.7 Selectivity Analysis

To successfully apply the sensor in an actual wound, it is essential
to evaluate the sensor response to interfering species present at
the wound site. Therefore, the sensor was tested against some
common interfering species found at the wound site, such as
glucose (180 g/L), cortisol (100 ng/ml), and C-reactive protein
(10 pg/ml) (Figures 12A,B). The sensor was spiked with three
different SWF solutions: 1) a solution containing only interfering
species, 2) 10 pg/ml of the target protein (IL-6 or IL-10) mixed
with the interfering species, and 3) 500 pg/ml of the target protein
(IL-6 or IL-10) mixed with the interfering species. In the absence
of target proteins, no current variations were observed with
respect to the baseline, while the introduction of target protein
(IL-6 or IL-10) generated noticeable current peaks. Further, the
effect of interfering species on the sensitivity and response time of
the sensors were analyzed (as demonstrated in Supplementary
Figures S5, $6). It was evident that in the presence of interferents,
the sensitivity reduced by <8% and the response was delayed by
only 135 s.

3.8 Stability Analysis

To evaluate the long-term stability of the sensor, three sensors
were tested for three different IL-10 concentrations over a week.
The test results are demonstrated in Figure 12C. The sensor was
stored at 4°C after each test. The coefficient of variance in the
sensor response was measured to be <0.1% over the first 3 days
and approximately 5% for the remaining 4 days, indicating an
acceptable stable response for on-body measurements under an
appropriate storage condition. The stability of the AuNPs-
MWCNT coating was further analyzed. The results are
reported in the Supplementary Figure S7.

4 COMPARISON OF SENSOR
PERFORMANCE WITH EXISTING
LITERATURE

We further compared the performance of our sensor with some
recent electrochemical sensors that are reported in the literature
for monitoring IL-6 and IL-10. The comparative analysis is
shown in Table 3. Our sensor demonstrated a low LoD and
wide dynamic range (which covers the IL-6 and IL-10 spectrum
after an injury) simultaneously (Kawakami et al., 1997; Pileri
etal., 2008), thus depicting an impressive performance compared
to recently proposed works.

loT-Enabled Integrated Smart Wound Sensor

5 CONCLUSION

In this paper, an IoT-enabled fully integrated and wearable system
was developed for multiplexed monitoring of wound biomarkers in
real-time. The multiplexed electrochemical sensor featured AuNP
decorated MWCNT, which was demonstrated to improve the sensor
performance notably. A complete characterization of sensitivity,
selectivity, limit of detection, bending, reproducibility, repeatability,
reversibility, drift, and stability were performed. Acceptable
performance of the sensor in all these test cases demonstrated its
future promise for on-body real-time measurements of wound
status. Furthermore, our sensor was capable of accurately
detecting the protein levels in different pH solutions. Real-time
quantification of the inflammation status of the wounds would also
enable on-demand drug release at the wound site. Future work
involves the integration of a drug delivery mechanism controlled by
the real-time protein concentration measured by the sensor. The
impact of this work is expected to be tremendous in the field of
wound management by providing real-time information on the
progression of inflammation at the wound site, thereby allowing the
implementation of efficient therapeutic measures. Incorporation of
an automated drug delivery mechanism will take this proposed
system to the next level of personalized wound care.
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