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Using the photocurable electrolyte solution containing viologen derivative 1,1′-bis- (4-
vinylbenzyl)-4,4′-bipyridinium dihexafluorophosphate (EV2+•2PF6−) and its composite of
EV2+•2PF6− and triphenylamine derivativeN,N′-di(4-((3-(triethoxysilyl)-propyl)imino)methyl)
phenyl-N,N′-diphenyl-4,4′-biphenyldiamine (TPB-PSSO) as the electrochromic active
layer, respectively, the flexible electrochromic devices (FECDs) were prepared by
photocurable technology. The device structure was PET-ITO/photocurable electrolyte
solution/PET-ITO. The electrochromic properties of FECDs were investigated. The results
show that the FECDs can all undergo a reversible color change, especially the PET-ITO/
photocurable electrolyte solution-composite/PET-ITO can undergo polychromatic
transition. The FECD based on EV2+•2PF6− can reversibly change between colorless
and deep blue, and the FECD based on the composite of TPB-PSSO-EV2+•2PF6− can
reversibly change between black blue, light yellow, and sky blue.

Keywords: viologen derivative, triphenylamine derivative, composite, photocurable electrolyte solution, flexible
electrochromic devices

1 INTRODUCTION

In recent years, people have paid more and more attention to energy-saving, which means
electrochromic materials and corresponding devices have gradually become a research hotspot.
The organic molecules can undergo a reversible electrochemical redox under an applied voltage,
resulting in a color change known as organic electrochromic materials. Organic electrochromic
materials have been studied because of their advantages, such as easy synthesis, modification,
and fabrication of flexible devices (Liu et al., 2020a; Liu et al., 2020b; Frolov et al., 2020; Ma et al.,
2020; Nad and Malik, 2020; Xiao et al., 2020; Zhang et al., 2020; Kim et al., 2021; Zhang X et al.,
2021; Kim et al., 2021; Hao et al., 2021; Huang et al., 2021; Li et al., 2021). Organic
electrochromic devices (ECDs) have good application prospects, such as smart windows and
displays. In our previous work, a series of triphenylamine (TPA) derivatives were synthesized,
and their electrochromic properties were investigated (Liu et al., 2017; Zeng et al., 2017; Zeng
et al., 2018; Zeng et al., 2019). As solid films, these derivatives exhibited high optical contrast and
a short response time under applied voltages. In addition, a series of conjugated linear and star
oligothiophene derivatives and organic conjugated oligomers containing 4-
ethylenedioxythiophene were synthesized (La et al., 2008; Yin et al., 2010; Jiang et al., 2012;
Zhong et al., 2015; Wan et al., 2018). These organic compounds exhibited reversible and distinct
chromatic changes. 4,4-Bipyridine, the core group of viologen derivatives, has a strong electron-
acquiring ability. The N atom of TPA derivatives has a lone electron-pair and strong electron-
supplying ability, making them prone to electron gain and loss.
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In this study, the N,N′-di (4-((3-(triethoxysilyl)propyl) imino)
methyl)phenyl-N,N′-diphenyl-4,4′-biphenyldiamine (TPB-
PSSO) and a 1,1′-bis (4-vinylbenzyl)-4,4′-bipyridinium
dihexafluorophosphate (EV2+•2PF6−) were synthesized. Using
the photocurable electrolyte solution containing EV2+•2PF6−
and PSSO-EV2+•2PF6− composite as the electrochromic active
layer, respectively, the flexible electrochromic devices (FECDs)
were prepared, and their electrochromic properties were
investigated. The molecular structures of TPB-PSSO and
EV2+•2PF6− are presented below (Figure 1).

2 EXPERIMENTAL

2.1 Materials
All solvents were purified and dried using standard methods.
Triphenylamine (TPA), phosphorus oxychloride (POCl3),
NH4PF6, photocurable resin (PET-400DA), and
photoinitiator-184 were purchased from Alfa Aesar
Chemical Co., Ltd. Lithium perchlorate (LiClO4),
tetrahydrofuran (THF), and potassium carbonate (K2CO3)
were purchased from Shanghai RichJoint Chemical Reagents
Co., Ltd. 1,2-Dichloroethane, acetonitrile (ACN), and ethanol
(EtOH) were purchased from Tianjin Fuyu Fine Chemical Co.
Ltd. N,N-Dimethylformamide (DMF) and nitric acid (HNO3,
65%) were purchased from Guangzhou Chemical Reagent
Factory. Sodium hydroxide (NaOH) was purchased from
Fuchen (Tianjin) Chemical Reagents Co., Ltd. 3-
Aminopropyl triethoxysilane (APTES) was purchased from
Foshan Daoning Chemicals Ltd. Dichloromethane (DCM) and
propylene carbonate (PC) were obtained from Sinopharm
Chemical Reagent Co., Ltd. Indium tin oxide (ITO) PET
(10 Ω) was purchased from Zhuhai Kaivo Optoelectronic
Technology Co., Ltd.

2.2 Instruments
Fourier transform infrared (FTIR) spectroscopy was performed
on a Nicolet 6700 (Thermo Fisher Scientific) spectrometer.
Nuclear magnetic resonance (NMR) spectra were recorded on
a Bruker AVANCE-600 NMR spectrometer. Using a Thermo
Helios-g spectrometer, the ultraviolet-visible (UV-vis) spectra
were recorded. Using a CHI750A electrochemical workstation
(Zhenhua Apparatus Co., Shanghai), the electrochemical
properties were measured in a PC solution containing 0.1 M
LiClO4. A saturated calomel electrode (SCE), platinum wire, and
glassy carbon electrode were used as the reference electrode (RE),
counter electrode (CE), and working electrode (WE),
respectively.

2.3 Synthesis
2.3.1 Synthesis of N,N′-Di(4-((3-(triethoxysilyl)propyl)
imino)methyl)
phenyl-N,N′-diphenyl-4,4′-biphenyldiamine
(TPB-PSSO)
The TPB-PSSO was synthesized and characterized according to
the procedure reported (Zhang X. et al., 2021).

2.3.2 Synthesis of
1,1′-Bis(4-vinylbenzyl)-4,4′-bipyridinium
Dihexafluorophosphate (EV2+•2PF6−)
4,4′-Bipyridine of 3.12 g (20 mmol), 60 ml acetonitrile (ACN),
and 5 ml (60 mmol) ethane bromide were added into a 100 ml
single flask. The solution was stirred under N2 at 80°C for 48 h.
Then, the solution was filtrated, and a yellowish crude product
was obtained. The yellowish crude product was washed with ACN
and dried in a vacuum. The 30 ml NH4PF6 aqueous solution was
added to the aqueous solution of the above yellow product, and
themixture solution was stirred quickly for 3 h. Then, themixture
solution was filtrated, and a white crude product was obtained.
The white crude product was washed with distilled water and
vacuum drying. The 9.3 g white EV2+•2PF6− powder was
obtained. 1H NMR (DMSO, 400 MHz, ppm): 9.38 (d, J =
7.2 Hz, 4H), 8.76 (d, J = 6.9 Hz, 4H), 4.73 (m, J = 2.0 Hz, 4H),
1.61 (t, J = 2.0 Hz, 6H). 13C-NMR (DMSO, 400 MHz, ppm);
149.10, 145.96, 127.07, 57.07, 16.85; HRMS (ESI): (C14H18N2

+)
214.1417, calcd. for 214.1439.

2.4 Preparation of the Photocurable
Electrolyte Solution
The LiClO4 and EV2+•2PF6− [or composite of TPB-PSSO-
EV2+•2PF6− (w/w = 1/1)] were added to 25 ml of propylene
carbonate (PC). The solution was stirred until completely
dissolved. The concentration of LiClO4 is 2.83 mol/L, and the
concentration of EV2+•2PF6− [or composite of TPB-PSSO-
EV2+•2 PF ((w/w = 1/1)] is 0.01 M. Then, 0.80 g of
photocurable resin (PET-400DA) and 0.02 g of photoinitiator
184 were added to the abovementioned electrolyte solution and
stirred evenly. The prepared photocurable electrolyte was stored
in an N2 atmosphere away from light, hence being ready for use.

2.5 Preparation of the Flexible
Electrochromic Devices
The FECDs with the sandwich structure were assembled using the
two pieces of 2.5 × 5 cm2 ITO-PET substrate as the electrode. A
certain amount of the abovementioned two-electrolyte solution
was injected into the hollow part of the sandwich structure,
respectively. Then, the FECDs were put into the photocuring
box for 1 min. The structure of FECDs was PET-ITO/
photocurable electrolyte solution/PET-ITO. The FECDs based
on the EV2+•2PF6− and the composite of TPB-PSSO/EV2+•2PF6−
(W/W = 1:1) were named FECD-EP and FECD-composite,
respectively.

3 RESULTS AND DISCUSSION

3.1 Optoelectrochemical Properties of
TPB-PSSO and EV2+•2PF6

−

Figure 2 shows the UV-vis spectra of TPB-PSSO and EV2+•2PF6−
in PC solution, respectively. The maximum absorption
wavelength (λmax) of TPB-PSSO PC solution is 362 nm; that
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is, the color of the TPB-PSSO is yellow. Themaximum absorption
wavelength (λmax) of EV

2+•2PF6− in the PC solution is 262 nm,
and there is no obvious absorption peak in the visible region,
which shows that the EV2+•2PF6− solution is colorless and
transparent.

The electrochemical redox ability of organic compounds
was tested by cyclic voltammograms (CV). The scanning was
carried out at a rate of 50 mV/s. As shown in Figure 3 and
Table 1, the onset of oxidation and reduction potential of TPB-
PSSO were 0.80 and −0.15 V (vs. SCE), respectively. The onset
of reduction potential of EV2+•2PF6− was −0.42 V (vs. SCE).
The CV results show that these two compounds have oxidation
and reduction abilities and may be used as electrochromic
active material.

3.2 Electrochromic Properties of the FECDs
Figure 4 shows the CV curves of FECD-EP and FECD-
composite, respectively. The reversible redox process of

FIGURE 1 | The molecular structure of TPB-PSSO and EV2+•2PF6−.

FIGURE 2 | The UV-vis spectra of TPB-PSSO (A) and EV2+•2PF6− (B).

FIGURE 3 | The CV curve of TPB-PSSO (A) and EV2
+•2PF6− (B).

TABLE 1 | The electrochemical redox ability of compounds.

Compounds Eox
onset (V vs. SCE) Ered

onset

(V vs. SCE)

TPB-PSSO 0.80 −0.15
EV2+•2PF6− — −0.42
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FECD-EP is the conversion between the EV2+ and radical EV•+

accompanied by the gain and loss of an electron. The FECD-
composite has two reversible redox processes: one is the
reversible redox process of TPB-PSSO and the other is the
reversible redox process of EV2+•2PF6−.

As shown in Figure 5, the FECD-EP and FECD-composite can
undergo reversible color change under applied voltage. When the
applied voltage is at 0 V, the FECD-EP is colorless, and when the
applied voltage is at −3.5 V, the color of the FECD-EP is deep
blue. The main reason for this color change is that the EV2+ can
get an electron under the applied voltage and be reduced to the
monovalent cation radical EV+. When the applied voltage is 0 V,
the FECD-composite is light yellow. When the applied voltage is
at 2.0 V, the color of the FECD-composite is black blue. When the
applied voltage is at −2.0 V, the color of FECD-composite is
sky blue.

Optical contrast (ΔT) refers to the difference in the optical
transmittance of ECD in coloring and bleaching state at a certain
wavelength. TheΔT of FECD-EP was 65.9% at 570 nm. TheΔT of
the FECD-composite was 33.2%, 33.4%, and 32.1% at 515, 570,
and 653 nm, respectively.

The response time of FECD-EP and FECD-composite is
measured by chronoamperometry. The time required for the
current change to reach 95% during coloring and bleaching is
denoted as coloring response time (tc) and bleaching response
time (tb), respectively. The timing-current spectra of FECD-EP
and FECD-composite are shown in Figure 6. When FECD-EP
alternatively switches the voltage of −3.0 and 1.0 V, the Tc is 0.2 s and
Tb is 0.1 s. When the applied voltage of −2.5 and 2.5 V is alternately
switched with FECD-composite, the tc and tb are 1.8 and 4.4 s.
Comparing the tc and tb of FECD-EP, it can be found that the
coloring and bleaching time of the FECD-composite is longer.

FIGURE 4 | The CV curve of FECD-EP (A) and FECD-composite (B).

FIGURE 5 | Spectroelectrochemistry of FECD-EP (A) and FECD-composite (D). Optical contrast of FECD-EP (B) and FECD-composite (E). Color change images
of FECD-EP (C) and FECD-composite (F).
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Figure 7 shows the cyclic stability curves of FECD-EP and
FECD-composite. The FECD-EP retained 67.1% of their original
charge after 1,000 cycles. However, the timing-current curve of
the FECD-composite fluctuated greatly, and the amount of
charge at the 1,000th cycle was slightly higher than the initial
charge. The reason might be that excessively high driving voltage
may easily cause over-oxidation or over-reduction of
electrochromic materials in the electrochromic process.

The coloration efficiency of an electrochromic device refers to
the change value of the optical density of the device when the unit
charge is injected or extracted during the coloration process. The
coloration efficiency of FECD-EP and FECD-composite can be
calculated according to Eq. (1):

η � ΔOD/Q, ΔOD � log(Tb/Tc). (1)
The η is the coloration efficiency (cm2/C), ΔOD is the change

of optical density, Q is the amount of charge injected (or
withdrawn) (cm2/C) of unit area, and Tc and Tb are,
respectively, the optical transmittance of colored state (%) and
bleached state (%) at a specific wavelength. The η of FECD-EP at
570 nm was 151.50 cm2/C. When the positive applied voltage was
applied, the η of FECD-composite at 515, 570, and 653 nm was
74.15 cm2/C, 68.16 cm2/C, and 104.86 cm2/C, respectively. When

the reverse applied voltage was applied, the η of FECD-composite
at 513, 568, and 654 nm was 116.70 cm2/C, 93.25 cm2/C, and
140.28 cm2/C.

4 CONCLUSION

Using the photocurable electrolyte solution containing
EV2+•2PF6− and its composite of EV2+•2PF6− and TPB-
PSSO as the electrochromic active layer, respectively, the
FECDs were prepared by photocurable technology. The
FECD based on EV2+•2PF6− can reversibly change
between colorless transparent and deep blue, and the
FECD based on the composite of TPB-PSSO-EV2+•2PF6−
can reversibly change from light yellow to sky blue and
dark blue under both positive and negative application
voltages.
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FIGURE 6 | A single cycle of chronoamperometry of FECD-EP (A) and FECD-composite (B).

FIGURE 7 | The cyclic stability of FECD-EP (A) and FECD-composite (B).
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