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Neuromorphic computing, commonly understood as a computing approach built
upon neurons, synapses, and their dynamics, as opposed to Boolean gates, is
gaining large mindshare due to its direct application in solving current and future
computing technological problems, such as smart sensing, smart devices, self-
hosted and self-contained devices, artificial intelligence (AI) applications, etc. In a
largely software-defined implementation of neuromorphic computing, it is
possible to throw enormous computational power or optimize models and
networks depending on the specific nature of the computational tasks.
However, a hardware-based approach needs the identification of well-suited
neuronal and synaptic models to obtain high functional and energy efficiency,
which is a prime concern in size, weight, and power (SWaP) constrained
environments. In this work, we perform a study on the characteristics of
hardware neuron models (namely, inference errors, generalizability and
robustness, practical implementability, and memory capacity) that have been
proposed and demonstrated using a plethora of emerging nano-materials
technology-based physical devices, to quantify the performance of such
neurons on certain classes of problems that are of great importance in real-
time signal processing like tasks in the context of reservoir computing.We find that
the answer on which neuron to use for what applications depends on the
particulars of the application requirements and constraints themselves, i.e., we
need not only a hammer but all sorts of tools in our tool chest for high efficiency
and quality neuromorphic computing.

KEYWORDS

neuromorphic computing, analog neuron, binary neuron, analog stochastic neuron,
binary stochastic neuron, reservoir computing

OPEN ACCESS

EDITED BY

Gina Adam,
George Washington University,
United States

REVIEWED BY

Maryam Parsa,
George Mason University, United States
Takashi Tsuchiya,
National Institute for Materials Science,
Japan

*CORRESPONDENCE

Md Golam Morshed,
mm8by@virginia.edu

Samiran Ganguly,
gangulys2@vcu.edu

RECEIVED 18 January 2023
ACCEPTED 17 April 2023
PUBLISHED 03 May 2023

CITATION

Morshed MG, Ganguly S and Ghosh AW
(2023), Choose your tools carefully: a
comparative evaluation of deterministic
vs. stochastic and binary vs. analog
neuron models for implementing
emerging computing paradigms.
Front. Nanotechnol. 5:1146852.
doi: 10.3389/fnano.2023.1146852

COPYRIGHT

© 2023 Morshed, Ganguly and Ghosh.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Nanotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 03 May 2023
DOI 10.3389/fnano.2023.1146852

https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2023.1146852&domain=pdf&date_stamp=2023-05-03
mailto:mm8by@virginia.edu
mailto:mm8by@virginia.edu
mailto:gangulys2@vcu.edu
mailto:gangulys2@vcu.edu
https://doi.org/10.3389/fnano.2023.1146852
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2023.1146852


1 Introduction

High-performance computing has historically developed
around the Boolean computing paradigm, executed on silicon
(Si) complementary metal oxide semiconductor (CMOS)
hardware. In fact, software has for decades been developed
around the CMOS fabric that has singularly dictated our choice
of materials, devices, circuits, and architecture–leading to the
dominant processor design paradigm: von Neumann architecture
that separates memory and processing units. Over the last decade,
however, Moore’s law for hardware scaling has significantly slowed
down, primarily due to the prohibitive energy cost of computing and
an increasingly steep memory wall. At the same time, software
development has significantly evolved around “Big Data” paradigm,
with machine learning and artificial intelligence (AI) dominating the
roost. Additionally, the push towards the internet of things (IoT)
edge devices has prompted an intensive search for energy-efficient
and compact hardware systems for on-chip data processing (Big
data, 2018).

One such direction is neuromorphic computing, which uses the
concept of mimicking a human brain architecture to design circuits
and systems that can perform highly energy-efficient computations
(Mead, 1990; Schuman et al., 2017; Marković et al., 2020;
Christensen et al., 2022; Kireev et al., 2022). A human brain is
primarily composed of two functional elemental units - synapses
and neurons. Neurons are interconnected through synapses with
different connection strengths (commonly known as synaptic
weights), which provide the learning and memory capabilities of
the brain. A neuron receives synaptic inputs from other neurons,
generates output in the form of action potentials, and distributes the
output to the subsequent neurons. A human brain has ~ 1011

neurons and ~ 1015 synapses and consumes ~ 1 − 10 f J per
synaptic event (Kandel et al., 2000; Squire et al., 2012; Upadhyay
et al., 2016).

To emulate the organization and functionality of a human brain,
there are many proposals for physical neuromorphic computing
systems using memristors (Yao et al., 2020; Duan et al., 2020; Moon
et al., 2019), spintronics (Grollier et al., 2020; Locatelli et al., 2014; Lv
et al., 2022), charge-density-wave (CDW) devices (Liu et al., 2021),
photonics (Shastri et al., 2021; Shainline et al., 2017), etc. In recent
years, there has been significant progress in the development of
physical neuromorphic hardware, both in academia and industry.
The hierarchy of neuromorphic hardware implementation spans
from the system level to the device level and all the way down to the
level of the material. At the system level, various large-scale
neuromorphic computers utilize different approaches - for
instance, IBM’s TrueNorth (Merolla et al., 2014), Intel’s Loihi
(Davies et al., 2018), SpiNNaker (Furber et al., 2014), BrainScaleS
(Schemmel et al., 2010), Tianjic chip (Pei et al., 2019), Neurogrid
(Benjamin et al., 2014), etc. They support a broad class of problems
ranging from complex to more general computations. At the device
level, the most commonly used component is the memristor which
can be utilized in synapse and neuron implementations (Jo et al.,
2010; Serb et al., 2020; Innocenti et al., 2021; Mehonic and Kenyon,
2016). Memristor crossbars are frequently used to represent
synapses in neuromorphic systems (Adam et al., 2016; Hu et al.,
2014). Memristor can also provide stochasticity in the neuron model
(Suri et al., 2015). Another emerging class of devices for

neuromorphic computing is spintronics devices (Grollier et al.,
2020). Spintronics devices can be implemented with low energy
and high density and are compatible with existing CMOS
technology (Sengupta et al., 2016a). The spintronics devices
utilized in neuromorphic computing include spin-torque devices
(Torrejon et al., 2017; Roy et al., 2014; Sengupta et al., 2016b),
magnetic domain walls (Siddiqui et al., 2020; Leonard et al., 2022;
Brigner et al., 2022), and skyrmions (Jadaun et al., 2022; Song et al.,
2020). Optical or photonics devices are also implemented for
neurons and synapses in recent years (Shastri et al., 2021;
Romeira et al., 2016; Guo et al., 2021). The field is very new and
many novel forms of neuron and synaptic devices can be designed to
match the mathematical model of neural networks (NNs). Physical
neuromorphic computing can implement these functionalities
directly in their physical characteristics (I-I, V-V, I-V), which
results in highly compact devices that are well-suited for scalable
and energy-efficient neuromorphic systems (Camsari et al., 2017a;
Camsari et al., 2017b; Ganguly et al., 2021; Yang et al., 2013). This is
critical as current NN-based computing is highly centralized
(resident-on and accessed-via cloud) and is energy inefficient
because the underlying volatile, often von Neumann, digital
Boolean-based system design unit has to emulate inherently
analog, mostly non-volatile distributed computing model of
neural systems, even if at a simple abstraction level (Merolla
et al., 2014). Recent advances in custom design such as FPGAs
(Wang et al., 2018) and more experimental Si FPNAs (Farquhar
et al., 2006) have demonstrated that a new form of device design
rather than emulation is the way to go, and physical neuromorphic
computing based on emerging technology can go a long way to
achieve this (Rajendran and Alibart, 2016).

There is an increased use of noise-as-a-feature rather than a
nuisance in NN models (Faisal et al., 2008; Baldassi et al., 2018;
Goldberger and Ben-Reuven, 2017), and physical neuromorphic
computing can provide natural stochasticity, with various noise
colors depending on the device physics (Vincent et al., 2015; Brown
et al., 2019). Some prominent areas where stochasticity and noise
have been used include training generalizability (Jim et al., 1996),
stochastic sampling (Cook, 1986), and recently proposed and
coming into prominence, diffusion-based generative models
(Huang et al., 2021). In all these models, noise plays a
fundamental role, i.e., these algorithms do not work without
inherent noise.

It is therefore critical to study and analyze the kinds of devices
that will be useful to implement physical neuromorphic computing.
We understand from neurobiology that there is a large degree of
neuron design customization that has developed through evolution
to obtain high task-based performance. Similarly, a variety of
mathematical models of neurons have been designed in NN
literature as well (Schuman et al., 2017; Burkitt, 2006; Ganguly
et al., 2021). It is quite likely that the area of physical neuromorphics
will use a variety of device designs rather than the uniformity of
NAND gate-based design commonly seen in Boolean-based design,
to achieve the true benefits of energy efficiency and scalability
brought forth by this paradigm of system design.

In this work, we study a subset of this wide variety of neuron
designs that are well-represented and easily available from many
proposed physical neuromorphic platforms to understand and
analyze their task specialization. In particular, we analyze analog
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and binary neuron models, including stochasticity in the model, for
analog temporal inferencing tasks, and evaluate and compare their
performances. We numerically estimate the performance metric
normalized means squared error (NMSE), discuss the effect of
stochasticity on prediction accuracy vs. robustness, and show the
hardware implementability of the models. Furthermore, we
estimate the memory capacity for different neuron models.
Our results suggest that analog stochastic neurons perform
better for analog temporal inferencing tasks both in terms of
prediction accuracy and hardware implementability.
Additionally, analog neurons show larger memory capacity.
Our findings may provide a potential path forward toward
efficient neuromorphic computing.

2 Brief overview on neuron models

An essential function of a neuron in a NN is processing the
weighted synaptic inputs and generating an output response. A
single biological neuron itself is a complex dynamical system (Bick
et al., 2020). Proposed artificial neurons in most implementations of
NNs (either software or hardware) are significantly simpler unless
they specifically attempt to mimic the biological neuron (Harmon,
1959; Schuman et al., 2017; 2022). As such their mathematical
representations are cheaper and a significant amount of
computational capabilities derive from the network itself.
However, a NN is an interplay of the neurons, the synapses, and
the network structure itself, and therefore the neuron model itself
may provide certain capabilities that can help make a more efficient
NN, in the context of the application specialization (Abiodun et al.,
2018).

The set of behavior over which such neurons can be classified
and analyzed is vast and may include spiking vs. non-spiking

behavior with associated data representation, deterministic vs.
stochastic output response function, discrete (or binary) vs.
continuous (or analog) output response function, the particular
mathematical model of the output response function itself (e.g.,
sigmoid, tanh, ReLU), presence or absence of memory states with a
neuron, etc (Goodfellow et al., 2016; Davidson and Furber, 2021;
Barna and Kaski, 1990). In the software NN world, specialization of
certain neural models and connectivity are well appreciated, as an
example sparse vs. dense vs. convolutional layers, or the use of ReLU
neurons in the hidden layers vs. sigmoidal, softmax layers at outputs
employed in many computer vision tasks (Szandała, 2020; Zhang
and Woodland, 2015; Oostwal et al., 2021). Figure 1A schematically
shows the output characteristics of different types of widely used
neuron models.

In this work, we have focused on two particular behaviors of
neural models that we believe can capture a significant application
space, particularly in the domain of lightweight real-time signal
processing tasks, and are readily built from emerging materials
technology. We specifically look at binary vs. analog and
deterministic vs. stochastic neuron output response functions
(purple-colored bold font labels in Figure 1A). We also use them
in a reservoir computing (RC)-like context for signal processing
tasks for our analysis. Reservoir computing uses the dynamics of a
recurrently connected network of neurons to project an input
(spatio-)temporal signal onto a high dimensional phase space,
which forms the basis of inference, typically via a shallow 1-layer
linear transform or a multi-layer feedforward network (Tanaka et al.,
2019; Triefenbach et al., 2010; Jalalvand et al., 2015; Ganguly et al.,
2018; Moon et al., 2019). A schematic of a reservoir is shown in
Figure 1B where the neurons are connected with each other
bidirectionally with random weights. Multiple reservoirs may be
connected hierarchically for more complex deep RC architecture.
RC may be considered as a machine learning analog of an extended

FIGURE 1
(A) Schematic of different types of widely used neuronmodels with their output characteristics. In the bottom panel, all the red curves represent the
deterministic neurons’ output characteristics. In the top panel, the blue curves represent the actual stochastic output characteristics while the red is the
corresponding deterministic/expected value of the output (< stochastic output > ) characteristics. Spiking neurons (SpN and SSpN) can be considered in
between the two limits of purely binary vs. purely analog neurons. Please note that we only analyze the analog and binary neurons (including their
stochastic counterparts) in this work, as indicated by the purple-colored bold font labels. (B) Schematic of a reservoir setup using neurons connectedwith
each other bidirectionally with random weights.
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Kalman filter where the state space and the observation models are
learned and not designed a priori (Tanaka et al., 2019).

Our choice of evaluating these specific behavior differences
on an RC-based NN reflects the prominent use-case that is made
out for many emerging nano-materials technology-based neuron
and synaptic devices, viz. energy-efficient learning, and inference
at the edge. These tasks often end up involving temporal or
spatio-temporal data processing to extract relevant and
actionable information, some examples being anomaly
detection (Kato et al., 2022), feature tracking (Abreu Araujo
et al., 2020), optimal control (Engedy and Horváth, 2012), and
event prediction (Pyragas and Pyragas, 2020), all of which are
well-suited for an RC-based NN. Therefore this testbench forms a
great intersection for our analysis.

It should be noted that we do not include spiking neurons in this
particular analysis. Spiking neurons have significantly different data
encoding (level vs. rate or inter-spike interval encoding) and
learning mechanisms (back-propagation or regression vs. spike-
time dependent plasticity) that it is hard to disentangle the neuron
model itself from demonstrated tasks, therefore we leave such a
contrasting analysis of spiking neuron devices with non-spiking
variants for a future study.

The neurons are modeled in the following way:

y � fN ∑wTx( ) + rN (1)

Here the symbols have the usual meaning, i.e., y is the output
activation of the neuron, fN is the activation function, which is a
sigmoidal or hyperbolic tangent for most non-spiking hardware
neurons, and rN is a random sample drawn from a random
uniform distribution to represent stochasticity. It is possible to
use a ReLU-like activation function or some other distribution
for sampling stochasticity, particularly if the hardware neuron
shows colored noise behavior, we do not particularize for such
details and keep the analysis confined to the most common
hardware neuron variants. Therefore, in our analysis, the rN
term is weighed down by an arbitrary factor to mimic the
degree of stochasticity displayed by the neuron, and the fN is
either a continuous tanh() for analog neuron or a sgn(tanh()) for
a binary neuron (sgn() being the signum function).

3 Methods

As discussed previously, the neuron models are analyzed in the
context of a reservoir computer, specifically an echo-state network
(ESN). An ESN is composed of a collection of recurrently connected
neurons, with randomly distributed weights of the interconnects
within this collection (Lukoševičius, 2012; Li et al., 2012). This forms
the “reservoir”, which is activated by an incoming signal, and whose
output is read by an output layer trained via linear regression.

We employ different neuron models in this work, such as analog
and binary neurons (with and without stochasticity in the model),
which makes a total of four models at our disposal, namely, analog
neuron (AN), analog stochastic neuron (ASN), binary neuron (BN),
and binary stochastic neuron (BSN). The dynamical equations of the
reservoirs built using different neuron models are described as
follows (Ganguly et al., 2021):

AN: x t + 1[ ] � 1 − a( )*x t[ ] + a*tanh z t + 1[ ]( )
ASN: x t + 1[ ] � 1 − a( )*x t[ ] + a*tanh z t + 1[ ]( ) + b*rN t[ ]
BN: x t + 1[ ] � 1 − a( )*x t[ ] + sgn a*tanh z t + 1[ ]( )( )
BSN: x t + 1[ ] � 1 − a( )*x t[ ] + sgn a*tanh z t + 1[ ]( ) + b*rN t[ ]( )

(2)
where z[t + 1] =Winu[t + 1] +Wsx[t]. Here, u is the input vector, x[t]
represents the reservoir state vector at the time t, a is the reservoir
leaking rate (assumed to be the constant for all the neurons), b is the
neuron noise scaling parameter to include stochasticity in the
neuron model, rN is a uniform random distribution, and Win and
Ws are the random weight matrices of input-reservoir and reservoir-
reservoir connections, respectively. We use the same leaking rate
across all models to ensure a fair comparison among the neuron
models on an equal footing. It can be challenging to compare models
that have different parameters as it can introduce biases. One of the
unique features of reservoir computing is having random weight
matrices (Tanaka et al., 2019) and we consider five different network
topologies by creating five sets of Ws using random “seed” for
various reservoir sizes, which makes our analysis unbiased to any
particular network topology. TheWs elements are normalized using
the spectral radius. We perform 1,000 simulations within each
network topology making the total sample size 5,000 for every
reservoir size within each neuron model. The output vector y is
obtained as:

y � Woutx (3)
where Wout represents the reservoir-output weight matrix. We
consider two different types of training methods, i.e., “offline”
and “online” training. In the case of “offline” training, we extract
the output weight matrix, Wout once at the end of the training cycle
and use that staticWout for the testing cycle. In contrast, for “online”
training, Wout is periodically updated throughout the testing cycle.
The entire testing cycle is divided into 40 segments. The first
segment uses the Wout extracted from the initial training cycle.
We calculate a new Wout after the first segment of the testing cycle.
Then, we update the Wout such that the elements are composed of
90% from the older version and 10% from the new one. The updated
Wout is used for the second segment and the procedure keeps going
on throughout the testing cycle. This stabilizes the learning at the
cost of higher error rates as the learning evolution slowly evolves to a
new configuration. This is akin to the successive over-relaxation
methods used in many self-consistent numerical algorithms for
improved convergence.

4 Results and discussions

4.1 Binary vs. analog: inference errors

We implement the temporal inferencing task, specifically, the
time-series prediction task to test and compare the performance of
different neuron models. We consider an input signal of the form
u(t) = A cos(2πf1t) + B sin(2πf2t), which we referred to as a clean
input. We use A = 1, B = 2, f1 = 0.10 Hz, and f2 = 0.02 Hz. Although
we choose the magnitude and frequency of the input arbitrarily, we
further investigate other combinations of these variables (Table 1) to
ensure that our analysis remains independent of them. We train the
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TABLE 1 Average NMSE data extracted from the ASN and BSN models (b = 5%) for various reservoir sizes. The form of the input signal is, u(t) = A cos(2πf1t) +
B sin(2πf2t) + C[rand(1, t) − 0.5].

Model Reservoir
size

Avg. NMSE for different input signals

{A, B, C} = {0.5, 1.0, 0.0} {f1, f2} =
{0.20, 0.04} Hz

{A, B, C} = {1.0, 2.0, 0.5} {f1, f2} =
{0.10, 0.02} Hz

{A, B, C} = {1.0, 2.0, 1.5} {f1, f2} =
{0.10, 0.02} Hz

ASN N = 10 0.1729 0.1453 0.1501

N = 20 0.1585 0.1199 0.1161

N = 30 0.1183 0.0960 0.0984

N = 40 0.1080 0.0775 0.1001

N = 50 0.0791 0.0605 0.0816

BSN N = 10 0.2510 0.2396 0.2546

N = 20 0.2233 0.2102 0.2184

N = 30 0.2103 0.1895 0.2028

N = 40 0.2331 0.2156 0.2040

N = 50 0.2329 0.2142 0.2173

FIGURE 2
Comparison of NMSE for an analog time-series prediction task between (A) ASN and (B) BSN models as a function of reservoir size with 5%
stochasticity incorporated in both the neuron models for a clean input signal. The form of the clean input signal is u(t) = A cos(2πf1t) + B sin(2πf2t), where
A = 1, B = 2, f1 = 0.10Hz, and f2 = 0.02 Hz. ASN performs better than BSN for the entire range of reservoir size as indicated by the average (μ) NMSE (cyan
dashed-dotted line). ASN shows a decreasing trend in NMSE as a function of reservoir size while BSN results remain almost unchanged. The NMSE
data for every reservoir size is obtained from five different reservoir topologies and 1,000 simulation runs (different random “seed”) within each topology
(total sample size is 5,000). The color bar represents the frequency of the NMSE data. Note that in some cases, our model fails to generate a meaningful
NMSE as the reservoir output blows up. We get meaningful output from ~ 90% − 100% cases depending on the reservoir sizes, and those data are plotted
here and used to estimate the average NMSE. The bottom panel is the zoomed version of the top panel and the magenta dashed-dotted lines are the
guide to the eye that shows the data distribution in the range of μ ± σ. The color codes to represent the μ and σ are the same for the subsequent figures
henceforth.

Frontiers in Nanotechnology frontiersin.org05

Morshed et al. 10.3389/fnano.2023.1146852

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852


neuron models using the clean input signal and test the models on a
test signal from the same generator. The neuron models learn to
reproduce the test signal from its previously self-generated output.
The performance of the neuron models for time-series prediction
tasks is usually measured by the NMSE, which is the metric that
indicates how accurately the models can predict the test signal. If ytar
is the target output and ypre is the actual predicted output, for NT

time steps, we define NMSE as:

NMSE � 1
NT ymax

tar − ymin
tar( )

∑
i�NT

i�1
ytar i( ) − ypre i( )( )

2
(4)

Figures 2A,B show the NMSE for ASN and BSN, respectively for
the time-series prediction task for various reservoir sizes. We
generate the results using the ‘offline’ training as discussed in the

method section, for a clean input signal. We incorporate the
stochasticity by adding 5% white noise in both neuron models
(b = 0.05). The total sample size is 5,000 for a specific reservoir
size, however, it is worth mentioning that we do not get valid NMSE
for all the 5,000 cases because the network fails to predict the input
signal and blows up for some cases.We get ~ 90% − 100% successful
cases depending on the reservoir sizes. Only valid data points are
included in Figure 2 and all the subsequent figures. We find ASN
performs better than BSN for all the reservoir sizes indicated by the
average NMSE (cyan dashed-dotted line). Overall the NMSE is less
scattered for ASN than BSN, so is their standard deviation, (magenta
dashed-dotted line) as shown in the bottom panel of Figure 2. For
ASN, we find that the average NMSE has a decreasing trend as the
reservoir size increases, which indicates larger size networks can

FIGURE 3
Evolution of NMSE for different degrees of stochasticity (noise percentages) associated with the (A) ASN and (B) BSN models. ASN performs better
than the BSNmodel for analog time-series prediction tasks throughout the ranges of the degree of stochasticity as indicated by the average NMSE shown
in (C) and (D) for ASN and BSN, respectively. The characteristics of the averageNMSE as a function of reservoir size, i.e., the decreasing trend for ASNwhile
almost no change for BSN holds throughout the range of b.
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predict better. This happens because of the substantially richer
dynamics and phase-space volume possible in a large network. In
contrast, for BSN, the average NMSE is almost unchanged as the
reservoir size increases.

We vary the stochasticity incorporated in the neuron models.
Figures 3A,B show the distribution of the NMSE for different
percentages of stochasticity, b for ASN and BSN models,
respectively. We find that ASN performs better than its BSN
counterpart throughout the ranges of b as indicated by the
average NMSE. For ASN, the average NMSE shows a sub-linear
trend as a function of b (Figure 3C) for various reservoir sizes, while
for BSN, the average NMSE remains unchanged (Figure 3D). For
pure analog neuron (b = 0%), the NMSE is not much spread out, and
also, for larger reservoir size, the average NMSE is smaller than the
neuron model with stochasticity, however, having a neuron model

with zero stochasticity is not practical. Moreover, stochasticity helps
to make the system stable and reliable as discussed in the next
section. Although the average NMSE increases with increasing b, we
conjecture that b = 2–5% would be optimal.

The aforementioned results are based on a clean input signal.
We tested the models for distorted input as well. For the distorted
case, we add a white noise in the clean input and the form of the
distorted input signal is u(t) =A cos(2πf1t) + B sin(2πf2t) +C[rand(1,
t) − 0.5]. The white noise is uniformly distributed for all t values,
both in the positive and negative half of the sinusoidal input. The
degree of noise has been chosen arbitrarily. Again, we show various
degrees of noise (Table 1) to make the analysis independent of a
specific value of the noise margin. The NMSE results shown in
Figures 4A,B are calculated using A = 1, B = 2, C = 1, f1 = 0.10 Hz,
and f2 = 0.02 Hz. We find a better performance for ASN than that of

FIGURE 4
Evolution of NMSE for different degrees of stochasticity for (A) ASN and (B) BSNmodels for a distorted input signal. Randomwhite noise is added to
the clean input signal to introduce distortion and the form of the distorted signal is u(t) = A cos(2πf1t) + B sin(2πf2t) +C[rand(1, t) − 0.5], where A = 1, B = 2,
C = 1, f1 = 0.10Hz, and f2 = 0.02 Hz. ASN performs better than BSN for the distorted input, as indicated by the average NMSE shown in (C) and (D) for ASN
and BSN, respectively, which dictates the robustness of the ASN model in terms of performance irrespective of the input signals.
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BSN for the distorted input as well. It appears that for ASN, with a
distorted input signal, the spectrum of NMSE is smaller, which
reduces the standard deviation. The characteristics of the average
NMSE are similar for the clean and distorted input for both ASN
(Figure 4C) and BSN (Figure 4D) models. However, the average
NMSE is slightly lower for the distorted input for both types of
neuron models. Furthermore, we use different combinations of
signal magnitude, frequency, and the weight of noise in the input
signal. We list the average NMSE for various reservoir sizes in
Table 1. Additionally, we explore other input functions beyond the
simple sinusoidal input used in the aforementioned results. In
particular, we use a sinusoidal with higher harmonic terms, a
sawtooth input function, and a square input function. The used
form of the functions are u(t) � 4

π∑
15
i�11n sin 2 πnf1t (odd n), u(t) = A

sawtooth(2πf1t) + B sawtooth(2πf2t), u(t) = A square(2πf1t) + B
square(2πf2t), respectively. In the case of sinusoidal with higher
harmonic terms, we use the fundamental frequency f1 = 0.10 Hz. For
the sawtooth and square inputs, the magnitude and frequency
remain the same as of the original sinusoidal clean input. The
results are summarized in Figure 5, where the label Input 1,
Input 2, Input 3, and Input 4 correspond to the sinusoidal
clean input, sinusoidal with higher harmonic terms, sawtooth,
and square input functions, respectively. Figure 5 shows
that for all the different inputs, ANS performance is better
than BSN in terms of NMSE. Comparing all the cases, we
conjecture that ASN performs better than BSN for the
temporal inferencing task.

4.2 Deterministic vs. stochastic:
generalizability and robustness

One important aspect of any NN implementation is the
generalizability and robustness of the learning. A model trained
to a very specific data distribution will fail when it is running on a
distribution that differs from the trained model. This is particularly
true if a generative model guides its own subsequent learning, which
is the example we have used in our online learning scenario. In this
case, the underlying distribution is varied slowly while the network

evolves its internal generative model to match the output of
distribution, i.e., it works as a dynamically evolving temporal
auto-encoder.

The stochasticity of the neuron response will add errors to the
generated output as we see in the previous cases, however, we find
that after a few iterations of the online learning cycle, the ability of
this online learning blows up, i.e., the linear regression-based
learning cannot keep up with the test distribution evolution and
the error builds up (we call it blowup) and the whole training needs
to be fully reset or reinitiated and cannot merely evolve from
previous learning. This blowup occurs 100% for deterministic
analog neurons, and the rate reduces as the degree of
stochasticity increases (parameter b).

This is shown in Table 2 for various input functions. It should be
noted that at very high stochasticity while the training is more
robust, the errors will be high, therefore a minimal amount of
stochasticity is useful as a trade-off between these ends. The degree
to which the trade-off can be performed depends on the application
scenario. If full retraining is too expensive or not acceptable, then a
relatively higher degree of stochasticity in the neuron is necessary,
but if it is cheap and acceptable to retrain the whole network
frequently, a near-deterministic neuron will be better suited to
meet the requirements.

4.3 Synaptic weights dynamic range:
hardware implementability

One critical aspect of hardware implementability of
neuromorphic computing is the ability to modulate the weights
and the dynamic range or the order of magnitude to which weights
may be distributed. It can be shown that a 30-bit weight resolution
represents about a 100 dB dynamic range. While such ranges might
be comparatively easily implemented in software, it is significantly
difficult to implement such a high dynamic range in physical
hardware. While some memristive materials may show multi-
steps, it is hard to achieve much more than one order of
magnitude change in the weights. Please note that we do not
mean the change in the physical characteristics (typically the

FIGURE 5
Comparison of NMSE for time-series prediction task between ASN and BSNmodels for various input functions for a reservoir size of (A)N = 20 and
(B) N = 30. The degree of stochasticity incorporated in both neuron models is 5%. The label Input 1, Input 2, Input 3, and Input 4 correspond to the
sinusoidal clean input, sinusoidal with higher harmonic terms, sawtooth, and square input functions, respectively. ANS performance is better than BSN in
terms of NMSE for different input functions.
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resistance) used to represent the weights themselves, but rather the
number of steps that the weight can be implemented as.

We compare the dynamic range of the learned synaptic weights
that need to be implemented in the reservoir networks (in the
trained output readout layer) for various input functions and find
that the ASN networks show the smallest dynamic range for all the
cases (Figure 6) and suggest the easiest path to hardware
implementability of physical neuromorphic computing. It is
important to note that the hardware implementation of
neuromorphic computing is an open question and the dynamic
range of the synaptic weights is one of the important factors when it
comes to the physical deployment of neuromorphic computing as
discussed above. ASN networks show better performance in terms of
the dynamic range of learned synaptic weights compared to other
models, which suggests that networks that employed ASN models

might have better hardware implementability; however, it requires
more analysis in terms of energy cost, scalability, and
reconfigurability, which we leave as a future study.

4.4 Memory capacity

The performance of reservoir computing is often described by
memory capacity (MC) (Jaeger, 2002; Verstraeten et al., 2007;
Inubushi and Yoshimura, 2017). It measures how much
information from previous input is present in the current output
state of the reservoir. The task is to reproduce the delayed version of
the input signal. For a certain time delay k, we measure how well the
current state of the reservoir yk(t) can recall the input u at time t − k.
The linear MC is defined as:

MC � ∑
k

cov2 u t − k( ), yk t( )( )
σ2u t − k( )σ2 yk t( )( )

(5)

where u(t − k) is the delayed version of the input signal, which is the
target output, and yk(t) is the output of the reservoir unit trained on
the delay k. cov and σ2 denote covariance and variance, respectively.

Table 3 shows the linear MC for different neuron models for the
distorted input u(t) = A cos(2πf1t) + B sin(2πf2t) + C[rand(1, t) −
0.5], where A = 1, B = 2, C = 1, f1 = 0.10 Hz, and f2 = 0.02 Hz. We
consider the delayed signal over 1 to 50 timesteps, meaning k spans
from 1 to 50. We find that Analog neurons have significantly larger
linear MC than binary neurons. For analog neurons, linear MC

TABLE 2 Robustness vs. accuracy trade-off (N = 20). The label Input 1, Input 2, Input 3, and Input 4 correspond to the sinusoidal clean input, sinusoidal with higher
harmonic terms, sawtooth, and square input functions described earlier, respectively.

Model b (%) Blowup (%) Avg. NMSE

Input 1 Input 2 Input 3 Input 4 Input 1 Input 2 Input 3 Input 4

AN 0 100 100 100 100 − − − −

ASN 1 74.7 81.3 98.5 98.6 0.3175 0.2759 0.4947 0.5475

2 66.4 79.3 92.0 92.9 0.2921 0.3225 0.3947 0.5537

3 60.7 78.7 85.9 88.9 0.2854 0.3301 0.3744 0.5591

4 56.2 77.0 81.0 84.3 0.2782 0.3534 0.3572 0.5515

5 53.9 76.3 76.4 80.7 0.2778 0.3597 0.3636 0.5358

10 49.1 71.6 66.5 71.4 0.2849 0.3903 0.3398 0.5316

15 48.8 69.3 59.7 67.3 0.3019 0.4266 0.3557 0.5412

FIGURE 6
Dynamic range of the learned synaptic weights, Wout for all the
neuron models (N =20). 5% stochasticity is considered in the ASN and
BSNmodels. ASN model shows the smallest dynamic range that leads
to better hardware implementability. The label Input 1, Input 2,
Input 3, and Input 4 correspond to the sinusoidal clean input,
sinusoidal with higher harmonic terms, sawtooth, and square input
functions, respectively.

TABLE 3 Linear memory capacity (MC) for different neuron models.

Model Reservoir size MC

b = 0% b = 5%

Analog N = 40 39.0 32.5

N = 50 45.2 36.2

Binary N = 40 2.7 2.8

N = 50 3.4 3.2
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increases as the reservoir size increases, which is expected because a
larger dynamical system can retain more information from the past
(Jaeger, 2002). Additionally, including stochasticity in the analog
neuron model degrades the linear MC as reported previously
(Jaeger, 2002). In contrast, binary neurons fail to produce
substantial differences in linear MC when reservoir size is varied
and stochasticity is included in the model.

Besides the previously mentioned properties, physical
neuromorphic computing exhibits chaos or edge-of-chaos
property, which has been shown to enhance the performance of
complex learning tasks (Kumar et al., 2017; Hochstetter et al., 2021;
Nishioka et al., 2022). The edge-of-chaos property refers to the
transition point between ordered and chaotic behavior in a system.
In the discussed models, it may be possible to achieve the edge-of-
chaos state by introducing increasing amounts of noise to the
models, resulting in chaotic behavior that could potentially
improve network performance. We find that with an increased
degree of stochasticity in the neuron models, the learning process
becomes more robust, which could be a signature of the
performance improvement by including the edge-of-chaos
property. However, the prediction accuracy and the linear MC
tend to decrease with a higher degree of stochasticity, so the
trade-off needs to be considered. It should be noted that a more
comprehensive analysis is required to fully understand the impact of
edge-of-chaos behavior on the discussed neuron models, which is
beyond the scope of this paper and will be explored in future studies.

5 Conclusion

In summary, we studied different neuron models for the analog
signal inferencing (time-series prediction) task in the context of
reservoir computing and evaluate their performances for various
input functions. We show that the performance metrics are better
for ASN than BSN for both clean and distorted input signals. We find
that the increasing degree of stochasticity makes the models more
robust, however, decreases the prediction accuracy. This introduces a
trade-off between accuracy and robustness depending on the
application requirements and specifications. Furthermore, the ASN
model turns out to be the suitable one for hardware implementation,
which attributes to the smallest dynamics range of the learned synaptic
weights, although other aspects, i.e., energy requirement, scalability, and
reconfigurability need to be assessed. Additionally, we estimate the
linear memory capacity for different neuron models, which suggests
that analog neurons have a higher ability to reconstruct the past input
signal from the present reservoir state. These findings may provide
critical insights for choosing suitable neuron models for real-time
signal-processing tasks and pave the way toward building energy-
efficient neuromorphic computing platforms.
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