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How many nanoparticles are taken up by human cells is a key question for many
applications, both within medicine and safety. While many methods have been
developed and applied to this question, microscopy-based methods present
some unique advantages. However, the laborious nature of microscopy, in
particular the consequent image analysis, remains a bottleneck. Automated
image analysis has been pursued to remedy this situation, but offers its own
challenges. Here we tested the recently developed deep-learning based cell
identification algorithm Cellpose on fluorescence microscopy images of HeLa
cells. We found that the algorithm performed very well, and hence developed a
workflow that allowed us to acquire, and analyse, thousands of cells in a relatively
modest amount of time, without sacrificing cell identification accuracy. We
subsequently tested the workflow on images of cells exposed to fluorescently-
labelled polystyrene nanoparticles. This dataset was then used to study the
relationship between cell size and nanoparticle uptake, a subject where high-
throughput microscopy is of particular utility.

KEYWORDS

nanoparticles, cell uptake,fluorescencemicroscopy, high-throughput,machine learning,
image segmentation, modelling, Cellpose

1 Introduction

The interaction between nanoparticles and cells is studied for a number of applications;
within medicine for drug delivery (Shi et al., 2017; Akinc et al., 2019; Wolfram and Ferrari,
2019; Kulkarni et al., 2021; Mitchell et al., 2021), imaging (Bogart et al., 2014; Yu and Zheng,
2015; Kim et al., 2018; Han et al., 2019), vaccination (Friedrichs and Bowman, 2021; Fries
et al., 2021; Kisby et al., 2021), and cell therapies (Chakravarty et al., 2010; Stewart et al., 2016;
Xiong et al., 2021) and within toxicology to ensure the safe implementation of
nanotechnology (Oberdörster et al., 2005; Rivera-Gil et al., 2013; Valsami-Jones and
Lynch, 2015; Park et al., 2017; Kah et al., 2021). The ultimate effect of the nanoparticle,
whether it is a therapeutic or an adverse one, ultimately depends on the number of particles
that may exert said effect. While nanoparticles have been shown to cause effects on cells
indirectly over a barrier (Bhabra et al., 2009; Sood et al., 2011; Dugershaw et al., 2020), in
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most cases their effects occur within the cell, and consequently the
number of nanoparticles that enter a cell remains a key question
(Åberg, 2021).

To investigate the uptake of nanoparticles by cells, a range of
techniques have been used and developed, including Inductively
Coupled Plasma Mass Spectrometry (ICP-MS) for metal-containing
particles (Chithrani et al., 2006; Cho et al., 2009), magnetophoresis
for magnetic particles (Wilhelm et al., 2002), and flow cytometry for
fluorescently labelled particles (Salvati et al., 2018), just to name a
few [see previous literature for a more comprehensive list; (Salvati
et al., 2018; Åberg, 2021)].

Optical microscopy is also a useful technique, in particular
for fluorescently labelled particles (Jiang et al., 2010a; Schübbe
et al., 2010; Åberg et al., 2021), but also for particles that
intrinsically exhibit fluorescence [e.g., quantum dots (Jiang
et al., 2010b; Summers et al., 2011)] as well as particles that
scatter light strongly (Gibbs-Flournoy et al., 2011). In fact,
microscopy has a range of advantages (in particular for
adherent cells) that sets it apart from many other techniques
to measure nanoparticle cell uptake. Perhaps the most obvious
one is that it is possible to directly observe the cell, and thereby
relate its accumulated amount of nanoparticles to its phenotypic
traits (e.g., cell area) (Panet et al., 2017; Rees et al., 2019), or other
characteristics (Caicedo et al. (2017) [e.g., cell cycle state, (Kim
et al., 2012; Åberg et al., 2017), as well as its local environment
(Snijder et al., 2009)]. Another advantage is that in principle it is
possible to explicitly count the number of particles inside a cell, as
opposed to relying on more indirect measures such as
fluorescence intensity. Admittedly nanoparticles often
accumulate within the same organelles inside cells (Sandin
et al., 2012; Åberg et al., 2016), and the resulting clusters are
often below the diffraction limit, so counting individual objects is
not sufficient to gain knowledge of the total number of particles.
However, to resolve such clusters one may use super-resolution
approaches (Schermelleh et al., 2019), such as stimulated
emission depletion microscopy (Schübbe et al., 2010; Müller
et al., 2012), or estimate the number of particles within a
cluster based on the total fluorescence intensity of the cluster
(Wang et al., 2009; Åberg et al., 2016; Rees et al., 2019).

A major disadvantage of microscopy, however, is that the
resulting image analysis is labour-intensive and consequently it
is typically only applied to a handful of cells. Imaging cytometry
can certainly offset the low-throughput character of microscopy
(Summers et al., 2011), and may be useful for many applications,
but some of the advantages of microscopy are also lost (e.g., the
possibility of observing the cell in its native state). Various
approaches to make microscopy more high-throughput have
consequently been pursued, including within the nanoparticle-
cell interactions field (Brayden et al., 2015; Collins et al., 2017).
One such approach is the usage of automatic cell identification
algorithms, both using commercial (Panarella et al., 2016; Kelly
et al., 2021) and free (Panarella et al., 2016; Rees et al., 2019)
software. In particular, the free software CellProfiler (Carpenter
et al., 2006; Kamentsky et al., 2011; McQuin et al., 2018; Stirling
et al., 2021) is quite popular for this purpose, within biological
imaging in general and for nanoparticle-cell studies in
particular. A quite different approach is the physical
separation of the cells, by seeding the cells on specifically

prepared arrays where cells only adhere within predefined
and well-separated areas (Murschhauser et al., 2019), thereby
completely avoiding the difficulty of identifying where one cell
ends and the other begins.

More recently, deep-learning (LeCun et al., 2015) based
algorithms have been developed to improve automatic cell
identification. This is the approach we took in the work
reported here; specifically, we used the deep-learning based
algorithm Cellpose (Stringer et al., 2021; Pachitariu and
Stringer, 2022), and developed a workflow that couples high-
throughput microscopy of cells to a semi-automatic
identification of the cells based on Cellpose. This workflow
was set up because by necessity only limited fields of view of
the full sample can be captured, and these views have to
subsequently be united post-acquisition into a full(er) view of
the sample. Our workflow ensures that all cells are identified, that
no cells are identified twice, and that all cells are complete (as
opposed to two halves of a cell being identified separately in two
images). While the automatic cell identification by Cellpose
worked very well, we also included a manual inspection step
in the workflow to review the automatic cell identification. We
tested the workflow by applying it to microscopy images of cells
exposed to polystyrene nanoparticles. Subsequently this dataset
was used to investigate the relationship between cell size and
nanoparticle uptake (Panet et al., 2017; Rees et al., 2019; Åberg
et al., 2021), a topic where microscopy has several advantages
over other techniques and where high-throughput is very much
desired.

2 Materials and methods

2.1 Materials

HeLa cervical adenocarcinoma cells were acquired from
American Type Culture Collection (ATTC; CCL-2TM, lot no.
61647128). Minimal Essential Medium (MEM) containing Earle’s
salts and l-glutamine, Foetal Bovine Serum (FBS), Dulbecco’s
Modified Eagle Medium (DMEM), Dulbecco’s Phosphate
Buffered Saline (PBS) without CaCl2 and MgCl2, and 0.05%
trypsin–EDTA were purchased from ThermoFisher (Gibco, Life
Technologies).

Yellow/green carboxylated polystyrene nanoparticles of 100 and
500 nm diameter (excitation 505 nm; emission 515 nm) and Wheat
Germ Agglutinin (WGA) conjugated with Alexa Fluor 555 were
obtained from ThermoFisher (Gibco, Life Technologies) and used
without further modifications. DAPI was purchased from
AppliChem. and Mowiol 4-88 was acquired from Merck
Millipore. Glycerol was obtained from ThermoFisher.

2.2 Cell culture

HeLa cells were cultured under standard conditions (37°C,
humidified atmosphere and 5% CO2) in MEM supplemented
with 10% (v/v) FBS (cMEM) or DMEM supplemented with 10%
(v/v) FBS (cDMEM). Mycoplasma tests were performed regularly
and showed no contamination.
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2.3 High-throughput fluorescence
microscopy

Microscopy coverslips of 12 mm diameter were placed in each well
of a 24-well plate. HeLa cells cultured in cMEMwere seeded at a density
of 50,000 cells per well and left to adhere to the substrate by incubation
overnight at 37°C under a humidified atmosphere and 5% CO2.
Nanoparticle dispersions were prepared by diluting the nanoparticle
stock in cMEM to obtain the appropriate concentrations. The cells were
exposed to the particles by replacing the medium with the nanoparticle
dispersion, after which the cells were further incubated for 4 h at 37°C
under a humidified atmosphere and 5% CO2. Subsequently, the
nanoparticle-containing medium was removed and the cells were
washed with PBS, followed by fixation using 4% formaldehyde
following the protocol provided by the manufacturer. The fixing
solution was removed and cells were washed with PBS.
Subsequently, the cells were stained using WGA diluted in PBS (1:
200 dilution) by incubation at 37°C for 10 min, followed by washing
with PBS. Nuclei were stained by incubation with DAPI diluted in PBS
(1:5,000) for 5–10 min at room temperature and subsequent rinsing.
Finally, the coverslips were mounted on microscope slides
(ThermoScientific) using 200 mg/mL Mowiol dissolved in glycerol
and left at room temperature for 24 h. The cells were observed with
a 40× oil objective using a Zeiss AxioObserver Z1 microscope equipped
with a CMOS-colour camera PL-B623 Pixelink 3.1 Megapixels and
using TissueFAXS acquisition software.

2.4 Image analysis using CellProfiler

The images were analysed using Cellprofiler (McQuin et al.,
2018) (version 3.1.8). To account for a non-uniform intensity of the
nuclear (DAPI) signal, however, ilastik (Berg et al., 2019) (version
1.3.3) was first used to identify the nuclei. The
IdentifyPrimaryObject module in CellProfiler was then used to
identify the nuclei in the binary image output by ilastik.
Subsequently, the IdentifySecondaryObjects module in
CellProfiler was used to identify the cells from the cytoplasm
(WGA) signal, working with the “Propagation” method of the
IdentifySecondaryObjects module. The “Propagation” method
starts from each nucleus and stops when hitting another cell or
when the intensity is below a threshold (McQuin et al., 2018). The
threshold was set after measuring the background intensity in a
region without cells.

2.5 Image analysis using Cellpose

The workflow is described in the main text. Briefly, Cellpose
(Stringer et al., 2021) was run on all images, using the same cell
diameter (100 pixels) throughout. The identified cells were manually
checked. In a few images, air bubbles were present, in which case the
cells within the bubble were removed. Identified cells touching the
border were removed from each image and subsequently identified
cells that were part of two neighbouring images were removed from
the right and/or bottom of the two images. Measurements were then
performed on the resulting identified cells: Cell area was evaluated as
the number of pixels within and including each outline from

Cellpose, multiplied by the size of a pixel (0.228151 μm) squared.
Nanoparticle fluorescence was evaluated as the sum of the
fluorescence intensity within each outline from Cellpose. Unless
otherwise stated, an estimate of the background fluorescence was
subtracted from the nanoparticle fluorescence of each cell. The
estimate of the background fluorescence was calculated from an
empirical linear relationship between the background fluorescence
and cell area, evaluated from cells not exposed to nanoparticles as
described in Supplementary Figure S3. To show that the conclusions
do not depend upon this background subtraction we also show
results without it (see main text). When fitting mathematical models
to the distribution of experimental data, we fitted to the empirical
cumulative distribution function derived from the experimental data
(rather than the histogram of experimental values), thereby making
the fitting procedure independent of the bins chosen for the
histograms.

2.6 Simulations

In order to compare the relationship between cell area and
nanoparticle uptake within the model, simple numerical
simulations were performed. These simulations were based on
the same assumptions as the model, and the results obtained
from the simulations were analysed in the same way as the
experimental data. In total, 50,000 cells were simulated. Their
areas were sampled from a gamma distribution (Eq. 1 below)
with a certain shape parameter, k, and scale parameter, θ. The
shape and scale parameters were taken from experimental data
(Figure 3 below), unless otherwise noted. To evaluate
nanoparticle uptake into the simulated cells, for each cell i,
the number of nanoparticles it took up was sampled from a
Poisson distribution with rate parameter λAiCt, where λ is the
rate of uptake per unit area and concentration, Ai the area of the
cell, C nanoparticle concentration, and t time. The nanoparticle
concentration, C, and time, t, was set according to the
experimental conditions the simulations were supposed to
describe, while the rate of uptake, λ, was evaluated from fits to
the experimental data (e.g., Figure 4B below). Nanoparticle/cell
area histograms were determined in the same way as from the
experimental data, aside from that the total number of cells were
scaled down to the experimentally sampled number of cells for
ease of comparison.

2.7 Flow cytometry

HeLa cells cultured in cDMEM were seeded in 24-well plates
2 days or 1 day prior to the nanoparticle exposure at a density of
approximately 150,000 cells per well. The well plates were left to
incubate at 37°C under a humidified atmosphere and 5% CO2 until
the day of the experiment.

A 500 nm particle dispersion at a concentration of 100 or
150 μg/mL was freshly prepared on the day of the experiment
under minimal light and under sterile conditions. The
nanoparticle stock was vortexed, after which a small amount was
diluted in cDMEM to the right concentration. The resulting
dispersion was vortexed before incubation in a warm bead bath
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for at least 30 min to allow for the formation of a biomolecular
corona.

Prior to nanoparticle exposure to cells, the nanoparticle
dispersion was briefly vortexed again to ensure a homogenous
suspension of the nanoparticles. Then the medium was removed
from the wells and replaced with nanoparticle dispersion. The cells
were further incubated for various times at 37°C under a humidified
atmosphere and 5% CO2. After nanoparticle exposure, the
nanoparticle dispersions were removed and the cells were washed
once with cDMEM and twice with PBS. Subsequently, the cells were
detached with the addition of trypsin and incubation for 5 min at
37°C under a humidified atmosphere and 5% CO2. The detached cell
suspensions were diluted in cDMEM and centrifuged for 5 min at
250 relative centrifugal force, after which the supernatant was
removed by inversion. The cells were resuspended in PBS before
flow cytometry measurement.

Measurements were performed using a Novocyte Quanteon
(Agilent) flow cytometer. The yellow-green nanoparticles were
excited at 488 nm and emission was collected at 530/30 nm.
Forward scattering area (FSC-A) and side scattering area
(SSC-A) were used to separate living cells from debris and
dead cells. These living cells were further separated from
doublets using FSC-A against forward scattering height (FSC-
H). Cells with no particles and cells with one particle were
analysed separately as described in the main text. As a
control, a dispersion of 500 nm particles at a concentration of
20 μg/mL was also run through the flow cytometer.

2.8 Particle dispersion characterisation

The 100 nm particle dispersions were characterised using
Nanoparticle Tracking Analysis (NTA). The particles were
dispersed at a concentration of 109 particles/mL in PBS and
cMEM respectively. The cMEM dispersions were left for at least
an hour to allow for biomolecular corona formation. The
dispersions were measured at room temperature using a
NanoSight LM14, measuring at 5 sections of each sample. The
results were analysed using NTA 3.0 software (Malvern) and are
presented as the average ± standard deviation over the five sections
(Supplementary Table S1) or as the full distribution (Supplementary
Figure S1).

The 500 nm particle dispersions were characterised using
dynamic light scattering by dispersing the particles in PBS and
cDMEM, respectively, at a concentration of 150 μg/mL, the
highest concentration used when exposing the particles to
cells. The cDMEM dispersions were left for at least an hour to
allow for biomolecular corona formation. The dispersions were
measured at room temperature using a Malvern ZetaSizer Nano
ZS (Malvern Instruments, Malvern, United Kingdom). Three
measurements of at least 10 runs were recorded for each
condition. The measurements were analysed using ZetaSizer
Software version 7.13 (Malvern Instruments, Malvern,
United Kingdom). The results are presented as the average ±
standard deviation over three replicate samples of the z average
and polydispersity index evaluated by cumulant analysis
(Supplementary Table S1) or the distributions from CONTIN
analysis (Supplementary Figure S2).

3 Results

As a nanoparticle model system, we used commercially available
yellow/green fluorescently labelled carboxylated polystyrene
nanoparticles of 100 nm diameter, because we have previous data
on the uptake of these particles to compare to and to support our
conclusions (Kim et al., 2012; Varela et al., 2012; Varela et al., 2015;
Åberg et al., 2016; Vtyurina et al., 2021; Åberg et al., 2021; de Boer
et al., 2022). As a cell model, we used HeLa (human
adenocarcinomic cervical epithelial) cells, a well-characterised
and well-used cell line (Collinet et al., 2010; Simpson et al.,
2012). We also used 500 nm diameter sized yellow/green
fluorescently labelled carboxylated polystyrene nanoparticles,
because their strong fluorescence proved crucial for further
support of our conclusions, as will transpire below. In line with
previous studies (dos Santos et al., 2011; Kim et al., 2012; Åberg et al.,
2016; Vtyurina et al., 2021; de Boer et al., 2022), dynamic light
scattering showed that these nanoparticles are fairly monodisperse
and remain well-dispersed in cell culture medium supplemented
with serum (Supplementary Table S1 and Supplementary Figures
S1, S2).

For measuring cellular nanoparticle uptake using microscopy
with high-throughput it is necessary to automatically identify
(segment) the cells in the microscopy images. To test the
possibility of doing so, HeLa cells were fixed and incubated with
DAPI (4′,6-diamidino-2-phenylindole), to stain the cell nuclei, and
fluorescently-labelled WGA (Alexa Fluor 555-labelled Wheat Germ
Agglutinin) to stain the cytoplasm (Figure 1A).

In a preliminary investigation, we used the open-source software
CellProfiler (Carpenter et al., 2006; McQuin et al., 2018) to identify
the cells in the images. More specifically, we first used the machine-
learning based program ilastik (Berg et al., 2019) to identify the
nuclei, as their intensity sometimes varied between cells.
Subsequently, we used the “propagation” method in CellProfiler
to find the cell borders (Figure 1B; see Materials and Methods for
details). Unfortunately, we noticed some issues with the cell
identification, typically when two cells bordered each other,
where sometimes the borders identified by the algorithm did not
match the borders that are quite clear from the original image (cf.
Figures 1D, F; Figures 1E, G). While the identification can probably
be optimised to some degree by changing parameters and, if all else
fails, be corrected manually, we found the identification to be less
than optimal.

As an alternative, we thus turned to Cellpose (Stringer et al.,
2021). We had to optimise the choice of one parameter, cell size,
since Cellpose has been trained on microscopy images of a different
resolution compared to ours. However, once we had found a
reasonable value for the cell size parameter, we found that cell
identification worked very well (Figure 1C). In particular, we found
that Cellpose identified the cell borders close to what the original
image would suggest (cf. Figures 1D, H; Figures 1E, I). It is beyond
the scope of the present work to fully compare the CellProfiler- and
Cellpose-based approaches; however, see Chen and Murphy (2022)
for a study along these lines. Suffice to say here that Cellpose clearly
performed better than our usage of CellProfiler (cf. Figures 1D, F;
Figures 1E, G). Nevertheless, some misidentification did occur (e.g.,
Figure 1C; arrow), which could potentially be remedied by
optimisation of the staining procedure and/or changing the cell
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identification parameters (other than cell size). Despite these
misidentifications, we reasoned that there were so few
misidentifications that correcting these manually would be quick,
especially given the rather efficient graphical user interface available
for Cellpose (where shortcuts and mouse gestures make correction
swift).

Having convinced ourselves that the cells could be identified well
and fast, we proceeded by acquiring microscopy images. We
employed an automatic imaging system (TissueFAXS) that
allowed us to acquire many fields of view of cells in widefield
mode, for a total of up to 1,900 cells per sample (more is
possible, but was not necessary here). Each field of view was
composed of 1,392 × 1,040 pixels, corresponding to 318 ×
237 μm2. The images were acquired in a 7 × 9 grid (Figure 2A),
where there was substantial overlap between images to ensure that
all cells would be fully included in (at least) one image (Figure 2B)
and thereby avoid eventual issues from identified cells having to be
stitched together from two different images (Figure 2C).

To analyse these images, after a bit of trial-and-error we arrived
at the workflow depicted by Figure 2E, which we found to be quite
efficient: First, we ran Cellpose on all microscopy images with a fixed
(optimised) cell size. Depending upon the specifics of the computer
hardware (especially the presence or absence of graphical processing
units, GPUs) and the number of images, this step can take some
time. As an admittedly informal guide, it took 25 min to analyse
63 images of 1,392 × 1,040 pixels and in total 1,900 cells with a cell
size of 100 pixels on a computer without GPU support. This analysis
can, however, be executed without any human intervention. As a
next step, we subsequently went through each image and corrected
any misidentified cells. This becomes quite efficient after learning all

software shortcuts, but nevertheless is somewhat labour intensive.
Again as an informal guide, it took us around 90 min to do this for
63 images containing in total some 1,900 identified cells. The (local)
density of cells is a major factor here, as cells are typically well-
identified when fairly isolated, while the majority of errors occur in
dense areas.

At this point we thus had only cells that were considered to be
well-identified, but had many cells that were identified in several
images. Next, for each image we removed all identified cells touching
any of the borders of that image. This discards all identified cells at
the overall grid border (Figure 2D), the size and other characteristics
of which we cannot know for sure, since they were not fully captured
in any image. However, it also discards a large number of identified
cells within the overlap regions (Figure 2F). A prerequisite for this
step to make sense is thus that each cell is captured fully in at least
one image (ensured by choosing a large overlap distance) because
then removing the identified cells touching the border will not
matter as the cell will also have been identified in a neighbouring
image. We carried out this step as follows: For each image, we
considered each pixel along each of the four borders (left, top, right,
and bottom). If a pixel had been identified to belong to a certain cell,
then that cell was removed (from the whole image). This step was
performed in a fully automated fashion, something that can be done
without expending any substantial computing power. This is
advantageous as it decreases the amount of human effort, as well
as time.

After this step, we removed all remaining identified cells that
were included in two neighbouring images, always keeping the
identified cell that was identified either in the left or upper
neighbouring image (Figure 2G). The choice of left and upper is,

FIGURE 1
Comparison of automatic cell identification using different software. HeLa cells were labelled with WGA to distinguish the cytoplasm (red) and with
DAPI to distinguish the nuclei (blue). (A–C)One field of view of the cell culture. Scale bars 50 μm. (D–I) Zoom-in at two different locations within the field
of view. Scale bars 25 μm. (A,D–E)Original image from which it is easy to discern individual cells by eye. (B,F–G) Cells (cyan) and their nuclei (also cyan)
identified using CellProfiler (in combination with ilastik). The outline of many of the cells correspond to what one may discern by eye, but in some
cases the outlines clearly do not capture the actual cell borders (cf. panels D,F; and E,G, respectively). (C, H–I) Cells (cyan) identified using Cellpose. The
outline of themajority of the cells correspond towhat onemay discern by eye, including those examples where our usage of CellProfiler did not result in a
sufficiently accurate identification (cf. panels D, F, H; and E, G, I, respectively). Nevertheless, there were some cells that were not correctly identified, for
example, the cell indicated by a white arrow in panelC, which is actually 2 cells (cf. panel A) though the DAPI staining of the second cell is somewhat faint.
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of course, arbitrary, but has to be performed consistently throughout
the grid. We carried out this step in the following way: For each
overlap region, we considered the identified cells that were identified
in the left (upper) image. For each such identified cell, we found the
identified cells, if any, that were identified in the right (bottom)
image and which overlapped with the cell identified in the left
(upper) image. The overlapping cells identified in the right (bottom)
image were then removed, if the overlap was large enough (to allow a
slightly different identification in the two overlapping images).
Again this step was fully automated and does not require a
substantial amount of computing power; consequently it can be
performed quickly and without human intervention.

Finally we checked that all cells that were originally identified
were still included in the dataset and included only once. This can be
done quite efficiently by displaying the full grid of images (in
reduced resolution) in such a way that the images are overlapped
by the amount they were overlapped upon acquisition and
alternating the colour between each image (Figure 2H). An
identified cell that is present in two images will then exhibit both

colours and easily stand out by eye. Similarly to ensure that all cells
that were originally identified are still present in the dataset, one can
overlap both sets of identified cells, again in two colours. A cell that
has been removed during the overall procedure will then have only
one colour (Figure 2I). In our dataset this occurred for cells along the
outer borders (by design), but also some other cells were removed in
this way (Figure 2I). This can be corrected manually, but since they
are clearly a minority one can also proceed without them.

Having thus created a dataset containing ~1,900 cells we then
quantified the cell area distribution, since cell area is a parameter
where a microscopy-based method exhibits clear advantages over
other high-throughput methods. For example, flow cytometry is
certainly high-throughput, but does not give an accurate estimate of
cell size (Shapiro, 2003). Furthermore, cell-to-cell variability in
nanoparticle uptake has been suggested to be driven by cell area
Rees et al. (2019). We thus evaluated the area, A, of each identified
cell and from that the cell area distribution (Figure 3). We may
observe that the distribution is not a normal distribution, but rather
exhibits a wider tail towards larger cell sizes. Previous reports have

FIGURE 2
Illustration of high-throughputmicroscopy and image analysis. (A)Microscopy images were acquired in a grid to cover a large area. (B) Schematic of
the situation (which we employed) when the microscopy images are acquired in such a way that they overlap. The indicated cell is here in both image
1 and 2, but only part of the cell is in image 1, while the whole cell is in image 2. Analysis of this cell is consequently easiest if performed in image 2. (C)
Schematic of the situation when themicroscopy images are acquired in such a way that they do not overlap (contrary to our set up). In this case, the
indicated cell is in both image 1 and 2, but is not complete in either. Analysis of this cell consequently needs to be stitched together from two different
images. (D–G) Algorithm to ensure each identified cell is included in the dataset only once. The cells that are discarded in each step are shaded, while cells
that were previously discarded are shown with dotted outlines. (D) All cells on the overall outer border are removed, thereby keeping only cells that were
fully captured in (at least) one image. (E)Depiction of the different steps of the workflow. The steps that can be fully automated have a white background,
while the steps that involves manual operation have a red background. The final step is not strictly necessary. (F) All identified cells on the border of each
image (not just the border of the overall area) are removed. Potentially this could lead to removal of some correctly identified cells, but if the overlap
between images is large enough, then each cell will be captured in at least one image and there will be no cells lost. For example, the cell indicated by an
asterisk (*) is removed from image 1, but is fully included in image 2. Similarly, the cell indicated by a dagger (†) is removed from image 2, but is fully
included in image 1. The cell indicated by a double dagger (‡) is removed from both image 1 and 2; it should therefore be included in the image below
image 1 or 2, if the overlap is large enough. (G) Finally, all remaining identified cells within the overlap region that are in two images are removed from one
image, always keeping such an identified cell in the uppermost or leftmost of the two images. For example, the cell indicated by an asterisk (*) is included
in both image 1 and 2. This cell is kept in the identification related to image 1, since image 1 is to the left of image 2. (H) To ensure that there is no double
counting of identified cells, a useful quick check is to overlay the images of all the identified cells, alternating the colour (here between red and green)
between each image. A cell that is included in two images then easily stands out as it will be in both colours (here yellow). (I) Similarly, a quick check to see
if all the cells that were originally identified (before the algorithm illustrated by panelD,F–G potentially removed them) is to overlay the originally identified
cells (here red) with the final dataset (here green). Cells that have been removed are then readily visible as they are only in one colour (here red).
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described the cell area distribution, f(A), in terms of a gamma
distribution (Rees et al., 2019)

f A( ) � 1

Γ k( )θkA
k−1e−A/θ (1)

where Γ is the gamma function, k is a shape parameter and θ a
scale parameter. Consistent with this description, we find that a
gamma distribution provides an excellent fit to the data (Figure 3;
inset), and from such a fit we can evaluate the parameters to be
k = 4.99 and θ = 122 μm2. It should be noted that [like previous
work (Rees et al., 2019)] the cell area here is quantified using two-
dimensional microscopy, so the area is perhaps best interpreted
as the projected cell area, rather than the full cell surface area
embedded in three-dimensional space. Nevertheless, if we
assume that the latter is proportional to the projected cell
area, then the two areas will have the same shape of the
distribution.

Having set up the workflow to identify the HeLa cells using high-
throughput microscopy, we then exposed the cells to 100 nm
nanoparticles (Figure 4A). Nanoparticle uptake was quantified in
terms of the total nanoparticle fluorescence per cell. Part of the
measured fluorescence is background and while this is small in
comparison to the signal (Supplementary Figure S3) we nevertheless
wanted to remove it to better relate the measured fluorescence to
nanoparticle numbers. Fortunately, we noted a very strong
correlation between background fluorescence and cell area for
cells not exposed to nanoparticles (Supplementary Figure S3),
which allows us to predict the background fluorescence for a cell
of a given area. By thus removing the background we were able to
quantify the fluorescence stemming solely from the nanoparticles,
something we then assumed is proportional to the number of

nanoparticles, and hence the number of objects, that entered.
Figure 4B shows the resulting distribution of nanoparticle
fluorescence over cells, from which we observe a fairly well-
defined distribution that appears roughly normally distributed,
aside from a clear tail towards higher fluorescences.

Rees et al. developed a model to describe the distribution of
number of nanoparticles per cell (Rees et al., 2019), and we decided it
would be interesting to test their model also on our data. Their
model is essentially based on two ingredients, namely, that the
uptake of a particle is a Poisson process and that the probability of
uptake is proportional to the area of a cell. Based on these two
assumptions, and the empirical observation (Figure 3) that the cell
area distribution is approximately a gamma distribution (Eq. 1),
Rees et al. showed that the probability, pN, that a cell has taken up N
particles is given by

pN Ct( ) � Γ k +N( )
N!Γ k( )

λθCt( )N
1 + λθCt( )N+k. (2)

Here k and θ are the two parameters of the cell area distribution (Eq.
1), and λ the rate of uptake per unit area and concentration.
Furthermore, the probability of uptake depends on the two
variables concentration, C, and time, t, which, however, in the
model only enter together as their product, Ct.

One subtlety of the model that is important to note is that in
principle it is formulated not in terms of the total number of particles
within the cells, but the total number of nanoparticle clusters (single
nanoparticles or nanoparticle agglomerates). Furthermore, what is
important is the number of clusters at the time of entrance. In
general this may be an issue, because at least the nanoparticles we use
here cluster within organelles intracellularly (Sandin et al., 2012;
Åberg et al., 2016). The number of clusters that we would count after
some time of exposure (e.g., 4 h in the case of Figure 4) therefore has
no direct relation to the number of clusters at the time of entrance.
Fortunately, the nanoparticles we use here are well-dispersed in
medium and typically enter cells as single objects (Sandin et al.,
2012; Åberg et al., 2016), so that the total number of nanoparticles is
a good approximation to the number of objects that entered the cells.
In general, though, using the model on nanoparticles that both
agglomerate extracellularly and cluster within the cell would appear
fraught with difficulties.

To test whether the model can describe our data we fitted the
model with the normalised uptake rate, λ, as free parameter and the
known cell area distribution parameters (k and θ) fixed from the
experiment on cells not exposed to nanoparticles (Figure 3). Since
the model is formulated in terms of number of objects, rather than
fluorescence, we furthermore had to make an assumption on the
fluorescence exhibited by a single nanoparticle. We used several
different values, which, as expected, give different quantitative
results, but give the same qualitative outcomes. We therefore
focus the presentation here on one choice, but refer to the
supplement for others (Supplementary Figures S4, S7). With this
approach we observed that the model can describe the nanoparticle
fluorescence distribution well, given that a fit of the model with only
one free parameter shows good agreement (Figure 4B; inset), an
outcome that is independent of the choice of the fluorescence of a
single nanoparticle (Supplementary Figure S4) as well as whether we
do the background subtraction or not (Supplementary Figure S5).

FIGURE 3
HeLa cell area quantified using high-throughput microscopy.
HeLa cells were stained with DAPI (cell nuclei) and WGA (cytoplasm)
and observed using fluorescence microscopy (as in Figure 1). The
histogram shows experimental data, while the dotted line is a fit
of a gamma distribution (Eq. 1) to the data. k and θ are the resulting
fitting parameters. Note that the fit was performed on the cumulative
distribution function, so as to be independent of the bins chosen for
the histogram. (Inset) Cumulative distribution function showing the
goodness of fit. (Blue) Empirical cumulative distribution. (Dotted line)
Fit. Same x-axis as the main figure.
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As a more detailed test of the model, we next investigated the
interrelation between cell area and nanoparticle uptake
(fluorescence) more directly. Thus we evaluated the two-
dimensional distribution of fluorescence and cell area from the
experimental data (Figure 4C), from which we observe a fairly
wide distribution of fluorescence for a given cell area. To make
this more explicit, we furthermore selected cells of a small
(<400 μm2), medium (600–800 μm2) and large (>1,000 μm2) size
and considered the fluorescence distribution corresponding to these

cells specifically (Figure 4E). Even though the sizes of these cell
subpopulations were chosen not to overlap, we observe that the
corresponding fluorescence distributions still overlap to a quite
substantial degree.

To compare these results to what is predicted from the model,
we performed simple numerical simulations (see Methods) based on
the same assumptions that underlie the model, and evaluated the
corresponding simulation data in the same way as the experimental
data (Figures 4D, F). We observe that while the model describes the

FIGURE 4
Nanoparticle uptake quantified by high-throughput fluorescence microscopy. HeLa cells were exposed to 100 μg/mL of the 100 nm nanoparticles
for 4 h, stained with DAPI (cell nuclei) andWGA (cytoplasm), and observed using fluorescencemicroscopy. (A) Example imagewith nanoparticles in green
and cell outlines (identified as exemplified in Figure 1C) in cyan. Note that there is a substantial number of nanoparticles stuck on the glass outside the
cells. Scale bar 25 μm. (B) Fluorescence distribution over cells after background subtraction (Supplementary Figure S3). The histogram shows
experimental data, while the dotted line is a fit of a model to the data, assuming a fluorescence per nanoparticle of 105 and using cell area parameters (k
and θ) from control cells (Figure 3). λ is the resulting fitting parameter. Note that the fit was performed on the cumulative distribution function, so as to be
independent of the bins chosen for the histogram. (Inset) Cumulative distribution function showing the goodness of fit. (Blue) Empirical cumulative
distribution. (Dotted line) Fit. Same x-axis as the main figure. (C–D) Two-dimensional cell area-fluorescence distribution from (C) experiments and (D)
simulations of the model. In both cases, the distribution has been normalised such that its integral is unity. (E–F) Fluorescence distributions of cells of a
given size from (E) experiments and (F) simulations.
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overall fluorescence distribution well (Figures 4B, F grey) it predicts
a far too narrow distribution of fluorescence for a given cell size
(Figure 4D). This conclusion is unaffected by using the cell area
parameters evaluated from the cells exposed to nanoparticles
(Supplementary Figure S6) rather than those we evaluated from
cells not exposed to nanoparticles (Figure 3). Importantly, the
conclusion remains the same also if we use a different assumed
value for the fluorescence per nanoparticle (Supplementary Figure
S4) as well as if we do not perform the background subtraction
(Supplementary Figure S5). The only possibility for realising a wider
variability within the model is to assume a much higher fluorescence
per nanoparticle (Supplementary Figure S7). However, even then the
agreement between model and experiments is rather poor and,
furthermore, such high fluorescences would imply that a typical
cell takes up only 13 nanoparticles under the conditions shown in
Figure 4, contrary to previous observations from microscopy which
suggest hundreds of nanoparticles after just a few minutes of
nanoparticle exposure at similar concentrations [Supplementary
Figure S7; (Åberg et al., 2016; Vtyurina et al., 2021)]. Finally, the
corresponding fluorescence distributions of the subpopulations of
small, medium and large cells are completely disjoint in the model
(Figure 4F), while they strongly overlap experimentally (Figure 4E).
All of these conclusions also remain valid at half the nanoparticle
concentration (Supplementary Figure S8).

To test the model without assumptions on the fluorescence per
particle, we next turned to flow cytometry. While flow cytometry
reports on the nanoparticle fluorescence per cell, we were
nevertheless able to use that fluorescence to explicitly measure,
with high-throughput, the actual number of nanoparticles. To do
so, we started from the literature observation that when micron-
sized polystyrene particles are exposed to cells, under certain
conditions one observes well-defined and well-separated peaks in
the fluorescence distribution over cells (dos Santos et al., 2011),
consistent with a distinction between cells that have taken up (or at
least associate with) 0, 1, 2, etc., particles. We interpret such results as
reflecting both a low extracellular particle concentration, and a
consequent low probability of uptake, as well as the strong
fluorescence of the micron-sized particles, which implies a
favourable separation of the peaks from each other. We thus
attempted to find conditions where a separation between
individual peaks could also be observed for particles smaller than
a few microns, which is more relevant for the present study. We
succeeded in doing so using 500 nm polystyrene nanoparticles (as
opposed to the 100 nm particles used for the results presented in
Figure 4) by using a concentration of 150 μg/mL and exposing the
cells between 0.5 and 4 h.

Figure 5A exemplifies the fluorescence distribution over cells for
one such sample (black outline). We interpret these results to mean
that some cells (zeroth peak) have no associated nanoparticles, while
other cells have 1, 2, 3, etc., associated nanoparticles (first, second,
and third peak, respectively). After the third peak, individual peaks
become less well-defined (depending upon the concentration and
exposure time). The measured cells are actually cells with associated
particles, as opposed to just particles without the cells, as nothing is
measured if we simply run the 500 nm particles by themselves
through the flow cytometer (Supplementary Figure S9). By

FIGURE 5
Nanoparticle uptake quantified in terms of numbers. HeLa cells
were exposed to a 150 μg/mL concentration of the 500 nm particles
for various times up to 4 h and then measured using flow cytometry.
(A) Distribution of cell fluorescence for a sample exposed to
nanoparticles for 1 h. (Black outline) All cells; (Blue) Cells within the
zeroth, and (Red) first subpopulation indicated in panel B. The two
subpopulations (blue and red) completely overlap with the full
population (black outline) for the zeroth and first peaks, indicating that
the two subpopulations have been well-identified. (B) Two-
dimensional fluorescence-forward scattering distribution. Several
subpopulations are easily identified and the first two are indicated by
the polygons. The colour bar refers to the number of cells. (C)
Proportion of cells with no nanoparticles and one nanoparticle,
respectively, as a function of time. (Datapoints) Experimental data.
Cells with no particles and cells with one particle were identified as
illustrated by panels A–B and their proportion of the full population
quantified. The data points represent themean over 3 samples and the
error bars the corresponding standard deviation. (Blue line) Fit of
model (Eq. 3) to the experimentally determined proportion of cells
with no nanoparticles, with θλC as fitting parameter and k fixed. (Red
line) Subsequent parameter-free prediction of model (Eq. 4) for the
proportion of cells with one nanoparticle. Repeat experiments are
shown in Supplementary Figure S10.
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considering also the forward scattering of the cells, one readily
differentiates cells within the first two peaks from each other
(Figure 5B). Indeed, by defining two subpopulations of cells
based on their fluorescence intensity and forward scattering
(polygons in Figure 5B) we find a good description of the two
fluorescence peaks (Figure 5A, blue and red).

With the approach illustrated by Figures 5A, B, we were able to
quantify the number of cells without any nanoparticles and the
number of cells with one nanoparticle (this proved sufficient for our
purposes but in principle we would be able to do the same also for
higher nanoparticle numbers). This is something we can directly
compare to the model (Eq. 2), which predicts that the proportion of
cells with no nanoparticles is given by

p0 Ct( ) � 1

1 + θλCt( )k (3)

while the proportion of cells with one nanoparticle is given by

p1 Ct( ) � k θλCt( )
1 + θλCt( )k+1. (4)

Here k and θ are the two parameters describing the cell area
distribution (Figure 3), λ the normalised uptake rate, C the
concentration and t the exposure time.

We thus exposed cells to nanoparticles for various times up to
4 h, thereby giving us experimental measures of the proportion of
cells with, respectively, no nanoparticles and one nanoparticle as a
function of time. Figure 5C (squares) shows how the proportion of
cells without any nanoparticles starts at 100% before any
nanoparticles have been supplied, and then decreases with time.
While it may appear that there is a saturation of the proportion of
cells that do not take up nanoparticles, a separate experiment, where
we used the same nanoparticle concentration but exposed the cells
for 18 h, showed that only 3.7% ± 0.2% (mean ± standard deviation
of three samples) of the cells remained without particles. Turning to
the cells with one nanoparticle, the proportion of such cells
(diamonds) starts at 0% before nanoparticle exposure, then
increases, and appears to plateau, before presumably decreasing
again.

Since the cell area parameters (k and θ) are known and since we
varied time t, we next fitted the model (Eq. 3) with θλC as free
parameter to the experimentally determined proportion of cells with
no nanoparticles. Note that λ, the normalised uptake rate, cannot be
taken from our earlier results (Figure 4) because those were for the
100 nm nanoparticles and it seems reasonable to assume that the
uptake rate is different for the 500 nm nanoparticles used here. Note,
furthermore, that agreement between model and experiment for the
first data point is a trivial outcome of the model, which, rightly,
implies that no cells will have any nanoparticles before the
nanoparticles have been supplied (t = 0 in Eq. 3). After
performing the fit, we notice that the best fitted line (Figure 5C;
blue line) describes the experimental data rather well. We
subsequently used the model for a parameter-free prediction of
the proportion of cells with one nanoparticle (Eq. 4), since all
parameters of the model have now been independently specified
(k and θ from the cell area distribution and θλC from the fit to the
proportion of cells without nanoparticles). As may be observed, the
prediction (Figure 5C; red line) does not describe the experimental
data (diamonds) well. Again, note that agreement between model

and experiment is trivial for the first data point, where the model
implies that no cells will have one nanoparticle before the cells have
been exposed to nanoparticles (t = 0 in Eq. 4). Repeat experiments
show the same outcome (Supplementary Figure S10). Applying a
similar procedure but leaving all parameters free (i.e., using both k
and θλC as fitting parameters) does give a better fit of the model to
the data, but at the expense of giving a cell area distribution that is
both unreasonable and different from what is experimentally
observed (Supplementary Figure S11). Overall, it thus appears
that the model cannot describe the experimental data well.

4 Conclusion

Fluorescence microscopy has several advantages over other
techniques to quantify nanoparticle uptake, including that the cells
can be viewed live and in their native state, and that cell parameters such
as size and other visible phenotypic traits can be determined. In terms of
image acquisition there are no major limitations on the number of cells
that can be studied; however, the resulting image analysis has
traditionally been a bottleneck preventing microscopy from
becoming a true high-throughput technique.

Here we have demonstrated the use of the deep-learning based
algorithm Cellpose (Stringer et al., 2021; Pachitariu and Stringer, 2022)
on fluorescence microscopy images to quantify the uptake of
nanoparticles by cells. The Cellpose cell identification worked very
well on our microscopy images, but we nevertheless included manual
review of cell identification as an additional quality control. We set up a
systematic workflow, including the manual review step but that
otherwise is fully automated, to ensure that all cells would be
identified and that no cells would be double-counted.

While we here opted for a manual review step, we note that the
cell identification was so good that the results are independent of
whether we perform this manual review or not (Supplementary
Figure S12). Future studies may thus consider using the results as-is
and, potentially, instead add a filtering step to remove likely
misidentifications. Such a filtering step is, for example, standard
in flow cytometry, where one removes data that likely represent cell
debris or cell doublets by only considering objects whose measured
scattering values are within certain limits Salvati et al. (2018). One
could do something similar with the cells identified from
microscopy images: For example, identified cells with very small
areas could be removed, as one may expect them to often represent
debris or other non-cell objects. However, this has to be done with
some care, as cells with an area substantially smaller than the average
do exist, for example, when a cell divides. The nuclear signal may
then give additional information, as dividing cells are expected to
have a more intense nuclear signal. Similarly, identified cells with a
very large area may be removed, as one would expect them to
represent several cells that have been misidentified as a single cell.
Again, cells with a substantially larger cell area than the average do
exist, and the nuclear signal could be used to differentiate actual
large cells (single nucleus) from multiple cells misidentified as one
(several nuclei). Regardless of the specifics, it seems feasible to
develop an approach to perform this filtering and with time and
use have it become de facto standardised.

As a proof-of-concept we used our workflow to create a dataset
of some thousands of cells, exposed or not exposed to nanoparticles.
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We subsequently used this dataset to test a model which has been
advanced to explain the observed variability in nanoparticle uptake
between cells (Rees et al., 2019). This model is based on the
assumptions that nanoparticle internalisation is a Poisson process
and that nanoparticle uptake is proportional to cell area. While the
model does indeed describe the distribution of nanoparticles over
cells well, the model predicts a relationship between nanoparticle
uptake and cell area which is quite different to that observed
experimentally. Complementary flow cytometry measurements
also show a discrepancy between model prediction and
experiments. Overall, it thus appears that the model cannot
describe the cell-to-cell variability in uptake of the polystyrene
nanoparticles used in this study. A likely reason for this is that
cell area is not the only relevant cell characteristic that matters, but
that other factors also play a role. This is consistent with a recent
study of ours, where multiple lines of evidence were presented
suggest that, while nanoparticle uptake is certainly correlated
with cell size, there are also other cellular characteristics at play
(Åberg et al., 2021).

Overall, we have demonstrated the utility of deep-learning
based cell identification, specifically the Cellpose algorithm
(Stringer et al., 2021), to extract cell characteristics from
fluorescence microscopy images. We set up a workflow which
includes manual, but swift, human review of cell identification,
that allowed us to measure nanoparticle uptake in thousands of
cells with confidence. Thus, fluorescence microscopy can be
routinely applied to measure nanoparticle uptake, at single-
cell level and with high-throughput, and this technique also
possesses some advantages compared to other high-throughput
techniques.
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