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We report the fine periodic nanostructure formation process on metal and
semiconductor surfaces in air with few-cycle 7-fs laser pulses and its physical
mechanism. Using appropriate peak power densities and scanning speeds for the
laser pulses, nanostructures could be formed on stainless steel and gallium
arsenide (GaAs) with periods of 60–110 nm and 130–165 nm, respectively,
which are 1/5–1/4 of the period of nanostructures formed with 100-fs laser
pulses. The periodicity can be explained as arising from the excitation of short-
range propagating surface plasmon polaritons, and the observed periods are in
good agreement with the model calculation results.
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1 Introduction

Multiple consecutive femtosecond (fs) laser pulses can form periodic nanostructure on
dielectrics (Henyk et al., 1999; Ozkan et al., 1999; Bonse et al., 2000; Reif et al., 2002;Wu et al.,
2003; Yasumaru et al., 2003), semiconductors (Borowiec and Haugen, 2003; Costache et al.,
2004; Dong and Molian, 2004), and metals (Wang and Guo, 2005) with a period d much
smaller than the center wavelength λ of the incident fs pulses. This is called high-spatial-
frequency laser-induced periodic surface structure (HSF LIPSS) and has attracted attention
as a new direct nanofabrication technique beyond the diffraction limit of light. Recently, it
has been applied to functional surfaces such as those used for structural coloration
(Vorobyev and Guo, 2008), anti-reflection (Yang et al., 2008), superhydrophobicity/
superhydrophilicity (Wu et al., 2009), friction reduction (Yasumaru et al., 2008), and
control of cell spreading (Shinonaga et al., 2015).

Studies of the physical mechanism of HSF LIPSS formation for fs laser pulses with a
fluence slightly smaller than the single-shot ablation threshold have identified surface
modification and roughness induced by high-density electron excitation (Miyaji and
Miyazaki, 2006; Tomita et al., 2007), generation of an intense optical near-field (Miyaji
and Miyazaki, 2006; Miyaji and Miyazaki, 2007; Tomita et al., 2007), and excitation of
surface plasmon polaritons (SPPs) (Miyaji and Miyazaki, 2008; Miyaji et al., 2012) as
dominant physical processes. In this physical picture, the surface plasmon wavelength is a
key parameter that determines the period d of the nanostructure, which is roughly
proportional to the wavelength of the incident light, and thus d can be shortened by
using ultraviolet fs pulses (Miyaji and Miyazaki, 2016). Reducing d further requires intense
ultrashort pulses with shorter wavelengths, but they are difficult to generate and handle.
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Since 1999, the fundamental physical process of the photo-
excited damage and ablation of the solid surfaces has been
studied by using intense sub-10 fs laser pulses (Lenzner, 1999;
Ganeev et al., 2013; Kafka et al., 2016). However, the HSF LIPSS
formation has never been observed, while we have studied the
nanostructure formation by ultrashort laser pulses. Recently, we
have found that few-cycle laser pulses with a pulse duration of
7 fs and a center wavelength of 810 nm can form nanostructures
with d = 60–80 nm on diamond-like carbon (DLC) films
(Nikaido et al., 2018). The formation of nanostructures with
d less than λ/10 (Bashir et al., 2012; Bonse et al., 2013) have been
observed, while the formation mechanism has been discussed in
detail. On the other hand, in the authors’ group, subsequent
experiments have shown that the physical mechanism includes
the generation of an ultrathin layer of high-density electrons and
the excitation of short-range propagating surface plasmon
polaritons (SR-SPPs) in the surrounding area (Iida et al.,
2021). The SR-SPPs is one of the modes of SPPs generated at
the interface between two dielectrics in contact with a thin metal
film discovered by Fukui et al. (1979). Because it is a mode with
large attenuation, it can propagate only in a short distance, but it
is characterized by a higher wavenumber, that is, a shorter
wavelength than that of SPPs excited at a single interface. For
nanostructures formed with 800-nm, 100-fs laser pulses, d was
observed to be ~200 nm (Yasumaru et al., 2003), indicating that
few-cycle laser pulses can form fine nanostructures without
requiring wavelength conversion. However, there have been
no reports on the formation of fine nanostructures on metal
and semiconductor surfaces with few-cycle laser pulses, and
hence details of the physical mechanism for those surfaces are
unavailable.

In this study, we report the fine periodic nanostructure
formation process on metal and semiconductors in air with few-
cycle laser pulses, and its physical mechanism. Various peak power
intensities and scanning speeds for the pulses were investigated, and
nanostructures on stainless steel and gallium arsenide (GaAs) were
formed with periods of 60–110 nm and 130–165 nm, respectively,
which are 1/5–1/4 of the period of nanostructures formed with 100-
fs laser pulses. The periodicity can be explained as arising from the
excitation of short-range propagating surface plasmon polaritons.
The observed period is in good agreement with the model
calculation results.

2 Experimental

Figure 1 shows a schematic diagram of the optical configuration
used for our ablation experiment. Linearly polarized laser pulses with a
center wavelength of λ = 810 nm, pulse duration Δτ ~ 7 fs, and
repetition rate of 80 MHz were output from a Ti:sapphire laser
oscillator (Novanta, Venteon Pulse One). The pulses are called few-
cycle laser pulses because the number of oscillations of the
electromagnetic field is only a few (Brabec and Krausz, 2000). The
output pulses were passed through a pair of wedge plates with a 2-
degree apex angle and a pair of chirp mirrors to compensate for the
group delay dispersion of the entire optical system and maintain Δτ ~
7 fs The pulses were controlled with a half-wave plate and polarizer, and
the polarization direction was set to horizontal. The pulses were
enlarged and collimated with silver-coated curved mirrors with focal
lengths of f = −50 mm and 200 mm, and focused on the target. To focus
the pulses, we used a Schwarzschild reflective objective mirror (Beck
Optronic Solutions, D5007-190, f = 2.6 mm, working distance WD =
1.0 mm) with a numerical aperture NA of 0.65 to prevent group delay
dispersion. The focal spot and target surface were observed with a
charged-coupled device (CCD) camera. The radius of the focused spot
was w0 ~ 0.4 μm at the 1/e2 value of the intensity. To confirm the pulse
duration and spectrum of the pulses, a silver mirror was inserted into
the beamline and the temporal and spectral profiles of the pulses were
measured with spectral phase interferometry for direct electric-field
reconstruction (SPIDER, APE GmbH, FC SPIDER).

As targets, we used stainless steel (SUS304) and Si-doped, n-type
(100) crystalline gallium arsenide (c-GaAs). Both targets were polished
to a surface roughness of Ra < 1 nm. The targets were placed on an
automated XY stage and irradiated with fs pulses, moving horizontally
at a scanning speed of v = 1–10 μm/s. The peak power density was I =
2U/(πw0

2Δτ), where U is the pulse energy. In our ablation experiments,
the SUS304 and c-GaAs surfaces were irradiated with 7-fs pulses at I =
11–21 TW/cm2 and 16–20 TW/cm2, respectively.

The target surfaces were observed using scanning electron
microscopy (SEM, JEOL, JSM-6510). The spatial frequency
distribution was obtained from the SEM image by a two-dimensional
Fourier transform, and the period d of the nanostructurewas determined
from its peak frequency. Scanning probe microscopy (SPM, Shimazu,
SPM-9700) was used to measure the depth of the nanostructures. In
addition, the bonding structure of the stainless steel and GaAs surfaces
irradiated with fs pulses was analyzed using micro-Raman spectroscopy

FIGURE 1
Schematic drawing of optical configuration for ablation experiment.WP: wedge plate, CM: chirpmirror, HWP: half-wave plate, P: polarizer, M: silver-
coatedmirror, GP: glass plate, M1: silver-coated convexmirror, M2: silver-coated concavemirror, BS: beam splitter, HM: half mirror, L: lens, RO: reflective
objective mirror.
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with a diode-pumped, single-longitudinal-mode, 5-mW, 532-nm laser
beam focused with a ×40 objective lens (homemade) and micro-Raman
spectroscopy with a diode-pumped, single-longitudinal-mode, 5-mW,
532-nm laser beam focused with a ×100 objective lens (HORIBA, Ltd.,
LabRAM HR Evolution), respectively.

3 Results and discussion

3.1 Formation process of nanostructure on
stainless steel

It is well known that the period d of nanostructures depends on
the peak power density I and scanning speed v (i.e., the number of
laser pulses N) (Yasumaru et al., 2003; Miyaji and Miyazaki, 2006).

We investigated the formation process of nanostructures on
SUS304 surfaces with 7-fs laser pulses, changing both I and v.
Figure 2 shows SEM images of SUS304 surfaces irradiated with
7-fs pulses at I = 12.4 TW/cm2, 15.5 TW/cm2, and 20.6 TW/cm2 for
v = 5 μm/s and 10 μm/s. The figure shows line-like nanostructures
perpendicular to the polarization direction formed over the entire
ablation trace. To make it easier to see the change in d for various I
and v, d is plotted as a function of I for v = 5 μm/s and 10 μm/s in
Figure 3. As I increases and v decreases (i.e., increasing N), d
monotonically increases in the range d = 60–110 nm. In previous
experiments, periodic nanostructures with d = 280–560 nm were
formed with 800-nm, 100-fs laser pulses (Qi et al., 2009; Hou et al.,
2011; Yasumaru et al., 2013; Miyazaki et al., 2015). Compared to
these results, d for the 7-fs pulses is about 1/5 as large as that for the
100-fs pulses. Furthermore, the trend of increasing d with increasing
I is different from that of nanostructure formation on DLC films
with 7-fs pulses (Nikaido et al., 2018), while it is the same as that of

FIGURE 2
SEM images of SUS304 surfaces irradiated with 7-fs laser pulses at I = 12.4 TW/cm2, 15.5 TW/cm2, and 20.6 TW/cm2 at v = 5 μm/s (A) and 10 μm/s
(B). E and v denote the directions of polarization and laser scanning, respectively.

FIGURE 3
Period d of nanostructure on SUS304 formed with 7-fs pulses for
scanning speeds v = 5 μm/s (red squares) and 10 μm/s (blue circles) as
a function of peak power density I.

FIGURE 4
Raman spectra of SUS304 surfaces irradiated with 7-fs pulses for
v= 5 μm/s at I= 15.5 TW/cm2 (blue) and 19.6 TW/cm2 (red), and for v=
10 μm/s at I = 19.6 TW/cm2 (green). The black line denotes the
spectrum of a non-irradiated surface.
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nanostructure formation on SUS304 surfaces with 100-fs pulses (Qi
et al., 2009; Hou et al., 2011; Yasumaru et al., 2013; Miyazaki et al.,
2015). The depth of the nanostructures ranged from 10 to 40 nm and
increased monotonically with increasing I.

To investigate the bonding structure of SUS304 surfaces by
irradiation with 7-fs pulses, we measured the Raman spectra of the
irradiated surfaces. Figure 4 shows the Raman spectra of an
SUS304 surface irradiated with 7-fs pulses at I = 15.5 TW/cm2

and 19.6 TW/cm2 at v = 5 μm/s and 10 μm/s. The Raman
spectrum of a non-irradiated surface is also shown for
comparison. The peaks at ~690 cm−1 and ~1,320 cm−1 indicate an
A1g mode of Fe3O4 (Verble, 1974) and a second-order-longitudinal-
optical (2LO) phononmode of Fe2O3 (Ohtsuka et al., 1986; Marshall
et al., 2020), respectively. At v = 5 μm/s, these peaks monotonically
increased with increasing I. At v = 10 μm/s, the Fe3O4 peak was
observed, while the Fe2O3 peak was small. On the other hand, the
peaks of Cr2O3 [305, 348, 552, 612 cm

−1 (Dostovalov et al., 2018)]
were not observed in our measurement. These results indicate that a
layer of iron oxide is formed on the SUS304 surface by 7-fs pulse
irradiation and that the layer becomes thicker as I increases and v
decreases.

3.2 Formation process of nanostructure on
GaAs

Figure 5 shows SEM images of GaAs surfaces irradiated with
7-fs pulses at I = 17.0 TW/cm2, 18.1 TW/cm2, and 19.6 TW/cm2

at v = 5 μm/s and 10 μm/s. The figure shows line-like
nanostructures perpendicular to the polarization direction
formed over the entire ablation traces. Plots of d as a function
of I at v = 5 μm/s and 10 μm/s are shown in Figure 6. As I
increases and v decreases (i.e., increasing N) d decreases
monotonically in the range d = 130–165 nm. In previous
experiments, nanostructures with d = 600–650 nm were
observed to be formed with 800-nm, 100-fs laser pulses
(Chakravarty et al., 2011; Ionin et al., 2013). Compared to
these results, d for the 7-fs pulses was about 1/5–1/4 as large

as that for the 100-fs pulses. Furthermore, the trend of increasing
d with increasing I was different from that on SUS304 surfaces for
7-fs pulses. The depth of the nanostructures was in the range
30–50 nm and increased monotonically with increasing I.

Figure 7 shows Raman spectra of GaAs surfaces irradiated with
7-fs pulses at I = 15.5 TW/cm2 and 19.6 TW/cm2 at v = 5 μm/s and
10 μm/s. The Raman spectrum of a non-irradiated surface is also
shown for comparison. The spectrum of the non-irradiated surface
contains a peak at ~265 cm−1, ~269 cm−1, and ~290 cm−1, which
indicates a longitudinal-optical-phonon-plasmon-coupled (LOPC)
mode (Mooradian and Wright, 1966), a transverse-optical (TO)
phonon mode (Abstreiter et al., 1978), and a LO phonon mode of
crystalline GaAs (c-GaAs) (Abstreiter et al., 1978). The spectral peak
at 290 cm−1 was reduced after laser irradiation, indicating that
irradiation with multiple consecutive 7-fs pulses can change
c-GaAs to amorphous GaAs (a-GaAs) (Jakata et al., 2012).

FIGURE 5
SEM images of GaAs surfaces irradiated with 7-fs laser pulses at I = 17.0 TW/cm2, 18.1 TW/cm2, and 19.6 TW/cm2 at v = 5 μm/s (A) and 10 μm/s (B). E
and v denote the directions of polarization and laser scanning, respectively.

FIGURE 6
Period d of nanostructure on GaAs formed with 7-fs pulses for
scanning speed v= 5 μm/s (red squares) and 10 μm/s (blue circles) as a
function of peak power density I.
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3.3 Discussion

Based on the results obtained, we first discuss the origin of the
periodicity of nanostructure formation on a SUS304 surface. In our
previous report for diamond-like carbon (DLC) films, it has been
shown that the few-cycle 7-fs laser pulses can form a metallic layer
with a much thinner thickness (a few nm) than that with the 100-fs
pulses due to the high-peak-power density of the laser pulse with low
fluence and the nonlinear absorption of the target (Iida et al., 2021).
It is assumed that the 7-fs pulses create a thin layer of iron oxide on
the SUS304 surface, a high-density electron layer then forms in the
iron oxide layer surface by large optical energy through linear and
nonlinear optical absorption process (Iida et al., 2021), and SPPs are
excited on the electron layer. The nanostructure can then be formed
through ablation induced by the fine distribution of high-density
electromagnetic energy. If the thickness of the high-density electron
layer is several nanometers to several tens of nanometers, SPPs are
excited at both the air/high-density electron layer and high-density
electron layer/iron oxide layer interfaces and are coupled coherently.
Short-range propagating SPPs (SR-SPPs) with SPP wavelength
λspp = 2π/Re[kspp] can then be excited (Fukui et al., 1979;
Raether, 1988). In this scenario, the following dispersion relation
equation is satisfied:

kz1
ε1

+ kz2
ε2

( ) kz2
ε2

+ kz3
ε3

( ) + kz2
ε2

− kz1
ε1

( ) kz3
ε3

− kz2
ε2

( ) exp 2ikz2δ( )

� 0,

(1)
where ε1, ε2, and ε3 are the dielectric constants of air, iron oxide with
high-density electrons, and iron oxide, respectively, kzj

2 = εj (ω/c)
2 – kspp

2

(j = 1, 2, 3) is the wavenumber of SPPs in each medium, and δ is the
thickness of the high-density electron layer. c andω= 2πc/λ are the speed
of light in vacuum and the angular frequency, respectively. Using the

Drude model (Sokolowski-Tinten and von der Linde, 2000; Danilov
et al., 2015), ε2 is represented by

ε2 � εIB 1 − Ne

Nbf
( ) − ω2

p

ω2 + 1/τ2 + i
ω2
p

ωτ ω2 + 1/τ2( ), (2)

where εIB is the dielectric constant of unexcited iron oxide, Ne is the
free electron density, Nbf is the characteristic band capacity of the
specific photoexcited regions of the first Brillouin zone in the k-space
associated with the band-filling effects (Danilov et al., 2015), τ is the
damping time, and ωp

2 = Nee
2/(m*mε0) is the square of the plasma

frequency with the dielectric constant of vacuum ε0, the electron
mass m, and the optical relative effective mass of the electrons m*.
Figure 8 shows the calculated period dcal of a nanostructure plotted
as a function of electron density Ne. Since the exited SPPs are
propagating in two directions along the laser polarization direction
to create a standing wave mode, dcal can be λspp/2 (Novotny et al.,
1997; Luo and Ishihara, 2004; Miyaji and Miyazaki, 2008). Taking
ε1 = 1, we have εIB = ε3 = 6.66 + i0.29 (Karlsson and Ribbing, 1982),
Nbf = 1023 cm−3 (Danilov et al., 2015), m* = 0.8 (Perevalov and
Gritsenko, 2011), and τ = 1 fs (Sokolowski-Tinten and von der
Linde, 2000). For comparison, we also show dcal for SPPs excited
only at the interface between the iron oxide with high-density
electrons and the iron oxide. In previous reports, we have shown
thatNe reaches 10

22 cm−3 during nanostructure formation (Miyazaki
et al., 2015). In Figure 8, dcal > 30 nm can be seen for δ = 5–10 nm,
while dcal increases to >60 nm as δ increases from 10 to 25 nm.
For δ > 25 nm, dcal is consistent with that obtained from SPPs, which
are excited only at the iron oxide with high-density electrons/iron
oxide interface. As shown in our previous study by using DLC (Iida
et al., 2021), the thickness of the excited layer should be shallower
than the ablation depth per pulse, because SPPs could be excited
on the surface having high-density electrons and their near-field
could ablate the surface. Because the depth of the observed
nanostructures was 10–40 nm, the thickness of the exited layer

FIGURE 7
Raman spectra of GaAs surfaces irradiated with 7-fs pulses for v =
5 μm/s at I = 15.5 TW/cm2 (blue) and 19.6 TW/cm2 (red), and for v =
10 μm/s at I = 19.6 TW/cm2 (green). The black line denotes the
spectrum of a non-irradiated surface.

FIGURE 8
Calculated groove periods dcal as a function of electron density
Ne for layer thicknesses δ = 5 nm (red), 10 nm (orange), 25 nm (green),
50 nm (blue), and λspp/2 at a single interface of excited Fe2O3/Fe2O3

(δ = ∞, dashed black).
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could be below these values. Based on this, dcal calculated by this
model is in good agreement with the period d of the observed
nanostructures. As the number of pulses irradiated per unit area
increases with decreasing v, the oxide layer should become thicker
and the thickness δ of the excited layer should also increase.
Therefore, dcal increases with an increase in δ, as shown in
Figure 8. On the other hand, an increase in I could increase both
δ andNe. The experimentally observed increase in dwith an increase
in I, as shown in Figure 3, indicates that the increase in dcal with
increasing δ was dominant for SUS304.

Next, we discuss the origin of the periodicity of nanostructure
formation on a GaAs surface. Assuming that the formation process of
nanostructures on GaAs irradiated with 7-fs laser pulses is the same as
that on stainless steel, SPPs are excited at two interfaces, air/excited
a-GaAs and excited a-GaAs/c-GaAs, and are coupled coherently. Since
a-GaAs has no bandgap, the bandgap renormalization effect can be
neglected. Figure 9 shows dcal plotted as a function of electron density
Ne, where ε1 = 1, the dielectric constant of a-GaAs εIB = 18.7 + i6.8
(Erman et al., 1984), the dielectric constant of c-GaAs ε3 = 13.55 + i0.63
(Erman et al., 1984; Palik and Palik, 1985), Nbf = 1023 cm−3 (Danilov
et al., 2015), m* = 0.061 (Solymar and Walsh, 1993), and τ = 1 fs
(Sokolowski-Tinten and von der Linde, 2000). For comparison, dcal is
also shown for SPPs excited only at the excited a-GaAs/c-GaAs
interface. In nanostructure formation on GaAs with 100-fs laser
pulses with fluences of 70–200 mJ/cm2, Ne = 2.0–2.6 × 1021 cm−3 has
been reported (Margiolakis et al., 2018). In Figure 9, dcal > 100 nm can
be seen for δ = 5–10 nm, while dcal increases to >160 nm as δ increases
from 10 nm to 25 nm. For δ > 50 nm, dcal = 120–140 nm is consistent
with that obtained from SPPs excited only at the excited a-GaAs/
c-GaAs interface. Because the depth of the observed nanostructures was
30–50 nm, the thickness of the exited layer could be below these values.
Based on this, dcal calculated by this model is in good agreement with
the period d of the observed nanostructures. As the number of pulses

irradiated per unit area increases with decreasing v, the modified layer
should become thicker and the thickness δ of the excited layer should
also increase. Therefore, as shown in Figure 9, dcal decreases with
increasing δ andNe. This result can be well explained by the decrease in
d with increasing I, as shown in Figure 6.

4 Conclusion

We observed the fine periodic nanostructure formation and
bonding structural change on stainless steel and GaAs surfaces
with 7-fs laser pulses. Experimental results showed the formation
of nanostructures on SUS304 and c-GaAs with periods of
60–110 nm and 130–165 nm, respectively, which are 1/5–1/4 the
period of nanostructures formed with 100-fs laser pulses. The
origin of the periodicity could be explained as arising from
the excitation of short-range propagating surface plasmon
polaritons. The observed period is in good agreement with the
model calculation results.
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