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Fading memory is the capability of a physical system to approach a unique
asymptotic behaviour, irrespective of the initial conditions, when stimulated by an
input from a certain class. Standard stimuli from the AC periodic class typically
induce fading memory effects in non-volatile memristors, as uncovered for the
first time back in 2016. Very recently, a deep investigation of resistance switching
phenomena in a TaOx resistive random access memory cell revealed the
capability of the nano-device to exhibit one of two possible oscillatory
behaviours, depending upon the initial condition, when subject to a particular
periodic excitation. This interesting finding was, however, left unexplained.
Bistability is the simplest form of local fading memory. In a system, endowed
with local fading memory under a given stimulus, the initial condition does not
affect the long-term behaviour of the state as long as it is drawn from the basin of
attraction of either of the distinct coexisting state-space attractors (two limit
cycles for the periodically forced memristor acting as a bistable oscillator).
Here, the history of the system, encoded in the initial condition, is, thus,
erasable only locally through ad hoc stimulation. Motivated by the discovery of
local history erase effects in our resistive random access memory cell, this
study applies a powerful system-theoretic tool, enabling the analysis of the
response of first-order systems to square pulse train-based periodic stimuli,
known as the time-average state dynamic route, to an accurate physics-based
mathematical model, earlier fitted to the nano-device, to determine a strategy
for specifying the parameters of an excitation signal, consisting of the
sequence of two square pulses of opposite polarity per period so as to
induce various forms of monostability or multistability in the non-volatile
memristor. In particular, as an absolute novelty in the literature, experimental
measurements validate the theoretical prediction on the capability of the
device to operate as one of two distinct oscillators, depending upon the initial
condition, under a specific pulse train excitation signal. The coexistence of
multiple oscillatory operating modes in the periodically forced resistive
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random access memory cell, an example par excellence of their unique non-
linear dynamics, may inspire the development and circuit implementation of
novel sensing and mem-computing paradigms.

KEYWORDS

ReRAM, non-volatility, fading memory, local fading memory, bistability, tristability,
multistability, time-average state dynamic route

1 Introduction

Resistance switching memories (Ielmini and Waser, 2016),
falling in the class of non-volatile memristors (Chua, 2018), are
currently under the zooming lens of thousands of researchers
worldwide (Buckwell et al., 2021; Shamsi et al., 2021; Milano
et al., 2022; Lenk et al., 2023; Tzouvadaki et al., 2023) for the wide
spectrum of opportunities they open up in the post-Moore
electronics era (Yi et al., 2022). In addition to their obvious
use as data storage units, memristors from the non-volatile class
(Mikolajick et al., 2009; Vontobel et al., 2009) may be
alternatively operated as data processing elements, enabling
the circuit implementation of innovative in-memory computing
paradigms (Xia and Yang, 2019), which promise to resolve the
von Neumann bottleneck, limiting the performance of state-of-
the-art computers, in which the central processing unit is
frequently forced to remain in an idle state, preventing its
potential to be fully harnessed, to enable relevant data transfer
across the physical channel, which allows its communication
with the physically separated memory. Furthermore, their typical
arrangement within dense crossbar arrays, whose design exploits
the need to introduce thin oxide films for isolation purposes
between adjacent metal layers in standard CMOS fabrication
processes, favours the development of hardware engines, which
leverage state-dependent Ohm’s law-based electronic transport
in the nano-device to accelerate matrix-vector multiplications
(Hu et al., 2016), lying at the core of most machine learning
algorithms for Big Data analysis nowadays. Despite the
considerable progress, achieved over the past 15 years through
the pursuit of significant research studies (Waser and Aono,
2007; Valov et al., 2013; Wang et al., 2017; Rao et al., 2023) aimed
to understand the fundamentals of the operating mechanisms of
resistance switching memories, some aspects of the intricate, yet
peculiar, non-linear dynamics (Corinto et al., 2015) of these
devices, of potential interest for electronic applications (Talati
et al., 2016; Sebastian et al., 2017; Di Ventra and Traversa, 2018;
Li et al., 2018; Zidan et al., 2018), are yet to be discovered. Back in
2016, the theoretical analysis of a predictive mathematical model
by Strachan et al. (2013) first unveiled the emergence of memory
loss phenomena (Ascoli et al., 2017), coexisting with analogue
non-volatility, in a TaOx resistive random access memory
(ReRAM) device under suitable periodic excitation. As
confirmed shortly later in laboratory measurements, carried
out on a physical sample at Hewlett Packard Labs (Ascoli
et al., 2016c), the initial condition was found to have no
impact on the asymptotic oscillatory behaviour of the
periodically driven non-volatile memory device. History erase
effects were found to appear across this memristor physical
realization under a wide class of periodic stimuli, typically

employed in electrical engineering, including triangular,
square, and sine waves. The ubiquity of this non-linear
dynamic phenomenon in non-volatile memristors was further
revealed shortly later (Menzel et al., 2017; Ascoli et al., 2018). The
fading memory phenomenon originates in real non-volatile
memristor devices due to the intrinsic asymmetry in their SET
and RESET switching kinetics. In fact, constructing artificially a
device model with symmetric ON and OFF dynamics, as is the
case for ideal memristors, no history erase effect would be
observed, irrespective of the stimulus. In these circumstances,
the periodically forced device would be found to exhibit an initial
condition-dependent oscillatory behaviour directly from the
beginning of the AC stress test. On the other hand, in general,
a physical memristor realisation, under periodic excitation,
undergoes transient phenomena, before locking into some
oscillatory operating mode, whereby the effect of SET and
RESET forces on its kinetics balances out over each input
cycle. In system theory, a physical system, which exhibits a
unique asymptotic behaviour under a given stimulus, is said to
have fading memory (Boyd and Chua, 1985) on that stimulus. A
local form of fading memory was introduced theoretically in
Ascoli et al. (2016a) to define the capability of a physical system
to lock into one of a number of distinct operating modes under a
given excitation, depending upon the initial condition. A physical
system of this kind is said to undergo fading memory effects
locally within the basin of attraction of each of the locally stable
attractors in the associated state space. Although a memristive
circuit, employing standard electrical components, including
active components, was designed in Ascoli et al. (2016b) to
provide a pedagogical example of a physical system, endowed
with local fading memory on a given input class, no physical
memristor realisation was ever found to experience input-
induced multistability until recent observations of bistability in
the oscillatory behaviour of the state of the Strachan model under
suitable pulse train-based excitation, as reported in an interesting
bifurcation study from Pershin and Slipko (2019). A
comprehensive theoretico-experimental research study (Ascoli
et al., 2022), allowing to gain a deep insight into the mechanisms,
underlying resistance switching phenomena in another ReRAM
cell—composed of a Ta/TaOx/Pt device stack—and
manufactured at the premises of Forschungszentrum Jlich
(FZJ), similarly reported the coexistence of two stable
oscillatory solutions for the dimensionless memory state x of
the associated physics-based mathematical description
(Hardtdegen et al., 2018), known as the Jülich Aachen
resistive switching tool (JART) valence change memory
(VCM) model (Bengel et al., 2022), preliminarily fitted to
experimental data, extracted from a device sample, under a
particular symmetric periodic triangular stimulus. The device
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was found to operate around its fully-RESET state in one of the
two oscillatory operating modes. The research work, presented in
this manuscript, intends to answer key questions, which emerged
from this observation, as listed here.

1. Is it possible to elucidate the mechanisms behind the
emergence of bistability in the oscillatory response of our
ReRAM cell under suitable periodic stimulation, as reported
yet left unexplained in Ascoli et al. (2022)?

2. Is it possible to excite the nano-device in such a way that it may
feature a larger number of coexisting oscillatory
operating modes?

3. Is it possible to modulate the excitation signal in such a way to
switch the nature of the device oscillatory response from
unimodal to multimodal, or vice versa?

4. Is there a quantitative measure for identifying each possible
asymptotic oscillatory steady state for the device, subject to a
given periodic stimulus, from the analysis of the competition
between the counteractive forces, acting on the device kinetics,
under SET and RESET phases over each cycle?

5. Is it possible to develop a rigorous methodology to tailor the
shape of the periodic stimulus in such a way to induce a
variable number of stable oscillatory operating modes into
the device?

6. Is it possible to demonstrate experimentally the emergence of
the simplest form of local fading memory in a non-
volatile memristor?

In order to address these points, a powerful system-theoretic
graphic tool, known as the time-average state dynamic route (TA-
SDR), inspired from the bifurcation study in Pershin and Slipko
(2019), exploiting the time-averaging method from the theory of
non-linear dynamics (Guckenheimer and Holmes, 1983), is applied
to the JART VCM model to derive a systematic technique for
massaging the properties of two square pulses of opposite
polarity, composing the train-based stimulus over each cycle, for
inducing monostability or multistability in the oscillatory response
of the TaOx ReRAM nano-device manufactured in house. For one
particular input parameter setting, the predictions from the
proposed theory are validated experimentally in our laboratory
facilities, strengthening the significance of our research findings.
In regard to the structure of this paper, the motivation behind our
research work is elucidated in Section 2. The TA-SDR technique,
extending the dynamic route map (DRM) concept (Chua, 2018) to
enable the analysis of the time evolution of the mean value of the
memory state of a first-order dynamical system under square pulse
train stimulation, in those circumstances where the memory state
undergoes small changes per cycle, which is the case, for example, in
high-frequency excitation scenarios (Messaris et al., 2023), is
introduced in Section 3. Section 4 presents a rigorous
methodology, based upon the TA-SDR tool, allowing to
determine appropriate heights and widths for the two pulses,
composing the train stimulus over each cycle so as to endow the
time-average state equation (TA-SE), governing the dynamics of the
mean value �x of the dimensionless memory state x of the ReRAM
cell under the given periodic excitation, with a desired number of
stable equilibria, which correspond to the levels around which the
dimensionless memory state itself would be found to revolve at a

steady state, upon choosing initial conditions from the basin of
attraction of the corresponding periodic attractor (Schmitt et al.,
2023). Section 5 provides pedagogical examples, demonstrating the
accuracy of the proposed methodology, applied to the JART VCM
model, reviewed in Supplementary Appendix A.1, to guide the
circuit designer toward a robust choice for the input parameters
to induce the coexistence of a desired number of stable oscillatory
solutions for the device memory state. Section 6 explores other
regions of the two-dimensional pulse height parameter space,
identifying novel multimodal steady-state oscillatory dynamics
for the ReRAM cell upon suitable pulse width ratio modulation,
while taking care for the physical limitations of the measurement
tools, available to us so as to set the ground for experimental
multistability tests on the oscillatory device. The study in this
section inspired the identification of a suitable input parameter
setting, which, programmed in a physical pulse source generator,
was found to induce a bistable oscillatory response in a VCM device
sample, as observed experimentally for the first time ever in the
laboratory, confirming the validity of the theoretical predictions
(refer to Section 7). Moreover, Supplementary Appendix A.2
describes the promising outcome of preliminary activities aimed
to specify train stimulus properties, which comply with the limited
capabilities of the pulse generators in consideration, and enable
endowing the ReRAM cell with three oscillatory operating modes,
two of which, envisaging resistance excursions, well-confined within
the allowable range. As reported in the conclusions, drafted in
Section 8, the capability of a ReRAM cell to admit coexisting
oscillatory modes under suitable periodic stimulation could be
leveraged in novel circuits for sensing, processing, and storing
data more efficiently than what is currently feasible in purely
CMOS electrical systems.

2 Motivation

The TaOx ReRAM cell, under focus in this research study, is a
voltage-controlled VCM device. The voltage v (current i) across
(through) its physical stack then acts as the input (output) variable
for the associated memristor model. The differential algebraic
equation (DAE) set of the JART VCM model, which captures
very accurately the device dynamics and is the object of the
theoretical analysis to follow, may be numerically cast, as
explained in Supplementary Appendix A.1, in the characteristic
form of a first-order voltage-controlled extended memristor, i.e.,

dx

dt
� g x, v( ), (1)

i � G x, v( ) · v, with lim
v→0

G x, v( ) ≠ ∞, (2)

where the ordinary differential equation (ODE) (Eq. 1), known as
the state equation (SE), governs the time evolution of a
dimensionless memory state x, constrained to lie at all times
within a closed set Dx � [xmin, xmax], in which xmin (xmax)
denotes the lowest (highest) admissible memory state value, while
the algebraic relation (Eq. 2) defines a state- and input-dependent
Ohm’s law (OL). In the first (latter) of these two equations, g (x, v) (G
(x, v)) is referred to as the state evolution (memductance) function.
Figure 1, visualising an observation similar to that reported in Ascoli
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FIGURE 1
(A) Time waveform of an asymmetric periodic triangular voltage stimulus vS, which, according to the JART VCMmodel predictions, induces bistable
steady-state oscillatory dynamics in the TaOx ReRAM cell, manufactured in Jülich, as it falls continuously between its terminals. The amplitude V+ (V−) and
width τ+ (τ−) of the positive RESET (negative SET) triangular pulse over each input cycle are, respectively, set to 0.31 V (−0.2 V) and 1 · 105s (6.6667 · 106s).
The period T of the stimulus is then τ+ + τ− = 6.7667 · 106s. The reset–set pulse width ratio r ≜ τ+/τ− amounts here to 1.5 · 10–2. (B) Δxk+1;k versus xk
locus (Ascoli et al., 2023b), as extracted from the Poincaré map xk+1 � P(xk) of the periodically forced ODE (Eq. 1) in the excitation scenario under
examination. Here, the Poincarémap admits three fixed points, specifically xp1 � 1.000919 · 1024, x2* � 7.809066 · 1024, and x3* � 7.389705 · 1025, of which
each of the outer ones (the inner one) is asymptotically stable (is unstable), as indicated via a black filled (red hollow) circle marker. (C, E, G) [(D, F, H)]:
Transients (steady state) in the time waveform of the numerical solution to the state Eq. 1 from the first, second, and third initial conditions x0 in the set

(Continued )
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et al. (2022), illustrates how, depending upon the initial condition x0
≜ x (0), assigned to the dimensionless state x of the JART VCM
model, the asymptotic oscillatory solution of the ODE (Eq. 1) may
evolve along one of two distinct locally stable oscillatory waveforms,
upon forcing the device voltage v to follow an asymmetric periodic
voltage stimulus vS, composed of a first-positive RESET1 triangular
pulse of amplitude v̂S,+ � +0.31V, stretching across a time span τ+ =
1 · 105s, and of a second-negative SET triangular pulse of amplitude
v̂S,− � −0.2V, covering a time interval τ− = 6.6667 · 106s, over each
cycle of duration T = τ+ + τ− = 6.7667 · 106s [refer to plot (a)], as
established by the circuit setup of Figure 2A. Plot (b) depicts the
graph of the state change per cycle map (SCPCM) (Ascoli et al.,
2023b), which is dictated by the vector field of the non-autonomous2

first-order ODE (Eq. 1) under the specified excitation scenario.

Remark 1. Let us consider a first-order ODE system, falling in the
class (Eq. 1), where x is a scalar state with the existence domain
Dx ≜ (xmin, xmax), while v denotes a particular periodic excitation
signal vS with T-long cycles. Let us denote the sample of the solution
x of the periodically forced ODE at the end of the kth input cycle as
xk ≜ x(k · T), for k ∈ N0. The SCPCM (Ascoli et al., 2023b) provides
the change Δxk+1;k ≜ xk+1 − xk, which the state x undergoes over the
(k + 1)th input cycle for each k-value in the set {0, 1, 2, . . . }. The
SCPCM can, thus, be easily retrieved from the one-dimensional
discrete-time system xk+1 � P(xk), referred to as Poincaré map3 in
non-linear dynamics theory (Guckenheimer and Holmes, 1983),
computable from the list of values obtained by sampling the solution
to the first-order ODE, subject to the specified periodic input signal
v = vS, at regular T-long time intervals. Assuming that the state
sample xk at the end of the kth input cycle satisfies the inequality
P(xk)> (< )xk, the ODE solution x shall undergo a net increase
(decrease) over the (k + 1)th input cycle to follow. In other words, the
(k + 1)th map return point xk+1 shall be larger (smaller) than the kth
map return point xk. This is visualised by superimposing arrows,
pointing to the east (west), on the Δxk+1;k versus xk locus, within the
upper (lower) half plane. Each crossing between the locus and the
horizontal axis denotes an admissible fixed point x* for the Poincaré
map, which satisfies the equality x* � P(x*) therein. The net state

change per cycle at a map fixed point is obviously null. A fixed point
of a Poincaré map is asymptotically stable (unstable) if and only if
the Δxk+1;k versus xk locus crosses the horizontal axis with a negative
(positive) slope. An asymptotically stable fixed point for the map
identifies an asymptotically stable oscillatory solution for the
original periodically forced continuous-time system. More
specifically, it indicates the unchanged value, sampled from this
asymptotic solution at the end of each input cycle. A good
approximation for a Δxk+1;k versus xk locus may be smartly
obtained by running a large number of T-long numerical
simulations of the forced ODE system, one for each initial
condition x0 in a set, which adequately covers the state existence
domain Dx, recording the state sample x1 ≜ x(T) at the end of each
test, plotting the net state change Δx1;0 ≜ x1 − x0 versus the respective
initial condition x0 in each iteration, and finally applying some
interpolation method to find the best fit for a curve joining the
various points on the Δx1;0 versus x0 plane.

Here, the Poincaré map admits a triplet of fixed points,
specifically x1* � 1.000919 · 1024, x2* � 7.809066 · 1024, and
x3* � 7.389705 · 1025. The left (right) outer stable one identifies
the fixed value, which is obtained upon sampling the small
(large)-amplitude oscillatory solution to the periodically forced
ODE (1) at regular T-long time intervals, after transients vanish,
as clarified shortly. Plot (c) shows [plots (e) and (g) show] the
progressive approach of the solution x to the ODE (Eq. 1) toward the
small (large)-amplitude oscillatory waveform, upon assigning the
first value (the second and third values) from the set {6.5 · 1024, 9 ·
1024, 3 · 1029}) to the initial condition x0. As shown in plot (d),
[respectively shown in plots (f) and (h)], the state solution in plot (c)
[each of the state solutions in plots (e) and (g)] approaches an
oscillation, whose maximum4 is exactly the stable fixed point x1*
(x3*) of the Poincaré map [see plot (b)]. Although via extensive
numerical explorations it is possible to infer how one may tailor the
input parameter setting so as to induce bistability in a ReRAM cell, it
would be better to develop a theoretical approach to serve this
purpose. This is one of the key issues this manuscript aims to
address5. In order to resolve this problem, the TA-SDR technique, a

FIGURE 1 (Continued)

{6.5 · 1024, 9 · 1024, 3 · 1029}. The JART VCM model is numerically integrated for as many as 36,818, 2,696, and 103,000 input cycles to allow its
solution to attain the steady state in the first, second, and third simulations, respectively. Importantly, x1′ (x3*) coincides with the maximum of the low-
amplitude (large-amplitude) oscillation in the state, as shown in plot (D) [in either of plots (F) and (H)].

1 Applying a positive (negative) voltage stimulus at the Pt electrode, while

grounding the Ta electrode, a RESET (SET) resistance switching transition is

induced in the Ta/TaOx/Pt device stack manufactured in Jülich.

2 An ODE is said to be non-autonomous if it is forced by a non-constant

input. Else, it is an autonomous system.

3 Importantly, the Poincaré map technique allows studying a periodically

forced continuous-time system, which is equivalent to a second-order

autonomous ODE, in which the time variable encodes one degree of

freedom, through a simpler one-dimensional discrete-time system.

4 Note that, inverting the order of the RESET and SET pulses in the periodic

voltage stimulus vS, depicted in Figure 1A, the two stable fixed points for

the new map, which would be extracted in this other excitation scenario,

would correspond to the minima for two locally stable steady-state

oscillations in the memory state.

5 Despite its high predictive accuracy, the SCPCM technique (Ascoli et al.,

2023b) relies on numerical integrations, and, for this reason, is not

employable to resolve this open question. It may be used, however, to

verify the predictions from the time-averaging method, which holds

validity only in periodic excitation scenarios, which induce small

changes in the state per cycle Ascoli et al. (2022).
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powerful system-theoretic method, inspired to a recent bifurcation
study (Pershin and Slipko, 2019) and referred to as the time-
averaging method in the theory of non-linear dynamics
(Guckenheimer and Holmes, 1983), shall be applied to the JART
VCM model under the hypothesis that the respective input variable
v is constrained to follow a periodic square pulse train stimulus vS,
composed of two square pulses of different polarity per cycle. A
rigorous methodology is developed in this manuscript to determine
how one may massage the shape of a periodic stimulus from this
class in such a way to endow the nano-device with a variable number
of stable oscillatory operating modes. Although bistability is the
simplest form of local fading memory, the application of the
proposed methodology reveals the possible coexistence of three
steady-state oscillatory solutions for the ODE (Eq. 1) under
suitable periodic perturbation. The capability of the ReRAM cell
to exhibit a programmable multistable oscillatory response under
suitable periodic stimulation may be harnessed for the hardware
realisation of some innovative sensing andmem-computing concept
in the future. The experimental demonstration of the capability of
the ReRAM cell, set under the zooming lens in this paper, to act as
one of two distinct oscillators, depending upon the initial condition,
as reported in Section 7, is an encouraging step in the pursuit of this
long-term goal.

3 The TA-SDR: a system-theoretic tool
for the study of the response of first-
order memristors to square pulse
train stimuli

This section describes a powerful graphic method, which allows
investigating the response of first-order nonlinear dynamical
systems to AC periodic square pulse train-based excitations. It
was introduced and applied to the Strachan model from Strachan
et al. (2013) in an interesting numerico-analytical study (Pershin
and Slipko, 2019) of the bifurcations, experienced by the TaOx

ReRAM cell, manufactured at Hewlett Packard Labs, under periodic
stimuli of this kind, and later employed in a deep study (Messaris
et al., 2023) of the high-frequency response of the same nano-device.

Without loss of generality, consider the DAE SET (Eqs 1, 2) of an
extended first-order voltage-controlled memristor (Chua, 2018).
The JART VCM model, revisited in Supplementary Appendix
A.1, may be formulated in this form. An AC voltage source vS is
now inserted across the memristorM, as depicted in Figure 2A. Let
the source generate a periodic square pulse train, as sketched in
Figure 2B, from t = 0 s. Over each period T, the stimulus consists of a
pulse doublet, composed of a first-positive RESET pulse of height V+

and width τ+, and a second-negative SET pulse of height V− and

FIGURE 2
(A) Circuit setup for investigating the response of a voltage-controlled memristorM to the application of a periodic voltage stimulus vS between its
terminals. (B)Generic square pulse train-based voltage signal from the class of periodic stimuli, on which the local fadingmemory of the ReRAM cell from
Jülich is explored via an in-depth theoretico-numerical analysis of the JART VCM model. Without loss of generality, a positive RESET (negative SET)
voltage of amplitude V+ (V−) is applied across the memristor over the first (second) τ+(τ−)-long part of each cycle.

FIGURE 3
Exemplary illustration for the TA-SDR of a first-order memristor under periodic stimulation, as established in the test circuit of Figure 2A, from an AC
voltage source vS, generating a specific periodic square pulse train, of the kind shown in plot (b) of the same figure. Each filled (hollow) circle along the
horizontal axis indicates an asymptotically stable (an unstable) equilibrium �xeq for the TA-SE (Eq. 7) associated with the particular ReRAM cell excitation
case study.
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width τ−. The time average �x of the device memory state x over a
period T = τ+ + τ− of the voltage stimulus6 changes over time
according to

�x t( ) � 1
T
· ∫t+T

t
x τ( )dτ. (3)

Applying the Leibniz integral rule to Eq. 3, the time derivative of
the time average state varies with time as

_�x t( ) � x t + T( ) − x t( )
T

. (4)

Now, integrating the state Eq. 1 over a period gives the following
expression:

x t + T( ) − x t( ) � ∫t+τ+

t
g x τ( ), V+( )dτ + ∫t+τ++τ−

t+τ+
g x τ( ), V−( )dτ

(5)
≈ g �x, V+( ) · τ+ + g �x,V−( ) · τ−, (6)

in which the last line assumes that within the time duration of a
RESET (SET) pulse, the memory state undergoes7 such a small
decrease (increase) to justify its approximation via the respective
time average, within the argument of the state evolution function in
the first (second) time integral, without introducing a noticeable loss

in computation accuracy. Finally, substituting Eq. 6 into Eq. 4 allows
deriving the TA-SE, specifically

_�x � 1
T
· g �x,V+( ) · τ+ + 1

T
· g �x, V−( ) · τ−, (7)

which8 governs the time evolution of the time average state �x upon
forcing the input v to the ODE (Eq. 1) to follow a specific square
pulse train voltage stimulus vS from the class illustrated in Figure 2B.
Assuming that the choice for the pulse doublet parameters, namely,
the quartet {V+, τ+, V−, τ−}, ensures a good accuracy for the
approximation in Eq. 6, the determination of the equilibria of the
TA-SE (7), together with the study of their stability properties,
allows identifying all the possible levels, around which the memory
state of the periodically driven ReRAM cell may be ever found to
oscillate asymptotically. The initial condition x0, assigned to the
memory state x, related to the conductance G (x0, 0), programmed
into the device preliminarily, would determine which of the
admissible locally stable oscillatory solutions for the memory
state itself would be observed during the periodic test after
transients decay to zero.

An equilibrium �xeq for the TA-SE (Eq. 7) satisfies the constraint
_�x|�x��xeq � 0 and corresponds to an admissible oscillation for the
steady-state solution of the state Eq. 1. The equilibrium is
asymptotically stable (is unstable) if and only if (d _�x/d�x)|�x��xeq is
negative (positive). Plotting the time-average state evolution function,
composing the right hand side of the TA-SE, versus the time average
state provides the locus of _�x versus �x, which is referred to as TA-SDR.
This graph enables gaining precious insights into the dynamics of the
time-average state without solving the TA-SE itself. Importantly, as it
goes for the TA-SE (7), TA-SDR is strictly associated with a particular
periodic square pulse train-based voltage signal vS, falling in the class
defined in Figure 2B, and acting as the input v to the state Eq. 1 of the
device model. Arrows, pointing to the east (west), are superimposed

FIGURE 4
(A)Decomposition of the exemplary TA-SDR from Figure 3 into its two constitutive contributions, referred to as RESET and SET components, which
are, respectively associated with the positive and negative square pulse, composing the time waveform of a given ReRAM cell stimulus, falling in the class
from Figure 2B, over the first (second) τ+ (τ−)-long part of each cycle. The RESET (SET) component lies on the lower (upper) half of the _�x versus �x plane and
is visualised bymeans of a red (blue) trace. As indicated by the arrows, pointing to the west (east) along the RESET (SET) locus, the time-average state
�x decreases (increases) under the effect of the positive (negative) rectangular pulse. (B) Plots of the moduli of the RESET and SET components, enabling
the identification of the locations of all the admissible equilibria for the TA-SE (Eq. 7) through their intersections. The direction of the arrows along the
RESET (SET) trace is kept unchanged relative to the direction of the arrows along the red (blue) locus in plot (A). The asymptotic stability of an equilibrium
for the TA-SE requires the SET (RESET) locus to be higher than the RESET (SET) locus to its left (right). A filled (hollow) circle is employed to mark each
asymptotically stable (unstable) equilibrium for the TA-SE corresponding to the specific ReRAM cell excitation scenario under focus.

6 For the sake of simplicity, �x shall be referred to as the time-average state in

the remainder of the paper.

7 As anticipated in Section 2, when a positive (negative) voltage v is let to fall

between the Ta and Pt electrodes of the device stack from Jülich, the

device undergoes a RESET (SET) transition. Moreover, as the state

evolution function g(x, v) in the JART model is anti-sign invariant (Chua,

2018), implying g(x, v) < (>)0 for v > (<)0, the state variable decreases

(increases) in a RESET (SET) transition. In fact, in such a model, x = xmin (x =

xmax) corresponds to the fully-RESET (fully-SET) state for the device.

8 The right hand side of Eq. 7 may be referred to as the time-average state

evolution function.
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FIGURE 5
(A, C, E, G) ((B, D, F, H)) Family of |g (x, V)| versus x loci, for V= V+(V−) ∈ {+ (−)0.2, + (−)0.4, + (−)0.6, + (−)0.8}V, according to the predictions of the JART
VCMmodel. The first (latter) family illustrates the multi-decade variation range for the RESET (SET) switching speed across the state existence domain for
a number of positive (negative) DC inputs. Together, the RESET and SET SDRs, shown in the plots along the top and bottom rows, respectively, compose
the DRM of the ReRAM cell.
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FIGURE 6
Representative diagram, illustrating the basics of themethodology, which is adopted in this work to study the bifurcations in the number of equilibria
for the TA-SE under pulse width ratio sweep, given a preliminary selection for the remaining stimulus parameters, i.e., V+ and V−. Blue curve: locus of the
function y � r̂(�x,V+ ,V−) versus the time-average state �x. Horizontal black line: graph of the function y= r for a generic choice of the pulsewidth ratio. With
reference to the blue cross markers, the ordinates of the local minima and maxima for y � r̂(�x,V+ ,V−), together with the values, which this function
assumes at the lower and upper bounds of the memory state existence domain, are sorted in ascending order from the lowest, i.e., y1, to the highest,
i.e., y6. It can be easily demonstrated that a time-average state value �xeq , at which the equality, expressed by Eq. 12, applies, corresponds to an
asymptotically stable (an unstable) equilibrium for the TA-SE, as indicated through a black-filled (red-hollow) circle in this diagram, if and only if the slope
of the function y � r̂(�x,V+ ,V−) is negative (positive) therein. To name but one example, the line y = r, corresponding to a choice for the pulse width ratio
between y4 and y5, crosses the graph of y � r̂(�x,V+ ,V−) in three locations, where �x assumes values from the set {�xeq,1 , �xeq,2 , �xeq,3}, revealing the existence of
a triplet of TA-SE equilibria, of which each of the outer ones (the inner one) is asymptotically stable (unstable).

FIGURE 7
Blue trace: locus of r̂(�x,V+ ,V−) versus �x over thememory state existence domainDx ∈ [xmin , xmax], with xmin = 1 · 1024 and xmax = 3 · 1029, for (V+, V−) =
(+0.31 V, −0.2 V). It crosses the black horizontal line y= r1 = 1 in one point, whose abscissa constitutes the only equilibrium, which the TA-SE admits under
the input parameter triplet (V+,V−, r1). Three are the crossings between the blue curve and the violet horizontal line y= r2 = 1.5 · 10–2. The abscissas of these
crossings provide a set of three admissible equilibria for the TA-SE under the input parameter triplet (V+, V−, r2). The brown horizontal line y= r3 = 2.3 ·
10–3 meets the r̂(�x,V+ ,V−) versus �x locus in five points, whose abscissas identify five possible equilibria for the TA-SE under the input parameter triplet (V+,
V−, r3). Finally, there exists one and only one point of intersection between the blue trace and the green horizontal line y = r4 = 1 · 10–5. Its abscissa
represents the only equilibrium for the TA-SE associated with the input parameter triplet (V+, V−, r4). For each of the four case studies, a black (red) circle is
employed to mark the position of a stable (an unstable) equilibrium for the respective TA-SE.
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on a locus of this kind, where it visits the upper (lower) half of the _�x
versus �x plane so as to indicate an increase (a decrease) in the time-
average state when the right hand side of Eq. 7 is positive (negative).
Each intersection of TA-SDR with the horizontal axis identifies a
possible equilibrium �xeq for the respective TA-SE. The equilibrium is
asymptotically stable (is unstable) if and only if the TA-SDR has a
negative (positive) slope as it goes through it. Figure 3 shows the TA-
SDR of a first-order memristor, which, driven periodically by a square
pulse train-based voltage stimulus of the form depicted in Figure 2B,
as established by the test circuit set-up protocol, illustrated in plot (a)
of the same figure, is expected to operate according to one of three
possible oscillatory modes, after transients decay to zero, depending
upon the initial condition x0. In fact, the exemplary TA-SDR predicts
the existence of five equilibria for the respective TA-SE, specifically
�xeq,1, �xeq,2, . . ., �xeq,5, of which those identified by odd (even) numbers
are asymptotically stable (are unstable). In case the stimulus
parameters are chosen in such a way that approximating the state
with its time average within each integrand in Eq. 5 does not
jeopardise the computational accuracy of the respective time
integral, the memory state of the periodically driven ReRAM cell
shall oscillate around one of three possible levels, specifically �xeq,1,
�xeq,3, or �xeq,5, after transients vanish, depending upon the initial
condition x0. In particular, if x0 is chosen in such away that �x0 ≜ �x(0),
i.e., as follows from Eq. 3, the initial value for the time average of the
solution to the ODE (Eq. 1), as computed across the first input cycle, is
lower (higher) than �xeq,2 (�xeq,4), then x shall asymptotically oscillate
around �xeq,1 (�xeq,5). If, on the other hand, x0 is set so that �x0 is found
to lie within the range (�xeq,2, �xeq,4), then the mean value of the steady-
state oscillation in x shall be �xeq,3.

In the next section, a rigorous methodology, based upon the
system-theoretic TA-SDR analysis tool, shall be set in place to
massage the four parameters of the AC periodic pulse train
stimulus of Figure 2B in such a way to induce the coexistence of
a variable number of distinct steady-state oscillatory solutions for
the memory state of the ReRAM cell under the zooming lens in this
manuscript.

4 A systematic technique to endow the
periodically driven memory cell with a
variable number of oscillatory
operating modes

Let us commence this section by introducing an alternative way
to determine the equilibria of TA-SE and study their local stability
properties.

4.1 TA-SDR decomposition

The TA-SE (Eq. 7) can be recast as the sum between a RESET
component and a SET component via

_�x � _�xRESET + _�xSET. (8)

The first and latter contributions are, respectively, defined as

_�xRESET � 1
T
· g �x, V+( ) · τ+, and (9)

_�xSET � 1
T
· g �x,V−( ) · τ−. (10)

The RESET (SET) component is, in fact, a scaled version of
the right hand side of the SE9 (Eq. 1), with the time-average state
in place for the state, under a positive (negative) DC voltage V =
V+ (V−). As an exemplary case study, the RESET and SET
components, whose sum results in TA-SDR, illustrated in
Figure 3, are, respectively, shown through a solid red and blue
trace as a function of the time-average state in Figure 4A. Arrows
along the first (latter) component point toward the west (the
east), revealing that the physics laws, governing the OFF (ON)
dynamics, establish a decrease (an increase) for the time-average
state over the time interval τ+ (τ−), when the positive (negative)
square pulse of height V+ (V−) perturbs the memristor. Far more
insightful is the illustration of Figure 4B, showing the moduli of
the RESET and SET components from plot (a) of the same figure.
Note that in this new graphic representation, the direction of
motion for the time-average state along the RESET (SET) trace
still takes into account the negative (positive) polarity of the
contribution expressed by Eqs 9, 10. Naturally, the TA-SE, cast as
reported in Eq. 8, admits an equilibrium �xeq at the abscissa of any
intersection between the moduli of the RESET and SET
components, i.e., at each time-average state, where10

_�xSET|�xeq � − _�xRESET|�xeq, which, employing Eqs 9, 10, can be
expressed as

g �x, V−( ) · τ− � −g �x,V+( ) · τ+. (11)

Moreover, the equilibrium is asymptotically stable if and only if
the ON (OFF) dynamics are dominant over the OFF (ON) dynamics
to its left (right). The decomposition of the TA-SE into its SET and
RESET components is at the basis of a systematic methodology to
craft the periodic pulse train stimulus, to be applied across the nano-
device, so as to endow its memory state with oscillatory monostable
or multistable response, as elucidated in Section 4.3. Before
presenting the methodology, it is worth exploring the state
evolution function g (x, v) versus state x loci under sweep in
the positive (negative) DC value V+ (V−), assigned to the input
variable to the ODE (Eq. 1). In fact, the larger the difference

9 Referring, without loss of generality, to an anti-sign invariant state

evolution function, the locus of the right hand side of the SE (Eq. 1)

versus the memory state for a given positive (negative) DC voltage v =

V = V+(V−) is referred to as a RESET (SET) state dynamic route, RESET SDR

(SET SDR) for short. The families of RESET and SET SDRs compose theDRM

of the first-order memristor.

10 Numerical investigations, based upon the JART VCM model, already

revealed (Ascoli et al., 2022) that the level, around which the memory

state x of the TaOx ReRAM cell, manufactured at FZJ, is found to oscillate,

after transients vanish, for a given initial condition x0, under the effect of a

purely-AC periodic triangular voltage stimulus vS of suitable amplitude v̂S

and frequency fS (Messaris et al., 2023), is approximately equal to the

abscissa of a specific intersection between the moduli of the RESET and

SET SDRs, respectively, extracted from the memristor DRM upon setting

the DC voltage V to a positive V+ and negative V− value of common

modulus v̂S.
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between the shapes of the SET SDRs and the shapes of the RESET
SDRS and the higher the tunability of the loci within each of these
two families, the simpler would be to modulate the two
components of the TA-SE so as to enforce a desired number
of intersections between the graphs of their moduli along the
state existence domain.

4.2 Impact of the positive/negative DC
voltage on the shape of the ReRAM cell
RESET/SET SDR

The TA-SE (Eq. 7), corresponding to a given square pulse
train excitation, is a linear combination of two copies of the state
evolution function. The first (latter) copy is expressed in terms of
the time-average state and of the positive (negative) DC voltage,
representing the height of the first RESET (second SET) pulse in
the waveform of the AC periodic input over each cycle, and is
weighted by the ratio between the width of the same pulse and the
period of the stimulus. Moreover, the intersections between the
loci of the moduli of these two terms identify the admissible
equilibria for the TA-SE. In order to develop a strategy to endow
the TA-SE with a desired number of stable equilibria, falling

within the memory state existence domain, it is of interest to
explore the influence of the positive (negative) value V+(V−),
assigned to a DC voltage V, employed within the argument of the
state evolution function, on the shape of the RESET (SET) SDR.
Plots (a), (c), (e), and (g) ((b), (d), (f), and (h)) of Figure 5,
respectively, show the RESET (SET) SDR associated with the first,
second, third, and fourth V+ (V−) values from the set {+(−)0.2, +
(−)0.4, + (−)0.6, + (−)0.8}V. A couple of important points stand
out from the graphical inspection of these plots. First, differently
from what is the case for other ReRAM cells (Ascoli et al., 2023a),
the shapes of the loci, associated with positive-valued DC stimuli,
do not differ so significantly from those, associated with negative-
valued DC stimuli, complicating the identification of a simple
strategy to vary the number of crossings between the moduli of
the loci of the SET and RESET TA-SE components. Second, as
established by the boundary conditions, included in the JART
VCM model, which is reviewed in Supplementary Appendix A.1,
while the memory state approaches the lower (upper) bound in
its existence domain during a RESET (SET) transition, its
deceleration is rather abrupt, as demonstrated by the sudden
fall of either locus on the left (right) column of plots in Figure 5 in
the neighbourhood of the minimum (maximum) allowable state
value. On the other hand, the memory state does not accelerate

FIGURE 8
(A) Time waveform of the periodic voltage signal vS, which, let fall across the ReRAM cell, enforces its steady-state operation as a monostable
oscillator around the fully-RESET state (case study 1.1). The first (second) positive (negative) RESET (SET) pulse in each cycle of the train features an
amplitude V+ (V−) of +0.31 V (−0.2 V), as established via Figure 7, for all case studies in this section. The common value of 10 · 103 s is assigned to the RESET
τ+ and SET τ− pulse widths, implying T = τ+ + τ− = 20 · 103s and r = r1 = 1. (B) TA-SDR, associated with the input from (A) and predicting a single GAS
equilibrium �xeq for the TA-SE at a location, identified by the black filled circle marker, standing at 1.000015603 · 10+24, which is close to yet above the
lowest admissible memory state value xmin = 1 · 10+24. This is in accordance with the insights, gained earlier from Figure 7, where, the black horizontal line
y = r1 = 1 crosses the r̂(x̂,V+ ,V−) versus x̂ locus, associated with the input pulse height pair (V+, V−) = (+0.31 V, −0.2 V), in one point, with an abscissa equal
to the TA-SE equilibrium �xeq, only. (C) ((D)) Transients (steady-state) in the time course of the solution to the JART VCM ODE (Eq. 1) (Bengel et al., 2022)
under v= vS, with vS as in plot (A), and for x0 = xmax. As expected, while exhibiting amonostable steady-state oscillatory behaviour, thememristor operates
around the fully-RESET state.
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(decelerate) in a similarly dramatic way as it increases (decreases)
from values close to the lower (upper) bound in its existence
domain over the course of a SET (RESET) process, as revealed by
the relatively mild ascent (descent) of either locus on the right
(left) column of plots in Figure 5 in the neighbourhood of the
minimum (maximum) allowable state value. The rather different
behaviour of the SET and RESET SDRs around the lower (upper)
bound in the state existence domain explains why it is relatively
simple to choose the stimulus parameters, namely, V+, τ+, V−, and
τ−, in such a way to enforce one intersection between the loci of
the moduli of the SET and RESET TA-SE components in the
vicinity of the smallest (highest) admissible state value.
Massaging conveniently the four input parameters, it is
further possible to ensure that the modulus of the RESET
(SET) term in the linear combination on the right hand side

of the TA-SE is larger than the modulus of the other SET (RESET)
term to the right (left) of the lower (upper) bound in the state
existence domain, which ensures that the solution to the ODE
(Eq. 1) would exhibit a steady-state oscillatory waveform around
the fully-RESET (fully-SET) state, as revealed, for example, in the
monostability case study 1.1 (1.4) from Section 5.1.1 (5.1.4).
However, it is fair to admit that, in an excitation scenario from
the first (latter) kind, the ReRAM cell typically exhibits slower
and slower dynamics as the respective memory state gets closer
and closer to its minimum (maximum) allowable value.
Therefore, the practical exploitation of a device oscillatory
mode, implying the excursion of the memory state around a
level in the proximity of the lower (upper) bound in its existence
domain, is questionable. Moreover, in general, it is advisable to
operate the device away from its fully-RESET (fully-SET) state.

FIGURE 9
(Continued).
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FIGURE 9
(Continued). (A) Time course of the two-pulse-per-cycle train voltage signal, which induces a bistable oscillatory response in the ReRAM cell (case
study 1.2). The RESET τ+ and SET τ− pulse width parameters, identifying unequivocally the AC periodic stimulus, together with the fixed values + 0.31 V and
−0.2 V, set in turn for the RESET V+ and SET V− pulse amplitudes, in the scenario Figure 7 refers to, are taken here as 1 · 104s, and 6.667 · 105s, respectively.
(B) Resulting TA-SDR for the periodically driven ReRAM cell, revealing the existence of three equilibria, specifically �xeq,1 � 1.00105 · 1024,
�xeq,2 � 8.93240 · 1024, and �xeq,3 � 5.84158 · 1025, for the respective TA-SE. A filled (hollow) black circle is used to mark each of the outer locally stable
equilibria (the inner unstable equilibrium). (C, E, G) Transients in the time evolution of thememory state, as resulting from the numerical integration of the
JART VCMmodel (consult Supplementary Appendix A.1 for details) under the stimulation protocol, envisaged in the case study under examination, upon
pre-setting x0 to the first, second, and third initial conditions from the set S1 = {x0,1, x0,2, x0,3} = {8 · 1024, 1 · 1025, 3 · 1029}. (D, F, H)Oscillatory steady states
for the time waveforms from plots (C, E, G), respectively. The mean value of the oscillation in the memory state from plot (D) (from either of plots (F, H))
agrees with the outer left (right) crossing �xeq,1 (�xeq,3) of the TA-SDR from plot (B)with the horizontal axis. (I) SCPCM of the JART VCMODE under v = vS, as
shown in plot (A). The fixed points of the Poincarémap, fromwhich theΔxk+1;k versus x(k) locus was extracted, are xp1 � 1.00105 · 1024, x2* � 8.93292 · 1024,
and x3* � 5.97593 · 1025. Although the second point in this triplet is unstable, the first (third) one is asymptotically stable, identifying the maximum of the
steady-state oscillation in plot (D) (in either of plots (F) and (H)) as it descends from the order of the two square pulses, composing the train stimulus in
each period, and exciting first the RESET and then the SET device kinetics over the cycle. (J, K, L) Proof of evidence for the accuracy of the approximation,
which, converting Eq. 5 into Eq. 6, enabled to reduce Eq. 4 into the TA-SE (Eq. 7), for case study 1.2. The first, second, and third plots from this triplet,
respectively, demonstrate how the time average of the solution x to the SE (Eq. 1), adapted to the JART VCM model, and initiated from the first, second,
and third initial conditions x0 from the set S1, evolves in time from the beginning of the second cycle in a practically equivalent fashion as the solution �x to
the TA-SE (Eq. 7), adapted to the samemodel, and initiated in turn from the first, second, and third initial condition �x0 belonging to the set {8 · 1024, 1 · 1025,
3 · 1029}, and corresponding to the time average of the trace in plots (C, E, G) over the first input cycle according to Eq. 3. For each of the three cases, the
datasets, corresponding to the first and latter solutions, are visualised in solid blue and red dashed line styles, respectively, against a new time variable
defined as t′ ≜ t − T.
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Far more interesting, yet harder, is to craft the square pulse train
stimulus in such a way to induce the asymptotic emergence of at
least one oscillatory state solution unaffected by the boundary
conditions, and thus undergoing a periodic excursion across a
real-valued range, falling well within its admissible existence
domain, as shown, for example, in the multistability case
study 1.2 (1.3) from Section 5.1.2 (5.1.3), where, taking into
account that stable and unstable equilibria of a TA-SE alternate
one after the other, as shown in the representative illustration of
Figure 3, the moduli of the loci of the SET and RESET TA-SE
components are enforced to feature as many as three (five)
crossings, in order for the solution to the state Eq. 1 to exhibit
a bistable (tristable) oscillatory behaviour after transients decay
to zero. The next section presents a rigorous strategy to shape the
AC periodic square pulse train input, applied to the JART VCM

model, in such a way to endow its state variable with a
monomodal or multimodal oscillatory response.

4.3 A rigorous approach to induce
monostability or multistability in the
memristor oscillatory response to square
pulse train stimulation

Equation 11, expressing the condition for a crossing between the
loci of the moduli of the SET and RESET TA-SE components to
appear at a given time-average state value, say at �x � �xeq, may be
rearranged in the form

r � r̂ �xeq, V+, V−( ), (12)

FIGURE 10
(A) Two-pulse-per-cycle periodic voltage signal vS, to be applied across the TaOx nanodevice so as to endow it with a tristable oscillatory behaviour
(case study 1.3). The pulse height–width pair for the first (second) positive (negative) RESET (SET) pulse in each period of the stimulus is (V+, τ+) = (+0.31 V,
10 · 103s) ((V−, τ−) = (−0.2 V, 4.385 · 106s)). Here, r= r3 = 2.3 · 10–3, while T= τ+ + τ−=4.395 · 106s. (B) TA-SDR of the ReRAMcell under the periodic excitation
illustrated in (A). Five are the intersections between the TA-SDR and the horizontal axis, specifically �xeq,1 � 1.007 · 10+24, �xeq,2 � 3.756 · 10+24,
�xeq,3 � 1.250 · 10+26, �xeq,4 � 4.621 · 10+26, and �xeq,5 � 2.743 · 10+27, which correspond to the crossings between the brown horizontal line y = r3 and the
blue-coloured r̂(�x,V+ ,V−) versus �x locus for (V+, V−) = (+0.31 V, −0.2 V), as shown in Figure 7. The equilibria, identified by odd (even) numbers, are
asymptotically stable (are unstable), as indicated via black filled (red hollow) circles. (C) Transitory dynamics of the solution to the JART VCMODE (Bengel
et al., 2022) for each initial condition x0 from the set S2 ≜ {x0,1, x0,2, x0,3, x0,4, x0,5} = {1.9 · 1024, 4.6 · 1025, 3.5 · 1026, 7.5 · 1026, 7.4 · 1028}, under the application
of the above-specified voltage stimulus across the ReRAM cell from t = t0 = 0s to t = 1 · 109s, which covers just over 227 input cycles. Although the
solutions, initiated from x0,2 and x0,3, attain the steady state, in particular the same, before the end of the simulation, this is not the case for the other three
traces. As shown in Figure 11, the time spans, necessary for these five signals to converge to the respective asymptotic oscillations, may differ by orders of
magnitude, which highlights the complex slow/fast dynamical behaviour of the ReRAM cell manufactured at FZJ. The horizontal dotted, dashed, and
dash-dotted black (dotted and dashed red) lines, respectively, indicate the locations of the outer left �xeq,1, inner �xeq,3, and outer right �xeq,5 locally stable (left
�xeq,2 and right �xeq,4 unstable) TA-SE equilibria within the memory state existence domain Dx. The unstable TA-SDR equilibria are closely related to the
initial conditions, which, together with xmin and xmax, separate the basins of attraction of the three admissible locally stable steady-state oscillatory
solutions, shown in Figures 11B, D, F (refer to the concept, expressed at the end of Section 3, for details).
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where

r ≜
τ+
τ−

(13)

stands for the ratio between the width of the positive RESET pulse
and the width of the negative SET pulse, while

r̂ �x,V+, V−( ) ≜ − g �x, V−( )
g �x, V+( ) (14)

denotes the modulus of the ratio between two copies of the state
evolution function, evaluated at a common time-average state �x but
at different DC voltages. Specifically, the copy at the numerator

(denominator) is computed at the negative (positive) bias voltage,
corresponding to the height of the SET (RESET) input pulse. The
new formula (Eq. 12) for the existence condition of a TA-SE
equilibrium reduces by one, the cardinality of the input
parameter set to be explored in the determination of the number
of possible crossings between the loci of the moduli of the SET and
RESET TA-SE components. In fact, under the hypothesis that the
height and width of each of the two square pulses, composing the
periodic voltage stimulus over each cycle, are sufficiently small to
ensure the accuracy of the approximation in Eq. 6, the number of
admissible asymptotic oscillatory solutions for the memory state of
the periodically driven ReRAM cell depends now solely upon the

FIGURE 11
(A, C, E) Time waveform of the memory state x of the ReRAM cell, modelled by means of the JART VCM mathematical description (Bengel et al.,
2022), as, respectively, recorded during transient simulations of the test circuit of Figure 2A over 250, 10,000, and 105,000 cycles of the AC periodic
voltage stimulus, illustrated in Figure 10A, as envisaged in case study 1.3, when the first, second or third, and fourth or fifth value from the set S2 ≜ {x0,1, x0,2,
x0,3, x0,4, x0,5} = {1.9 · 1024, 4.6 · 1025, 3.5 · 1026, 7.5 · 1026, 7.4 · 1028} is, in turn, assigned to the device initial condition x0. In the first, second, and third
plots from this triplet, the horizontal dotted, dashed, and dash-dotted black line marks, respectively, the location of the outer left �xeq,1, of the inner �xeq,3,
and of the outer right �xeq,5 locally stable TA-SE equilibria. (B, D, F) Steady states of the JART VCM ODE solutions from plots (A, C, E), respectively.
Importantly, as may be evidenced from plots (D, F), boundary conditions have no impact on the steady-state dynamics of the periodically forced ReRAM
cell in two of its three possible oscillatory operating modes.
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parameter triplet (V+, V−, r). Let us determine the impact of the
pulse width ratio r on the number of admissible TA-SE equilibria,
given any preliminary choice for the heightsV+ andV− of the RESET
and SET pulses, respectively. Figure 6 provides an exemplary
illustration for the dependence of the function y � r̂(�x, V+, V−),
expressed by Eq. 14, upon the time-average state �x, for a specific
selection of V+ and V− (refer to the blue solid trace). The abscissas of
the intersections between this curve and the horizontal line y = r,
associated with a particular choice for the pulse width ratio,

correspond to the admissible TA-SE equilibria in this scenario.
Clearly, computing the ordinates of the local extrema11 of the

FIGURE 12
(A) Time course of the pulse train-based voltage stimulus vS, to be applied across the ReRAM cell, manufactured at FZJ, in order to induce
monostable oscillatory dynamics around the fully-SET state across its physical medium (case study 1.4). The values for the four parameters, defining its
two square pulses per cycle, are V+ =+0.31 V, τ+ = 1 · 102s, V−= −0.2 V, and τ−= 1 · 107s (T= τ+ + τ−= 1.00001 · 107s, r= r4 = 1 · 10–5). (B) TA-SDR of the TaOx

memristor, under the periodic excitation illustrated in (A). The _�x versus �x locus crosses the horizontal axis in one and only one point, revealing the
existence of a GAS equilibrium �xeq, lying at 2.8893946 · 1029, close to yet below the state upper bound xmax = 3 · 1029 for the respective TA-SE. (C) Time
evolution of the device memory state x, as recorded in a transient simulation of the test circuit of Figure 2A, under the earlier specified stimulation
protocol, from the smallest possible initial condition x0, chosen as the lower bound xmin in the closed set Dx. (D) SCPCM of the ReRAM cell in the case
study under examination. It reveals the existence of one and only GAS fixed point x*, located at 2.8893952 · 1029, for the associated Poincaré map
xk+1 � P(xk). (E) Time course of the solution to the periodically forced non-autonomous JART VCM DAE system for x0 = x*. The memory state settles
immediately on a unique oscillation, revolving approximately around the TA-SE equilibrium �xeq , without undergoing a transient dynamical phase. The
map fixed point coincides with the maximum of the GAS oscillation in the memory state as the periodic stimulus first excites the OFF dynamics and then
the ON dynamics of the device over each cycle.

11 At a local extremum, the derivative of the function y � r̂(�x,V+ ,V−) with

respect to the time average state is null. The local extremum is a local

minimum (local maximum) if the second derivative of y � r̂(�x,V+ ,V−)with

respect to the time-average state is positive (negative) therein.
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function y � r̂(�x,V+, V−), together with the values it attains when the
memory state assumes the bounds in its existence domain, and then
sorting this dataset in ascending order, enables partitioning the one-
dimensional space, spanned by the parameter r, into a number of
regions, each of which includes values, assignable to the pulse width
ratio, endowing the resulting TA-SE with a specific number of
equilibria. The function, graphed for illustrative purposes in
Figure 6, features four local extrema, classifiable either as minima,
namely, y1 and y2, or as maxima, specifically y4 and y5, while it assumes
the values y3 and y6 at the upper and lower bounds of the memory state
existence domain, respectively. These six critical points partition the
one-dimensional parameter space into seven regions, specifically12 (0,
y1), (y1, y2), (y2, y3), (y3, y4), (y4, y5), (y5, y6), and (y6,∞), within which
any choice for the pulse width ratio would endow the resulting
TA-SE with 0, 2, 4, 5, 3, 1, and 0 equilibria, respectively.
Furthermore, it is instructive to note that a crossing between
the graphs of the functions y � r̂(�x, V+, V−) and y = r correspond
to an asymptotically stable (an unstable) equilibrium for TA-SE if
and only if the slope of the curve is negative (positive) therein. A
three-equilibrium case study, occurring for a generic choice of
the pulse width ratio r, lying within the region (y4, y5), is
illustrated in Figure 6 as a pedagogical example. Under these
circumstances, the solution to the periodically forced ODE (Eq.
1) would exhibit bistability as long as the approximation,
inherent to the time averaging method, would not corrupt the
accuracy of the predictions, drawn via TA-SDR investigation,
which may be verified by means of a SCPCM analysis (Ascoli
et al., 2023b). Of course, ultimately, experimental tests shall have
to be conducted to verify the emergence of local fading memory
effects of this kind in the nano-device.

On the basis of these insights, it is possible to propose a systematic
procedure, which, given the heights V+ and V− of the RESET and SET
pulses, composing the ReRAM cell stimulus over the first τ+-long and
second τ−-long parts of each cycle, respectively, allows determining the
number of intersections between the graph of the function y �
r̂(�x,V+, V−) and the horizontal line y = r, together with the local
stability properties of the TA-SE equilibria, corresponding to their
abscissas, upon assigning any real value to the pulse width ratio r. The
proposed methodology envisages the execution of the following
sequence of steps, one after the other, after the preliminary
specification13 of an input pulse height pair (V+, V−):

1. Calculate the ordinates of the local extrema of r̂(�x, V+, V−), as
well as the values of this function at the endpoints of the
memory state existence domain. Sort this dataset of generic
cardinality n in ascending order.

2. Given the ith y-value yi from the resulting tuple (y1, y2, . . .
yi, . . . , yn), with y1 < y2 < . . . < yi < . . . < yn, compute the
parameter Δi, denoting the change in the number of

intersections between the graph of the function y �
r̂(�x, V+, V−) and the horizontal line y = r as r is
increased past yi, for each i value from the set {1, 2, . . . ,
n}. The particular shape of the function y � r̂(�x, V+, V−),
which crucially depends upon the preliminary selection of
V+ and V−, determines the appropriate value, to be assigned
to Δi, according to the following set of rules:

Δi �
+1 if yi is the value at its left (right) endpoint and its slope is positive (negative) therein,
+2 if yi is the ordinate of one of its localminimawithin the bounds of Dx,
−2 if yi is the ordinate of one of its localmaximawithin the bounds of Dx,
−1 if yi is the value at its left (right) endpoint and its slope is negative (positive) therein.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(15)

3. Focussing finally on the partition of the one-dimensional
space, spanned by the parameter r, while the graphs of the
functions r̂(�x, V+, V−) and y = r feature no intersection over
either of the two regions (0, y1) and (yn, ∞), the number of
equilibria, which any pulse width ratio, falling within the range
(yj, yj+1), is bound to endow the TA-SE with, may be calculated
via ηj � ∑i�j

i�1Δi, for j ∈ {1, 2, . . . , n − 1}. If ηj is an even number,
then the TA-SE admits ηj/2 stable equilibria and ηj/2 unstable
equilibria. On the other hand, if ηj is an odd number, then the
TA-SE admits (ηj + 1)/2 ((ηj − 1)/2) stable equilibria and (ηj −
1)/2 ((ηj + 1)/2) unstable equilibria, provided the slope of the
function y � r̂(�x,V+, V−) is negative (positive) at its
left endpoint.

In the section to follow, the rigorous system-theoretic
methodology, based upon the time averaging method, as
presented above, shall be applied to the JART VCM model so
as to demonstrate its power to predict the correspondence
between the choice for the pulse width ratio of the two square
pulses, composing the train voltage stimulus over each cycle, and
the number of stable asymptotic oscillatory solutions for the
periodically forced state equation, upon an exemplary
preliminary selection for the pulses’ heights.

5 Application of the methodology

In this section, the systematic methodology, proposed in
Section 4.3, is applied to an exemplary scenario14, associated
with a particular choice for the pair (V+, V−), whose first
(second) component specifies the height V+ (V−) of the first
RESET (second SET) square pulse in the waveform of the AC
periodic pulse train voltage stimulus over each cycle. For this
scenario, the r̂(�x, V+, V−) versus �x locus is first derived, and four
case studies, each of which envisages the assignment of a
particular value to the pulse width parameter r, resulting in
the existence of a specific number of stable and unstable
equilibria for the TA-SE, are discussed. For each case study,
numerical simulation results are then presented to validate the

12 The regions (0, y1) and (y6, ∞) of the one-dimensional parameter space

are uninteresting from a practical viewpoint as they correspond to

unaccessible values for the memristor state.

13 An exhaustive numerical exploration of the V+–V− input parameter plane

allows to choose RESET and SET input pulse heights so as to obtain a

desired shape for the y � r̂(�x,V+ ,V−) versus �x locus.

14 V+ (V−) is intentionally chosen as the amplitude of the positive RESET

(negative SET) pulse in each cycle of the asymmetric periodic triangular

voltage stimulus adopted to excite the ReRAM cell in the simulation

illustrated in Figure 1.
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accuracy of the system-theoretic predictions, by providing proof of
evidence for the emergence of steady-state oscillatory solutions, centred
around the stable TA-SE equilibria, for the JART VCM ODE (Eq. 1)
subject to the underlying periodic pulse train input.

5.1 Exemplary scenario

Figure 7 shows the dependence of r̂(�x,V+, V−) upon �x for the
input amplitude pair (V+,V−) = (+0.31 V, −0.2 V) together with four
lines, corresponding to values, assigned to the ordinate y, predicting
monostable oscillatory dynamics, involving the lower (r1) or upper
(r4) memory state bound, bistable periodic operating mode (r2), and
the co-existence of three stable limit cycles in the state space of the
first-order periodically forced continuous-time system (r3),

respectively. Each of these cases studies shall be analysed in
depth below.

5.1.1 Case study 1.1: monostable oscillatory
response around the fully-RESET state

Choosing r = r1 = 1 (refer to the horizontal black line in Figure 7),
the proposed system-theoretic method predicts a unique oscillatory
operatingmode around the fully-RESET state for the TaOx ReRAM cell
manufactured at FZJ. Assigning the common value of 10 · 103s to both
τ− and τ+, the resulting periodic voltage stimulus vS, applied across the
memristor, is shown in plot (a) of Figure 8. Here, the TA-SDR predicts a
single globally asymptotically stable (GAS) oscillatory solution for the
device memory state, as depicted in plot (b) of the same figure. As, in
this case study, the only equilibrium �xeq for the TA-SE is very close to
yet larger than xmin = 1 · 10+24, the memristor state, initiated from its

FIGURE 13
(Continued).
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highest admissible value x0 = xmax = 3 · 1029, progressively descends
toward the lower bound in its existence domain Dx (see Figure 8C).
Indeed, after transients decay to zero, the oscillatory waveform of the
memory state is found to revolve precisely around the mean value,
predicted by the TA-SDR analysis, i.e., �xeq � 1.000015603 · 10+24, as
illustrated in plot (d) of the same figure.

5.1.2 Case study 1.2: coexistence of two stable
oscillatory operating modes, one of which is
around the fully-RESET state

In Figure 1A, a triangular periodic voltage waveform was
employed to stimulate the ReRAM cell so as to endow it with
oscillatory bistability, similarly as first reported in (Ascoli et al.,

FIGURE 13
(Continued). Coexistence of four stable oscillatory operating modes for the periodically-forced ReRAM cell under a different selection of the pulse
height parameter pair and suitable pulse width ratio. (A) Blue trace: locus of r̂(�x,V+ ,V−) versus �x, as descending from Eq. 14, for (V+, V−) =
(+0.47 V, −0.34 V). Seven are the crossings between the blue trace and the black horizontal line y � ~r � 1.1 · 10−3. Their abscissas, specifically
�xeq,1 � 1.018512710613 · 1024, �xeq,2 � 3.509814043557 · 1024, �xeq,3 � 1.678591472274 · 1026, �xeq,4 � 1.772425971677 · 1026, �xeq,5 � 1.853306020949·
1026, �xeq,6 � 2.11774636839 · 1026, and �xeq,7 � 4.27490164355 · 1026, constitute the equilibria of the TA-SE adapted to the case study under focus. (B) Time
waveform of a two-pulse-per-cycle train voltage signal vS from the class identified by the predefined input parameter triplet (V+, V−, r). Thewidth τ+ (τ−) for
the first (second) RESET (SET) pulse in each cycle is here set to τ+ = 1 · 10−2s (τ− = 9.07 s). The input period T is then 9.08s. (C) TA-SDR of the JART VCM
ODE under the above specified AC periodic excitation voltage signal. The zeros of the time average state evolution function, forming the right
hand side of the TA-SE (Eq. 7), coincide with the crossings between the blue trace and black horizontal line in plot (A). (D) SCPCM of the periodically-
forced memristive ODE system. The abscissas of the intersections between the Δxk+1;k versus xk locus and the horizontal axis, representing the
fixed points of the Poincaré map, are xp1 � 1.018512785894 · 1024, x2* � 3.509815501129 · 1024, x3* � 1.688496847014 · 1026, x4* � 1.781514349068 · 1026,
x5* � 1.862577512645 · 1026, x6* � 2.125872843063 · 1026, and x7* � 4.269140935744 · 1026. (E) Time course of the solution to the JART VCM ODE,
resulting by enforcing its input v to follow the pulse train voltage stimulus vS in (A), from each initial condition in the set S3 ≜ {x0,1 , x0,2 , x0,3 , x0,4}
� {xp1 , x3*, x5*, x7*}. (F) and (G–J) Close-up view of the oscillatory solution, illustrated in (E), and initiated from the first, second, third, and fourth initial
conditions in S3.
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2022), where, however, no theoretical analysis was provided to
explain the coexistence of two periodic solutions, one of which
affected by the RESET boundary condition, for the memory state.
In this case study, the system-theoretic method, described in
Section 3, is employed to shape a square wave voltage stimulus in
such a way to induce a similar nonlinear dynamic phenomenon
in the device. In particular, keeping the positive (negative) height
V+ (V−) of the first (second) pulse in each cycle of the input
voltage train unaltered relative to case study 1.1, this may be
achieved by setting the RESET-to-SET pulse width ratio r to r2 =
1.5 · 10–2, as may be inferred by inspecting the number of
crossings between the violet horizontal line and the blue
curve in Figure 7, as well as the slope of the latter trace at
each of their locations. Figure 9A shows a periodic voltage
stimulus, satisfying these constraints, for τ+ = 1 · 104s and
τ− = 6.667 · 105s. Under this periodic excitation, the TA-SE of
the ReRAM cell admits three equilibria, specifically
�xeq,1 � 1.00105 · 1024, �xeq,2 � 8.93240 · 1024, and
�xeq,3 � 5.84158 · 1025, of which the outer ones (the inner one) are
locally stable (is unstable). These equilibria coincide with the points of
intersection between the line y = r2 and the r̂(�x,V+,V−) versus �x locus
for (V+, V−) = (0.31 V, −0.2 V) in Figure 7.

Plots (c), (e), and (g) of Figure 9, respectively, show the time
evolution of the memory state, as recorded from transient
simulations of the DAE set (Eqs 1, 2), extracted numerically
from the JART VCM model, as described in Supplementary
Appendix A.1, covering a time span of 70,000, 14,000, and
70,000 cycles, respectively, and resulting upon fixing
preliminarily the initial memristor state x0 to the first, second,
and third values from the set S1 = {x0,1, x0,2, x0,3} = {8 · 1024, 1 ·
1025, 3 · 1029}. With reference to Figure 9C, the solution of the
JART VCMDAE set, starting off from the first initial condition in
S1, descends progressively toward a steady-state oscillatory
waveform, which is found to revolve around the leftmost
locally stable TA-SE equilibrium �xeq,1, as shown in plot (d).
On the other hand, evolving from the second (third) initial
condition in the above specified set, the memory state
solution, depicted in plot (e) ((g)), approaches asymptotically
from below (from above) an oscillation, which is centred around
the rightmost locally stable TA-SE equilibrium �xeq,3, as
observable in plot (f) ((h)). Figure 9I depicts the SCPCM,
extracted from the Poincaré map of the periodically forced
memristive system, which confirms the accuracy of the
predictions drawn via TA-SDR analysis, by showing how the

FIGURE 14
(A)Qualitative sketch of the device physical stack, illustrating how a voltage stimulus vSwas applied between its terminals for the bistability test in the
laboratory. (B) Illustration of the assumption, made for the theoretical analysis presented in the paper, on the way a voltage source vS is connected across
the ReRAM cell for inducing nonlinear phenomena across its physical medium (see also Supplementary Figure 20).

FIGURE 15
(A) Top-view SEM image of a VCM crosspoint device of the junction area 3 × 3 μm2. (B) Cross-sectional TEM image of a ReRAM cell of this kind,
revealing the thickness of each layer in its physical stack (Ascoli et al., 2022).

Frontiers in Nanotechnology frontiersin.org20

Schmitt et al. 10.3389/fnano.2024.1301320

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2024.1301320


train voltage stimulus from plot (a) of the same figure endows the
device with two oscillatory operating modes. Given that the
RESET pulse precedes the SET pulse in each period of the
two-pulse-per-cycle input train, the first (third) locally stable
fixed point x1* (x3*) of the map, located at 1.00105 · 1024 (5.97593 ·
1025), coincides with the maximum of the steady-state oscillation
in plot (d) (in either plots (f) and (h)). Last but not least, as may
be inferred from plots (J), (K), and (L), computing the running
time average of the time series x(t), resulting from the numerical
simulation of the SE (Eq. 1), adapted to the JART VCM model,
for the first, second, and third initial conditions in the set S1,
respectively, it is found to match from t = T the respective
theoretical prediction, obtained as solution �x(t) to the TA-SE
(7), adapted to the same model, when the initial condition �x0 is
computed through the formula (Eq. 3) from the first cycle of the
solution x(t) to the SE shown in turn in plots (c), (e), and (g).

5.1.3 Case study 1.3: coexistence of three stable
oscillatory operating modes, one of which is
around the fully-RESET state

The brown horizontal line y = r3 = 2.3 · 10–3 from Figure 7 meets
the locus of r̂(�x,V+, V−) versus �x, resulting from assigning +0.31 V
and −0.2 V to V+ and V−, respectively, in five locations. Among the
stable ones, marked with black filled circles, two of them lie well
within the memory state existence domain Dx. In fact, as revealed
shortly, in this case study, after transients vanish, the periodically
driven JART VCM ODE may admit one of three locally stable
periodic solutions, depending upon the initial condition, while
boundary conditions affect only one of them. A pulse train
voltage signal, composed over each cycle of one positive RESET
and one negative SET pulse, appearing in this order and featuring
height–width parameter pair (V+, τ+) = (+0.31 V, 10 · 103s) and (V−,
τ−) = (−0.2 V, 4.385 · 106s), respectively, which satisfies the

FIGURE 16
Probe station, including microscope, sample stage, and probe needles. Two pulse measurement units (PMUs), indicated here as PMU1 and PMU2,
are also visible in the background.

FIGURE 17
Current i versus voltage v loci of the ReRAM device as an asymmetric triangular voltage signal vS at frequency 1 kHz is let to fall between its terminals
for 10 consecutive input cycles. The amplitude v̂SET of the positive triangular pulse was fixed to 1.4 V, whereas the amplitude v̂RESET of the negative
triangular pulse was modulated to program different resistances into the VCM cell. The loci in (A, B)were recorded when v̂RESET was set to −1.6 V (−2.2 V).
As Joule heating-related positive feedback mechanisms may lead to an uncontrollable upsurge in the device current, the latter is constrained to
keep below or at most equal to a compliance level Icc of 1.2 mA.
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constraint r = r3, is applied across the ReRAM cell, described via the
JART VCMDAE set model (Bengel et al., 2022), in the test circuit of
Figure 2A, as shown in plot (a) of Figure 10. Plot (b) of the same
figure depicts the TA-SDR of the ReRAM cell associated with this
AC periodic stimulus. It reveals that, as expected, in these
circumstances, the TA-SE (7) admits three locally stable
equilibria at the very same locations corresponding to the three
points, at which the blue locus crosses the brown horizontal trace
with a negative slope in Figure 7. Transient simulations of the test
circuit demonstrate the accuracy of the predictions drawn through
TA-SDR analysis. Figure 10C shows the transitory behaviour of the
memory state of the periodically forced ReRAM cell from each initial
condition x0 in the set S2 ≜ {x0,1, x0,2, x0,3, x0,4, x0,5} = {1.9 · 1024, 4.6 ·
1025, 3.5 · 1026, 7.5 · 1026, 7.4 · 1028} over a 1 · 109s-long time span. Due
to the complex slow–fast dynamics of the ReRAM cell (Ascoli et al.,
2022), whose response to stimuli may, in general, evolve along time
scales, spanning a multi-decade range, depending upon initial
condition and excitation strength, the ODE solution attains a
steady state within time intervals, differing by orders of
magnitude, for the first, second or third, and fourth or fifth
initial conditions in the earlier specified set S2, calling for the use
of specific graphs, namely, Figures 11A, C, E, respectively, for a
better visualization of the respective transients. Depending upon the
initial condition x0, the memory state of the periodically driven
memristor may asymptotically evolve along either of three
admissible oscillatory waveforms, revolving around levels,
approximately equal to �xeq,1, �xeq,3, and �xeq,5, as illustrated in turn
in Figures 11B, D, F. Remarkably, as illustrated in plot (c) ((e)) of this
figure, the ODE solutions, initiated from the second and third (the
fourth and fifth) initial conditions in the aforementioned set,
approach, from below and from above, respectively, the inner
(top-most) oscillatory solution, whose excursion is clearly
affected neither by the lower xmin = 1 · 1024 nor by the upper
xmax = 3 · 1029 bound in the state existence domain Dx.

Supplementary Appendix A.2 reports the promising results of
initial investigations aimed to define an appropriate setup for a

future experimental verification of tri-stability in the oscillatory
device via pulse generators with physical limitations.

5.1.4 Case study 1.4: monostable oscillatory
response around the fully-SET state

Setting r to r4 = 1 · 10–5 (see the green horizontal line in
Figure 7), the memristor is expected to lock into a unique
oscillatory operating mode around the fully-SET state.
Indeed, this is the case. Keeping the positive (negative)
height V+ (V−) of the first (second) RESET (SET) pulse in
each cycle of the input train, as specified in all the case
studies in the exemplary scenario, Figure 7 refers to, and
setting its temporal width τ+ (τ−) to 102s (105s), which meets
the requirement on r, results in the voltage stimulus, illustrated
in Figure 12A. Here, the TA-SE (Eq. 7) admits one and only one
equilibrium �xeq, located close to, but below, the highest possible
memristor state value xmax, precisely at 2.8893946 · 1029, as
demonstrated in plot (b) of the same figure, visualising the TA-
SDR of the periodically driven ReRAM cell in the case study
under focus. As revealed in Figure 12C, showing the time course
of the memory state, initiated from its lowest possible value
xmin, as resulting from a numerical integration of the JART
VCM DAE set under the above specified periodic excitation, the
device experiences very long transients before settling on a GAS
oscillatory operating mode around its fully-SET state. The
powerful SCPCM technique may be employed to acquire in a
straightforward and time-efficient way the time waveform,
along which the memory state would be found to evolve,
after transients vanish. In fact, setting the initial condition
for a generic first-order ODE system, subject to a certain
periodic input, to a stable fixed point of the associated
Poincaré map, the respective numerical solution evolves
directly along one of its admissible steady-state oscillatory
waveforms, without experiencing a preliminary transient
phase. Plot (d) of Figure 12 shows the SCPCM of the
periodically forced ReRAM cell in the case study under

FIGURE 18
(A) Time course of the four-pulse-per-cycle train voltage stimulus vS, let to fall across a VCM device sample in the laboratory, as measured over the
first five periods. (B) Transient evolution of the device resistance, sampled at 20 regularly spaced time instants after each RESET or SET writes pulse,
toward a lower (an upper) locally stable steady-state oscillatory solution from any of the first four (last five) initial conditions from the set S3,R ≜ {R0,1, R0,2,
R0,3, R0,4, R0,5, R0,6, R0,7, R0,8, R0,9} = {3.032, 3.456, 4.005, 4.367, 6.459, 5.243, 4.456, 30.861, 37.185}kΩ, as recorded from the 2nd to the 200th input
period. As a result, the initial condition, separating the basins of attraction of the two admissible locally stable oscillatory solutions for the resistance R at
steady state, lies between R0,4 = 4.367 kΩ and R0,7 = 4.456 kΩ.
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FIGURE 19
(A) Timewaveform of a two-pulse-per-cycle train voltage stimulus vS, used as the memristor voltage v in the numerical simulation of the JART VCM
v1 model for reproducing qualitatively the experimental observations, across the first five periods. The amplitude V+ (V−) of the first (second) RESET (SET)
pulse in each cycle is chosen as 1.1 V (−0.7 V). The RESET and SET pulsewidths, respectively, referred to as τ+ and τ−, are assumed to be identical and set to
0.5 ms each. (B) Graph of r̂(�x,V+ ,V−) as a function of �x for (V+, V−) = (1.1 V, −0.7 V). Its four intersections with the black solid horizontal line y = r = 1
represent the equilibria of the TA-SE (Eq. 7) for the specified input parameter triplet (V+, V−, r). The TA-SE equilibria lie at �xeq,1 � 1.00003571706985 · 1024,
�xeq,2 � 2.86242953188943 · 1025, and �xeq,3 � 2.6695910284688 · 1027. The outer ones (The inner one) are (is) locally asymptotically stable (unstable),
predicting a bistable oscillatory behaviour for the periodically driven ReRAM cell. (C) TA-SDR associated with the JART VCM v1 model subject to a two-

(Continued )
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examination. Setting the initial condition x0 for the memristor
state in the test circuit of Figure 2A to the only fixed point x* of
the map, lying at 2.8893952 · 1029, the memristor locks into a
unique oscillatory mode, around its fully-SET state, from the
beginning of the simulation, as illustrated in Figure 12E.
Moreover, as expected, the map fixed point identifies the
maximum of the GAS oscillatory solution for the memory state.

6 Uncovering novel forms of device
multimodal oscillatory dynamics via
input pulse height parametermodulation

The exploration of other regions of the V+-V− input parameter
plane revealed how wider the spectrum of oscillatory dynamics
inducible in the ReRAM cell is upon pulse train stimulation. In fact,
the choice of a certain pulse height parameter pair sets the
periodically driven JART VCM DAE set on a given invariant
manifold, characterised by distinctive oscillatory dynamics
alternating one after the other via bifurcation phenomena upon
pulse width ratio modulation. To name but one example15, this
section explains how one may massage the pulse train properties so
as to trigger the coexistence of four locally stable oscillatory solutions
for the ReRAM cell memory state. Assigning +0.47 V (−0.34 V) to
the RESET (SET) pulse height V+ (V−), the locus of the function
y � r̂(�x,V+, V−) versus the time-average state �x appears as shown

through a blue trace in Figure 13A. The black horizontal line y �
~r � 1.1 · 10−3 intersects this locus as many as seven times. The
abscissas of the crossings, corresponding to the equilibria, which
the TA-SE (Eq. 7) admits in this case study, are
�xeq,1 � 1.018512710613 · 1024, �xeq,2 � 3.509814043557 · 1024,
�xeq,3 � 1.678591472274 · 1026, �xeq,4 � 1.772425971677 · 1026,
�xeq,5 � 1.853306020949 · 1026, �xeq,6 � 2.11774636839 · 1026, and
�xeq,7 � 4.27490164355 · 1026. The TA-SE equilibria, endowed with
an even (odd) number label, are unstable (locally stable). Setting the
RESET (SET) pulse width τ+ (τ−) to 10 ms (9.07 s), Figure 13B
depicts a square wave voltage signal vS from the class associated with
the input parameter triplet (V+, V−, r) = (+0.47 V, −0.34 V, 1.1 ·
10–3). Figure 13C shows the directed _�x versus �x locus, predicting the
coexistence of four locally asymptotically stable oscillatory solutions
for the state of the ReRAM cell subject to the pulse train voltage
stimulus from plot (a) of the same figure. The directed Δxk;k+1 versus xk
locus, confirming the accuracy of the TA-SDR predictions, is presented
in Figure 13D. It reveals the existence of seven fixed points for the
Poincaré map, specifically x1* � 1.018512785894 · 1024,
x2* � 3.509815501129 · 1024, x3* � 1.688496847014 · 1026,
x4* � 1.781514349068 · 1026, x5* � 1.862577512645 · 1026,
x6* � 2.125872843063 · 1026, and x7* � 4.269140935744 · 1026.
Figure 13E depicts the time course of the solution to the ODE (Eq.
1) from each initial condition x0 from the set
S3 ≜ {x0,1, x0,2, x0,3, x0,4} � {x1*, x3*, x5*, x7*}, including the stable
fixed points of the Poincaré map. As expected, the solutions directly
lock into the respective steady states, experiencing no transient effects
(the seven TA-SE equilibria are also reported in this figure to
demonstrate the accuracy of the TA-SDR analysis). Clearly, in this
case study, the ReRAM cell state concurrently admits four distinct
oscillatory solutions. A zoom-in view of the oscillation in the state,
extracted from Figure 13E for the first, second, third, and fourth initial
conditions from the aforementioned set, is, respectively, visualised in
plot (f) and 16 (g), (h), (i), and (j) of the same figure. The TA-SE
equilibrium lies outside of the oscillation for the first (fourth) solution,
as shown in plot (f) ((j)). However, the relative error for the ith solution

FIGURE 19 (Continued)

pulse-per-cycle train voltage input characterised by the aforementioned parameter triplet. (D) SCPCM extracted from the JART VCM v1 model
subject to the particular pulse train in plot (C). The fixed points of the Poincaré map xk+1 � P(xk) lie at xp1 � 1.0000356937308 · 1024,
x2* � 3.46292363939077 · 1025, and x3* � 2.67457600665113 · 1027, of which the first and third ones (the second one) are (is) locally asymptotically stable
(unstable). (E) Solutions of the JART VCMmodel expressed in terms of the device resistance R, computed from thememory state x for a read voltage
V of 0.1 V, from each initial condition in the set S3,R specified in the caption of Figure 18, for the particular non-autonomous case, where v is enforced to
follow vS from plot (C) at all times. As indicated through a dashed horizontal grey line, the initial condition, which separates the basins of attraction of the
two oscillatory steady states, is R(x2*) � 4.362kΩ, which is 5Ω off the range (4.367 kΩ, 4.456 kΩ), where the separatrix was found to lie in the experiments.
It follows that, unlike what was the case in the measurements of Figure 18B, here, the pink trace, started off from the initial condition R0,4 = 4.367 kΩ,
approaches the upper steady-state oscillation. The time evolution of each of the other traces agrees with the corresponding experimental measurement.
(F) Qualitative agreement between experiments and JART VCM v1 model simulations in recording the time behaviour of the device resistance R in
response to the pulse train voltage stimulus, shaped as shown in Figure 18A and plot (A) of this figure in the laboratory measurements and in the DAE set
numerical integrations, respectively, from two initial conditions, specifically R0,1 = 3.032 kΩ and R0,9 = 37.185 kΩ, belonging to the set S3,R. (G, H)
Numerical solution to the JART VCM v1 model for x0 � xp1 over time, including the TA-SE equilibrium �xeq,1 (Poincaré map fixed point xp1 ). The time
waveform of the device memory state revolves around the lower steady-state oscillation from t = 0. (I) Time course of the device memory state from
x0 � x3* together with the TA-SE equilibrium �xeq,3 and the Poincarémap fixed point x3*. Once again, the device state undergoes no transient, exhibiting the
upper steady-state oscillatory waveform straight away from the beginning of the simulation. In plot (H, I), as expected, the first (third) map fixed point
coincides with the maximum of the lower (upper) steady-state oscillation in the memory state (Ascoli et al., 2023b). (J) Blue circle markers: spread in the
values of the separatrix point x2*, expressed in terms of the device resistance R(x2*), evaluated at the read voltage V = −0.1 V, upon any possible
combination of values, assigned to five particular model parameters of critical impact on the device-to-device variability (Bengel et al., 2020), specifically
rfil, lcell, ldisc, xmin, and xmax, and sampled from a set of cardinality 2, including two extremes, i.e., −10% and +10%, of the respective nominal levels from
Supplementary Table A1, as a function of the filament radius, which was found to have the most significant correlation with the location of the second
fixed point of the Poincaré map. The red circlemarker provides a reference point (rfil ,R(x2*)) � (50nm,4.362kΩ), being associated with the nominal case.
Importantly, rfil values lower (larger) than the nominal level map into R(x2*) values above (below) the ordinate of the redmarker, providing evidence for the
relation of inverse proportionality linking R(x2*) and rfil.

15 As a further example, by appropriate choice for the input parameters, it is

also possible to endow the memristor with one and only one oscillatory

operating mode, envisaging a swing for its resistance well-confined

within the allowable range. As the main focus of this research paper is

to explore multistability in the oscillatory response of the periodically

pulse-driven ReRAM cell, the analysis of a case study of this kind is

omitted from the investigations.
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xi, computed as ei ≜ (�xeq,i − �xi,0)/�xi,0, where �xi,0 denotes the mean
value of the ith solution itself, evaluated arbitrarily over the first input
cycle according to Eq. 3, is found to be rather small for each i value in {1,
2, 3, 4}, particularly �x1,0 � 1.0185 · 1024, �x2,0 � 1.6789 · 1026,
�x3,0 � 1.8534 · 1026, and �x4,0 � 4.2674 · 1026, yielding e1 = −7.3863 ·
10–8, e2 = −2.1018 · 10–4, e3 = −6.3329 · 10–5, and e4 = 1.7669 · 10–3. In
each case, the initial condition also coincides with the maximum of the
oscillation, as expected from the Poincaré map analysis, which, given its
higher accuracy relative to the TA-SDR technique, should always be
employed to verify the predictions drawn by means of the time
averaging method (Ascoli et al., 2023b). As a concluding remark,
this section has shown how exploring the V+–V− parameter plane is
possible to craft pulse train stimuli, which trigger the emergence of
various differentmultimodal oscillatory phenomena in the ReRAM cell,
which shows once more the richness of the nonlinear dynamics of a
memristive physical realization of this kind.

Remark 2. In view of a future experimental validation of the theory,
toward a potential exploitation of the multistable oscillatory response of
the periodically driven nano-device for electronics applications, the
intrinsic physical limitations in the laboratory instrumentation tools
should be considered. The minimum allowable rise/fall time for a square
pulse, emitted by any of the AC periodic voltage sources, employable in
our laboratories for generating a two-pulse-per cycle train voltage
stimulus, is mandatorily 10–4 times the maximum between the
widths of the SET and RESET pulses in the input waveform over
each cycle. Since the narrower pulse width need to be at least one order of
magnitude larger than the minimum allowable pulse rise/fall time, this
directly sets a soft constraint on the upper bound for the pulse width
ratio, which is allowed to range approximately within the limited value
set, expressed here:

r ∈ 1 · 10−3, 1 · 10+3( ). (16)

Initial investigations, aimed to craft ReRAM cell stimuli, which
roughly comply with the restrictive condition (Eq. 16), have already
delivered promising results, as revealed in Supplementary Appendix
A.2, as well as in Section 6.

The study, described in this section, was a source of inspiration for
setting up an ad hoc experiment, enabling to record the bistable
oscillatory behaviour of the VCM device under suitable periodic
pulse train stimulation in the laboratory, as reported, for the first
time ever in the literature, in the remainder of the main text of our
manuscript.

7 Experimental evidence for bistability

7.1 Device stack

The TaOx valence change memory (VCM) device, subject to the
experimental test for bistability, was fabricated at the facilities of
Forschungszentrum Jülich (FZJ). As shown in either plot of
Figure 14, the ReRAM cell consists of a metal–insulator–metal
(MIM) physical stack, where a 7-nm-thick tantalum oxide
(TaOx) layer is sandwiched between a 30-nm-thick Pt layer,
playing the role of the top active electrode, and sitting on top of
a 430-nm-thick SiO2 substrate, and a 13-nm-thick tantalum (Ta)
layer, acting as the bottom ohmic electrode, and covered by yet

another 25-nm-thick Pt capping layer. Plot (a) of Figure 14 shows
how voltage stimuli were applied across the device in the laboratory
measurements. In the experiments, the active electrode was
grounded, while the ohmic electrode was connected to the
voltage source vS. Since, as illustrated in plot (b) of the same
figure, the theoretical analysis, reported throughout the
manuscript, assumes the application of the voltage stimulus VS to
the active electrode, with the ohmic electrode grounded, in the
experimental tests, the device undergoes a SET (RESET) resistance
switching transition as a positive (negative) voltage vS is set to fall
between its terminals. A scanning electron microscope (SEM) top-
view and a transmission electron microscope (TEM) cross-sectional
image of a single Pt/TaOx/Ta/Pt VCM device, occupying a junction
area of 3 × 3 μm2 within a passive crossbar array, are, respectively,
shown in plots (a) and (b) of Figure 15 (Ascoli et al., 2022).

7.2 Information about the
measurement procedure

The setup for the measurement employs a Keithley 4200-SCS
parameter analyser, outfitted with ultra-fast pulse measurement
units from the 4225-PMU family, as well as with remote
preamplifier/switch modules, facilitating the detection of small
currents. Figure 16 showcases a photograph of the Cascade
Microtech MPS150 probe station, employing a Motic PSM-1000
microscope, and a pair of manually operated DPP220 probe
positioners. The Keithley 4200-SCS parameter analyser can
generate periodic square-wave voltage signals with amplitudes
within the range (−40 V, +40 V), widths reducible down to 70 ns,
and rising, as well as falling flanks stretching across a minimum time
span of 20 ns each. The same tool allows measuring currents ranging
between 100 nA and 200 mA. The operation of the device is
orchestrated through a custom Python script, which allows
transmitting commands to the experimental apparatus and
retrieving measurement data from the sample under test via a
general purpose interface bus (GPIB).

To program a specific resistance state into the TaOx VCM device
across the range (10 kΩ, 55 kΩ) ahead of the bistability test, an
asymmetric triangular voltage stimulus vS at frequency 1 kHz, with a
fixed positive SET amplitude v̂SET and programmable negative
RESET amplitude v̂RESET, were preliminarily applied between its
terminals, according to the qualitative diagram of Figure 14A. Over
each cycle, the device was first subject to the triangular pulse of
positive polarity and then to the one of negative polarity. v̂SET was
chosen equal to 1.4 V, whereas v̂RESET was stepped across a set of
values in the range (−2.2 V, −1.6 V). Figure 17A shows the current i
versus voltage v locus of the device for 10 consecutive cycles of the
periodic triangular stimulus in the scenario, where the RESET input
amplitude was adjusted to the highest value in this range,
specifically −1.6 V. Removing the stimulus after the 10th cycle,
the resistance of the device was found to be equal to 10 kΩ, as
read a few minutes after the 10-cycle triangular stimulation by
applying a sequence of five read pulses, featuring amplitude 0.1 V,
width 1 ms, and 0.1-ms-long rising and falling flanks, and spaced out
by 0.01 ms one from the other, sampling 20 times per pulse, at
regular time intervals, the current flowing through the device, when
the voltage across it was fixed to the given plateau level, and
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averaging out the resulting 100 measurements. The application of
the same procedure, when 2.2 V was assigned to the modulus of
v̂S,RESET [see plot (b) of Figure 17 for the i versus v locus of the device
over 10 cycles of the triangular voltage stimulus], allowed to write a
higher resistance into the ReRAM device, specifically 55 kΩ, as
measured, on average, from the 100 data points acquired through
the 5-read-pulse sequence. Decreasing the modulus of v̂S,RESET
further below 1.6 V, occasionally a resistance lower than 10 kΩ
may be written into the device, which, however, behaves in a rather
stochastic and unreliable fashion [see Figures 1C, D in (Marchewka
et al., 2016)]. Increasing the modulus of v̂S,RESET further above 2.2 V,
the device resistance may not be programmed to a higher value. The
interested reader is invited to consult Marchewka et al. (2016) and
La Torre et al. (2019) for more details on this saturation effect.
Stepping v̂RESET to the ith voltage in the set Sv̂RESET ≜ {−
1.6V,−1.65V,−1.7V,−1.8V,−1.9V,−1.95V,−2V,−2.1V,−2.2V}
allowed to set the initial resistance of the ReRAM cell to the ith value
in the set S1,R ≜ 10{ kΩ, 12 kΩ, 20 kΩ, 25 kΩ, 30 kΩ 33 kΩ, 36 kΩ,
45 kΩ, and 55 kΩ} for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. For each initial
condition in the set S1,R, the device sample was then disconnected
from the power for a few seconds in preparation for the bistability
test. The bistability test for the ith initial condition in this set of
cardinality 9 shall be denoted as scenario i in the discussion
to follow.

Here, a four-pulse-per-cycle train voltage signal vS was let to fall
across the device for as many as 200 cycles. In each period, the
voltage source was regulated in such a way to generate, first, a
negative write pulse of amplitudeV− = −1.1 V and width τ− = 0.5 ms;
then, after a pause of 0.01 ms, a first read pulse, featuring amplitude
0.1 V, width 1 ms, and 0.1-ms-long rising and falling flanks;
subsequently, after another pause of 0.01 ms, a positive write
pulse of amplitude V+ = +0.7 V and width τ+ = 0.5 ms; and
finally, after yet another pause of 0.01 ms, a second read of pulse,
featuring amplitude 0.1 V, width 1 ms, and 0.1-ms-long rising and
falling flanks.

Importantly, as recently reported (Wiefels et al., 2023), a
stochastic relaxation phenomenon emerges in the nanodevice
under zero input. In particular, ions hop randomly across the
powered-off physical stack at ambient temperature. These
stochastic effects may result in significant changes in the device
resistance over time. In fact, they explain why, for each of a few
scenarios from the set of cardinality 9 under consideration,
extracting 20 samples of the device current at regular time
intervals as the read pulse, directly following the RESET write
pulse in the first cycle of the pulse train voltage stimulus, was let
to fall across the physical stack, the average resistance of the ReRAM
cell was found to be lower than the respective initial condition. This
happened for those scenarios indexed through the labels listed in the
set {3,4,6,7,8,9}. In fact, with reference to the scenario labelled via the
index i, which ranges across the set {1, 2, 3, 4, 5, 6, 7, 8, 9}, right
previous to the application of the SET write pulse between its
terminals in the first cycle of the pulse train voltage stimulus, the
VCM device was found to admit the ith resistance in the set S2,R ≜
{R0,1, R0,2, R0,3, R0,4, R0,5, R0,6, R0,7, R0,8, R0,9} = {11.133, 14.623,
15.337, 24.586, 32.920, 26.399, 21.584, 36.571, 32.563}kΩ. For this
reason, we discarded the first cycle in the train voltage stimulus vS,
employed in the bistability test, using, however, its second read pulse
to define a new initial condition for the VCM device as the average

between 20 regularly spaced out measurements. Hence, in the ith
scenario, with i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, directly before the
application of the second sequence of four pulses across its physical
stack, the ReRAM cell was found to hold the ith resistance in the set
S3,R ≜ {R0,1, R0,2, R0,3, R0,4, R0,5, R0,6, R0,7, R0,8, R0,9} = {3.032, 3.456,
4.005, 4.367, 6.459, 5.243, 4.456, 30.861, 37.185}kΩ. Figure 18A
shows the initial periods of the time course of the train voltage
stimulus except for its first four pulses. The pulse train voltage signal
induces the simplest form of local fading memory in the nanodevice,
namely, a bistable oscillatory response. In fact, as shown in
Figure 18B, under the application of such a periodic excitation
for as many as 199 cycles, the device resistance, measured at regular
time intervals, 20 times per read pulse, after each write operation
over each period, was found to evolve toward one of two possible
steady-state oscillatory solutions, depending upon its initial
condition. In particular, the traces, associated with the 1st, 2nd,
and 3rd and 4th (5th, 6th, 7th, 8th, and 9th) initial conditions from
the set S3,R, progressively approach the lower (upper) oscillatory
solution. It follows that the sets of initial conditions, from which the
memristive system respectively asymptotically approaches the lower
or the upper oscillatory attractor from the admissible pair, are
separated by an initial condition lying between R0,4 = 4.367 kΩ
and R0,7 = 4.456 kΩ. For resistance initial conditions above the
separatrix, the device experiences much slower dynamics than
otherwise. In fact, despite, as shown through red and purple
traces in plot (f) of Figure 19, the experiment was iterated for as
many as six iterations for two particular resistance initial conditions
from S3,R, specifically R0,1 = 3.032 kΩ and R0,9 = 37.185 kΩ, falling,
respectively, in the basin of attraction of the lower and upper
oscillatory attractors for the periodically driven memristive
system, the application of the four-pulse-per-cycle train voltage
stimulus across the physical stack for as many as 1,200 periods
was insufficient for transients to vanish for the initial condition
above the separatrix, which prevented the observation of the upper
steady-state oscillation in the device resistance at the end of the
experiment. This notwithstanding, it is the pure existence of the
separatrix (Strogatz, 2014), which provides firm evidence for the
bistability of the periodically forced ReRAM cell.

Since the device sample, employed in the experimental test for
bistability, is different from the one, the JART VCMmodel, used for
the system-theoretic analysis reported so far in this paper, was
originally (Ascoli et al., 2022) fitted to, a parameter tuning procedure
had to be run once again to match qualitatively the behaviour of its
solutions to the measurement data from Figures 18B, 19F. A
standard optimisation algorithm, massaging a few parameters,
specifically e · ϕbn0, Rth,eff,RESET, and Rth,eff,SET, in such a way to
minimise the error between the model predictions and these
experimental measurements, resulted in their update, relative to
the nominal values in Supplementary Table A1, as listed at the end of
Supplementary Appendix A.1 (refer to Supplementary Table A2). In
order to simplify the numerical integration of the JART VCM
model, the read pulses were omitted from the voltage signal
assumed to fall across the memristor. In fact, as shown in
Figure 19A, in the numerical simulation, replicating qualitatively
the experimental data, vS was shaped as a two-pulse-per-cycle train
voltage stimulus. Taking into account the different approach,
employed in the model simulation to apply the voltage stimulus
across the ReRAM cell (recall Figure 14B), as compared to what was
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performed in the experiment (recall Figure 14A), the first (second)
pulse within each T = 1-ms-long period of the input signal vS is
assumed to undergo a RESET (SET) transition in the nanodevice,
featuring an amplitudeV+ of +1.1 V (V− of −0.7 V) and a width τ+ of
0.5 ms (τ− of 0.5 ms). Figure 19B shows the r̂(�x, V+, V−) versus �x
locus for (V+, V−) = (+1.1 V, −0.7 V). The horizontal line r = 1
crosses this locus in three points, �xeq,1 � 1.000 · 1024,
�xeq,2 � 2.862 · 1025, and �xeq,3 � 2.670 · 1027, the first and third
(second) of which correspond (corresponds) to locally stable (an
unstable) equilibria (equilibrium) for the TA-SE (7), as may be
evidenced from the graph of _�x as a function of �x for the given input
parameter setting (see plot (c) of Figure 19).

Interestingly, the device resistances, computed at the read
voltage level V of −0.1 V at the first, second, and third TA-SE
equilibria, respectively, read as R(�xeq,1) � 248.792MΩ,
R(�xeq,2) � 5.952kΩ, and R(�xeq,3) � 673.901Ω. The SCPM
confirms the predictions from the TA-SDR analysis, as illustrated
in Figure 19D, which shows that the locally stable (unstable) fixed
points (fixed point) of the Poincaré map xk+1 � P(xk) are located at
x1* � 1.000 · 1024, and x3* � 2.675 · 1027 (x2* � 3.463 · 1025).
Importantly, the device resistances, computed at the read voltage
level V of −0.1 V at the first, second, and third fixed points,
respectively, read as R(x1*) � 248.792MΩ, R(x2*) � 4.362kΩ, and
R(x3*) � 673.834Ω.

Figure 19E shows the model prediction for the time course of
the device resistance from each of the initial conditions, falling in
the set SR3, and evaluated one by one from the state initial
conditions at the corresponding positions in the set S3,x ≜
{x0,1, x0,2, x0,3, x0,4, x0,5, x0,6, x0,7, x0,8, x0,9} = {4.564·1025,
3.673·1025, 3.460·1025, 2.737·1025, 3.081·1025, 3.414·1025,
1.465·1025, 1.383·1025}, assuming the voltage v across the
device to be fixed to the DC read level V of −0.1 V.

The separatrix point, appearing atR(x2*), is just 5Ω to the left of the
lower bound in the range, where it was found to lie in the experiments.
As a result, here only the traces, starting off from the first three initial
conditions in S3,R, progressively approach the lower oscillatory steady
state. The cyan (green) trace in Figure 19F shows how the timewaveform
of the device resistance, started off at R0,1 = 3.032 kΩ (R0,9 = 37.185 kΩ),
captures the corresponding experimental red (purple) trace, converging
toward the lower (upper) steady-state oscillatory solution. The solid cyan
trace in plot (g) visualises the device memory state over time, resulting
from a numerical integration of the memristor DAE set when the initial
condition x0 is set to the first fixed point x1* of the Poincaré map. Here,
the black dashed horizontal line shows the location of the TA-SE
equilibrium �xeq,1. Plot (h) is a close-up view of plot (g) around the
oscillatory solution for the memory state. The black dash-dotted
horizontal line meets the memristor state solution at its maxima of
ordinate x1*. Figure 19I depicts through a green trace the time waveform
of the memory state, as recorded during a numerical simulation of the
JART VCM v1 model in the scenario where the initial condition x0 was
set to the third fixed point x3* of the Poincaré map. Last but not least,
taking into account the intrinsic variability in the electrical behaviour of
the device from sample to sample, according to the adaptation of the
JARTVCMmodel from Bengel et al. (2020), it was nevertheless possible
to verify, to a certain extent, the robustness in the bistable response of the
ReRAM cell under the earlier specified periodic excitation. In particular,
as anticipated above, the unstable map fixed point x2*, which acts as a
separatrix (Strogatz, 2014) between the basins of attraction of the two

coexisting locally stable map fixed points x1* and x3*, and provides
evidence for the bistability of the ReRAM device-based oscillator by
virtue of its sole appearance, was found to exist at all times under any
possible combination of values, assigned to each of five model
parameters of critical impact on the device-to-device variability,
specifically rfil, lcell, ldisc, xmin, and xmax, from a set of cardinality 2,
including −10% and +10% of the respective nominal value, as indicated
in Supplementary Table A1. The blue circles in Figure 19J show the
spread in the value of the unstable fixed point x2* of the Poincaré map,
expressed in terms of the device resistance as R(x2*), for all the
32 possible combinations of values, assigned to these five parameters,
against the filament radius rfil, which was found to hold the stronger
correlation with the variable reported along the vertical axis, as may be
inferred by comparing the impact that its changes, relative to the
nominal level (see the reference circle marker), have on the location
of the separatrix point.

8 Conclusion

Typically, the application of a periodic stimulus, from classes
commonly used in electrical engineering, including sine-waves,
triangular waves, and square waves, to a non-volatile resistance
switching memory induces a unique, i.e., initial condition-
independent asymptotic oscillatory response in its memory state
(Ascoli et al., 2017), a property referred to as fading memory (Boyd
andChua, 1985).On the other hand, local fadingmemory effects are said
to emerge in a system, which, under the effects of some input, may
asymptotically exhibit a number of different behaviours, locking
into each of the possible operating modes for all initial conditions
from the respective basin of attraction (Ascoli et al., 2016a; Ascoli
et al., 2016b). A numerical investigation (Ascoli et al., 2022),
based upon a predictive model (Hardtdegen et al., 2018; Bengel
et al., 2022), recently unveiled the emergence of bistability,
i.e., the simplest form of local fading memory, in the
oscillatory response of the physical realization of a tantalum
oxide ReRAM cell to a particular periodic triangular stimulus.
However, the manuscript, reporting this interesting observation,
made independently also from other scientists, exploring the
non-linear dynamics of a different non-volatile memristor via
bifurcation analysis (Pershin and Slipko, 2019), provided no
further analysis to elucidate the origin for the coexistence of
two stable oscillatory steady states for the nano-device. As
another open question, stemming from this research work, it
would be of interest to understand how to modulate the
properties of the stimulus so as to induce the emergence of
bifurcation phenomena, whereby the nature of the fading
memory effects, appearing in the device, would switch from
local to global or vice versa. Investigating whether there exist
periodic excitations, inducing more complex forms of local
fading memory than bistability in the nano-device, is a follow-
up problem worthy of study. A theoretical research work is first
presented in this manuscript to provide comprehensive answers
to all these questions. In particular, the state dynamic route
technique, inspired to the time averaging methodology
(Guckenheimer and Holmes, 1983) from the theory of non-
linear dynamics, and to the bifurcation study, reported in
Pershin and Slipko (2019), is first introduced as extension of
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the dynamic route map graphic tool (Chua, 2018), which is
applicable to the analysis of first-order systems subject to bias
inputs only, for the exploration of the response of systems of this
kind to AC periodic square pulse train-based stimuli. Recurring
to this technique, a rigorous and systematic strategy is then set up
to massage heights and widths of the two square pulses of
opposite polarity, composing a periodic pulse train-based
input over each cycle, so as to modulate the number and
stability properties of the admissible oscillatory steady states
of the nano-device. Numerical simulations of the device model
in a number of excitation scenarios provide robust proof of
evidence for the accuracy of the proposed theoretical
framework in predicting all the possible levels, around which
the state of the memristor, subject to a periodic two-pulse-per-
cycle train stimulus, may be found to revolve, after transients
vanish, for a given choice of the four input parameters. Toward
the experimental verification of the theory, developed in this
research study, the intrinsic physical limitations to the
measurement instrumentation tools need to be taken into
account for the definition of an ad hoc input parameter setting
in each case study. In this regard, as shown in Section 6, margins
for experimental setup optimization exist, given that the set of
bifurcations in number, stability, and kinds of oscillatory
solutions for the memory state of the ReRAM cell upon a
pulse width ratio sweep varies critically with the pulse height
parameter pair selection, which widens considerably the
spectrum of opportunities available to the circuit designer17.
On the basis of these considerations, as reported in Section 7,
we were able to devise an opportune experimental setup, through
which we confirmed the theoretical predictions on the bistable
oscillatory response of the ReRAM cell under suitable periodic
pulse train stimulation in the laboratory, as reported at the end of
the manuscript. In particular, the experimental analysis,
corroborating the accuracy of our theory, allowed identifying
the signature for the bistability of the periodically forced
nanodevice, namely, the existence of an initial condition for
its resistance, separating the basins of attraction of its two
admissible oscillatory steady states. To the best of our
knowledge, this is the first time local fading memory effects,
resulting in steady-state bistability, are discovered at the
nanoscale in a non-volatile resistance switching memory!
Importantly, numerical investigations of the JART VCM
model further showed how a separatrix point keeps existing
across the allowable domain for the ReRAM cell resistance
even under non-negligible device-to-device variability effects.
Moreover, as described in Supplementary Appendix A.2, the
application of the system-theoretic framework, presented in
this paper, under the additional constraint, allowing the SET
and RESET pulse widths to differ by three orders of magnitude at
most, enables determining an appropriate input parameter

quartet for the execution of a practical tristability test on the
oscillatory device in the laboratory. The theoretical prediction of
the coexistence of more than two oscillatory steady states in the
nanodevice for suitable periodic excitations awaits now for
experimental verification. Moreover, toward a future
exploitation of these peculiar nonlinear phenomena for
electronics applications, one of the tasks to fulfil involves the
inclusion of non-idealities, especially those factors responsible
for stochastic cycle-to-cycle electrical behavioural variability, in
the ReRAM cell model to understand how they affect the shape of
the r̂(�x, V+, V−) versus �x locus under pulse height pair
modulation during the device lifetime, toward the
identification of an ad hoc operating region of the V+–V−

parameter domain, where, for any given case study of interest,
the oscillatory mode, emerging under a suitable pulse width ratio
choice, is most robust against these unwanted effects. The
peculiar capability of the non-volatile memristor physical
realization, under the zooming lens in this manuscript, to
feature alternatively a local or global form of fading memory,
depending upon the periodic stimulus, may inspire the design of
innovative energy-efficient sensing and mem-processing circuits
and systems for edge computing and Internet-of-Things
applications in the years to come. The research methodologies,
presented in this work, are applicable upon suitable adaptation
also to other non-volatile resistance switching memories (Ascoli
et al., 2024) and to the class of volatile memristor devices
(Messaris et al., 2024). Importantly, they shed light into the
fundamental role that non-linear circuit and system theory
(Corinto et al., 2021) assumes for unlocking the full potential
of intrinsically nonlinear memristive devices in the electronics of
the future (Goswami et al., 2021).
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