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Physiologically based pharmacokinetic models have gained significant
recognition as effective mathematical models that enable deeper mechanistic
investigation of drug delivery and tissue disposition. Here we describe the
development of a platform PBPK-quantitative systems pharmacology (QSP)
model to study tissue delivery of lipid nanoparticle (LNP) based mRNA
therapeutics. The model is calibrated to published data in the context of
Crigler-Najjar syndrome. Sensitivity analyses were performed to explore
factors that influence protein expression and pharmacodynamic response
following LNP-mRNA liver disposition. The most sensitive determinants of
protein exposures were mRNA stability, translation, and cellular uptake rate,
while the liver influx rate of lipid nanoparticle did not appreciably impact
protein expression. Indeed, protein expression level may be tuned by
modulation of mRNA degradation rate. However, simulations predicted that
when the intrinsic half-life of the translated protein falls below a certain
threshold, lowering mRNA degradation rate may not rescue protein exposure,
a design feature that should be considered in optimal design of mRNA
therapeutics. Additionally, interplay of LNP degradation rate and mRNA escape
rate from endosomes was found to be crucial in modulation of protein
expression. Simulations predicted that at a given LNP degradation rate, protein
exposure varied linearly with mRNA escape rate. We further extended the model
by incorporating LNP recycling to identify conditions necessary for observing a
second peak in mRNA pharmacokinetics (PK). Simulations predict that with a fast
recycling and slow tissue re-uptake rates, a robust second peak is observed in the
plasmamRNA concentration curve. The amplitude and timing of the second peak
could be tuned with recycling and re-uptake rates. Modeling results indicate that
within the context of non-secreted mRNA mediated enzyme replacement
therapy, recycling may depress or improve protein exposure depending on
the re-uptake rate of the recycled LNP. The model is subsequently used to
generate virtual animal cohorts to investigate optimal dosing and schedule of the
compound. Virtual instances of the model were then employed to identify design
principles that potentially reduce dosing frequency while maintaining efficacy.
This study demonstrates the potential applications of coupled PBPK-QSP model
for LNP based mRNA therapeutics as a translational platform.
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Introduction

mRNA based vaccines have been highly effective against SARS
COVID-19 and were instrumental in helping curtail the COVID-19
pandemic and save millions of lives (Polack et al., 2020; Baden et al.,
2021;Watson et al., 2022). The enormous success of mRNA vaccines
has provided strong impetus to accelerate development of mRNA-
based therapies in disease areas beyond infectious diseases including
rare metabolic (Berraondo et al., 2019), autoimmune diseases
(Krienke et al., 2021) and oncology (Miao et al., 2021). A key
challenge in extending the application of mRNA platform to
other disease areas and realizing the full potential of this therapy
is quantitative understanding and optimization of mRNA and
encoded protein PK at the site of action and other tissues in the
body (Rohner et al., 2022). In recent years, efficient mRNA targeting
and exposure have been achieved by enclosing the mRNA of interest
in LNPs with differing physicochemical properties (Hou et al.,
2021), and have been applied in many therapeutic applications.
In the case of enzyme replacement therapies, the downstream
mRNA-translated protein is intracellular (Vavilis et al., 2023).
For other applications, the expressed protein is secreted, such as
the mRNA-encoded monoclonal antibodies used in infectious
diseases (Mu et al., 2022), or mRNA-encoded T-cell engagers in
oncology (Stadler et al., 2017). While much progress has been made
around LNP-mediated mRNA therapies, optimizing this platform
requires precise quantitative understanding of the PK of mRNA and
encoded protein.

The rapid evolution of mRNA technology and potential
applications beyond vaccines necessitate quantitative modeling to
optimize dosing level, schedule, and therapeutic index (Selvaggio
et al., 2021; Attarwala et al., 2023). To that end, quantitative systems
pharmacology modeling has served as an effective tool to accelerate
pharmaceutical drug development through building of systems level
mechanistic mathematical models (Van Der Graaf and Benson,
2011). Unlike traditional PK/PD modeling, QSP models are
designed to incorporate mechanistic drug-body interactions,
enabling the extrapolation of key treatment steps and
identification of critical optimization factors (Knight-Schrijver
et al., 2016; Musante et al., 2017). QSP models also contribute to
applications in translational medicine including but not limited to
identification of novel targets and biomarkers, guiding of preclinical
study design, and evaluation of potential biomarkers (Gadkar
et al., 2016).

Similarly, PBPK models have been used extensively to
mechanistically interrogate biodistribution and PK of biologics
(Garg and Balthasar, 2007; Shah and Betts, 2012), small
molecules (Kilford et al., 2022), and nanoparticles for efficacy
and safety applications (Aborig et al., 2019; Kutumova et al.,
2022; Kumar et al., 2023). These models explicitly include
physiological and anatomical features of the body and reduce the
number of non-physiological parameters that need to be estimated
when scaling to human from preclinical species. The complexity of
LNP-mRNA based therapeutics including LNP-mediated tissue
entry, cellular uptake, LNP and mRNA degradation, mRNA
escape, and translation, renders PBPK modeling a requirement
for deeper understanding of these processes.

In this study, we developed a general platform minimal PBPK-
QSP model for enzyme replacement therapy, using Crigler-Najjar

(CN) syndrome as the context for model simulations. CN syndrome
type 1 is a rare inborn error characterized by the absence of the
protein uridine glucuronotransferase (UGT) (Bosmas et al., 1994).
This protein catalyzes the conversion of the toxic metabolite,
bilirubin, from an indirect form into a direct form with a higher
clearance rate, accelerating its elimination (Wang et al., 2006). UGT
deficiency leads to bilirubin accumulation, placing patients at high
risk of bilirubin-induced neurological deficits, including speech
impairment, ataxia, and even death if left untreated (Roger et al.,
1995; Jansen, 1999;Wennberg, 2000). The current QSPmodel of CN
syndrome, developed by Apgar et al. (2018), includes the
administration of hUGT1A1-modified RNA, which encodes for
the UGT1A1 enzyme, as a treatment for CN syndrome. The
model captures experimental measurements and makes
projections for efficacious dosing regimen in human patients.
Here we describe a substantially more detailed PBPK model of
LNP mediated mRNA disposition and integrate it with downstream
protein exposure and PD activity. Our model tracks not only the
transport and distribution of total mRNA treatment but also
describes the generation of mRNA translated UGT protein and
its catalytic effect on accumulated bilirubin from a systems
pharmacology perspective. The model also incorporates the
recycling mechanism of mRNA loaded LNP to explore the
impact of redistribution on PK dynamics. This model allows for
in silico investigation of conditions necessary for generation of a
second peak in mRNA PK as observed experimentally (Goel et al.,
2020; Abdelhady et al., 2023). Simulations also show implications of
the recycling on protein production within the context of a non-
secreted intracellular enzyme such as UGT. A detailed parameter
sensitivity analysis was then conducted to identify significant
parameters that may be modulated during mRNA design for
enhancing protein expression and PD response. Virtual animal
cohorts were then created to demonstrate utility of the model in
clinical trial simulation. Simulations identified key design principles
of LNP-mRNA that could be tuned to improve the treatment
efficacy, offering potential strategies for enhancing protein
expression durability with lower dosing frequency. Overall, the
platform allows for integration of preclinical PK, PD, and tissue
biodistribution data to project mRNA and protein exposures.

Methods

Model structure

The schematic of the PBPK model is shown in Figure 1. This
model is comprised of seven major compartments: venous and
arterial blood, lung, portal organs, liver, lymph nodes, and other
tissues. The portal organs include the small and large intestine,
spleen, and pancreas. Other organs encompass the heart, muscles,
skin, adipose tissue, bone, brain, kidney, thymus, among others. For
the simulations, LNP encapsulated mRNAs (LNP-mRNAs) are
assumed to be administered into the venous compartment, from
where they can circulate across the compartments through plasma/
lymphatic flow or be taken up by cells at different tissue locations.
The model was constructed for rat, and volumes of each
compartment, volumetric blood and lymphatic flows are taken
from the literature (Shah and Betts, 2012; Kumar et al., 2023).
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Model sub-compartment

Each compartment is further divided into several sub-
compartments. Any non-liver organ compartment consists of a
vascular space, an interstitial space, and phagocytic cells that take
up LNP-mRNAs. Liver includes a Kupffer cell compartment that
uptakes LNP-mRNAs from the vascular space. There is also a
hepatocyte sub-compartment that is taking up LNP-mRNAs
from interstitial space. The blood compartments also have
phagocytic cells (macrophage) that phagocytose LNP-mRNAs.
Schematic of liver sub-compartments can be found in Figure 2,
while schematics for other compartments can be found in the
supplementary material (Supplementary Figure S1).

LNP-mRNAs travel across different compartments through the
vascular space, driven by the volumetric flow rates Qin and Qout. In
the tissue compartment, LNP-mRNAs in the vascular space can
infiltrate into interstitial tissues with the transport rate Jin. LNP-
mRNAs within the interstitial space can either be taken up by cells
or flow into the lymph node at the rate of Lin, whereby they can
further flow back into venous compartment via the lymphatic flow
rate of Lout. Lymphatic inflows are assumed to be 0.2% of the
corresponding plasma flow (For example, LLiverin � QLiver

in /500),
where the lymphatic flow from each compartment to lymph
node is limited by the lymphatic openings, which is represented
by the interstitial reflection coefficient σ (Shah and Betts, 2012).
Once LNP-mRNA construct is taken up by cells, it can undergo
four distinct processes: 1) degradation through endosomal pathway
at a rate of kEndodeg , 2) mRNA escape from the endosome into the

cytoplasm at a rate of kescape, 3) transition into recycled endosomes,
and 4) degradation of escaped mRNA. mRNA escape represents the
ability of mRNA to cross the endosomal membrane, thereby
enabling it to translate into encoded proteins. LNP-mRNAs
within the recycled endosomes can be transported out of the cell
into the interstitial space through exocytosis. Both the transition to
recycled endosomes and exocytosis are assumed to follow the same
recycling rate, krecycle. It has been hypothesized that the surface
properties of the LNP vehicle are altered after exocytotic
translocation. This is due to the fusion of the lipid membrane
and endosomal membrane during endosomal maturation, as well as
changes in the molar ratio of ionizable lipid to mRNA nucleotide
observed experimentally (Maugeri et al., 2019). However, the
precise mechanisms by which recycling changes LNP properties
remain unclear. Given the uncertainty surrounding potential
changes in the surface property of LNPs, we consider recycled
LNPs as a separate species, denoted by LNPp, which can be
transported into the interstitial space and taken up by cells at
different rates, Jpin and kpup respectively. We introduce a scaling
factor, fp, which is used to calculate the recycled LNP transport
rate and uptake rate based on the corresponding rate for non-
recycled LNP-mRNA ( Jpin � Jin · fp, and kpup � kup · fP). This
recycling mechanism is included in all the cellular
compartments, including macrophages, Kupffer cells, and
hepatocytes. Once mRNA has escaped from the endosomal
LNP-mRNA, it is translated into encoded protein at a rate of
ktranslate. Both mRNA and the produced protein degrade at their
respective degradation rates, kmRNA

deg and kProteindeg .

FIGURE 1
Schematic of platform minimal PBPK model. Plasma flows are indicated by black arrows. Lymphatic flows are indicated by green arrows. Inter-
compartment transports are indicated by red arrows.
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Published Crigler-Najjar syndrome (CN) data in rats were used to
calibrate this platform model (Apgar et al., 2018). As shown in
Figure 2, bilirubin is generated in hepatocytes at a rate of ksyn, and
degraded with a slow rate kBildeg ,slow. The synthesized protein binds to
and unbinds from bilirubin with on and off rates of kon and koff,
respectively. While in the complex form, UGT catalyzes bilirubin at a
catalytic rate of kcat, resulting in formation of monoglucuronide (MG)
bilirubin with a faster degradation rate kBildeg ,fast. MG bilirubin is
catalyzed by UGT again to form diglucuronide (DG) bilirubin with
the same binding/unbinding/catalytic rates. The fast degradation rates
for both catalyzed forms of bilirubin are assumed to be the same.

Body weight scaling

The model is scaled with body weights to generate parameter
values for species of different weights (adult vs. juvenile rats as in
Figure 3). The baseline values of all physiologically relevant
parameters were retrieved from data for a 280-g rat (Shah and
Betts, 2012). Therefore, the volume of each organ compartment was
adjusted based on the fraction of the BW to 280 g:

Vnew � V · BW
280

Volumetric flow (Q and L) is adjusted based on the metabolic
rate scaling law:

Qnew � Q · BW

280
( )

0.75

Initial indirect/direct bilirubin level

Experimental data used to calibrate the model suggest that 15%
of total bilirubin is direct bilirubin (the catalyzed, fast-degrading
form) under pre-treatment disease baseline conditions. Therefore,
for all the simulations, 15% of the total bilirubin initial conditions
are assumed to be in direct form, while the remaining 85% are
assumed to be indirect bilirubin.

Model equations and analysis

In this section, we present examples of model equations included
in this study. Model is implemented in Matlab SimBiology
(Mathworks Inc. 2022). All the analysis including sensitivity
analysis and parameter fitting were performed in Matlab. Model
equations, reactions, and parameters are given in the supplementary
excel file associated with this manuscript.

dMLNP
Venous

dt
� −kupVmac

Venous · CLNP
Venous︸��������︷︷��������︸

Uptake by venousmacrophage

−QLung · CLNP
Venous︸������︷︷������︸

Transport to lung

+ QLiver − LLiver + QPO − LPO( )CLNP
Liver,vascular︸������������������︷︷������������������︸

Transport fromLiver

+ QOO − LOO( ) · CLNP
OO,vascular︸�����������︷︷�����������︸

Transport from other organs

+LLN · C LNP
LN︸�����︷︷�����︸

Transport from lymph node

(1)

Equation 1 describes the rate of change in the amount of total
mRNA encapsulated in LNP. The first term represents the cellular

FIGURE 2
Schematic of sub-compartments for liver compartment. Schematics for other tissues can be found in the Supplementary Material.
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uptake, which is proportional to the volume of macrophages in the
venous compartment, Vmac

Venous. The mathematical form of the uptake
equation is similar to Aborig et al.(2019). Second term represents the
flow from venous into lung compartment with the volumetric flow
rate QLung. LNP-mRNA from the lymph node re-enter the venous
compartment via the lymphatic flow rate LLN, shown in the
last term.

dMLNP
Liver,Hep

dt
� +kup · VHep

Liver · CLNP
Liver,interstitial︸�����������︷︷�����������︸

Uptake by hepatocyte

−kescape ·MLNP
Liver,Hep︸��������︷︷��������︸

mRNAescape

−kEndodeg ·MLNP
Liver,Hep︸�������︷︷�������︸

EndosomalDegradation

−kEndorecycle ·MLNP
Liver,Hep︸��������︷︷��������︸

Endosomal Recycling

(2)

Equation 2 describes the rate of change for LNP-mRNA
amount in hepatocytes. The first term represents the uptake of
LNP-mRNA in hepatocytes. The second term represents the
escape of mRNA from endosomal LNP. The third term shows
the endosomal degradation, and the last term represent the
endosomal recycling.

dMmRNA
Hep

dt
� +kescape ·MLNP

Liver,Hep − kmRNA
deg ·MmRNA

Hep (3)

Equation 3 describes the rate of change for escaped free mRNA
amount in hepatocytes. The first term represents the escape of

mRNA from LNP within endosomes. The second term represents
the natural degradation of mRNA.

dMUGT
Hep

dt
� +ktranslate ·MUGT

Hep︸�������︷︷�������︸
TranslationfrommRNA

−kUGTdeg ·MUGT
Hep︸������︷︷������︸

Protein degradation

−kon · CBil · CUGT
Hep · VHep

Liver︸����������︷︷����������︸
Binding ofUGT to bilirubin

+M UGT: Bil[ ] koff + kcat( )︸���������︷︷���������︸
Unbinding/catalytic reaction

−kon · CBilMG · CUGT
Hep · VHep

Liver︸�����������︷︷�����������︸
Binding ofUGT toMGbilirubin

+M UGT: BilMG[ ] koff + kcat( )︸����������︷︷����������︸
Unbinding/catalytic reaction

(4)
Equation (Berraondo et al., 2019) characterizes the rate of

change for hepatocyte UGT protein amount. The first two terms
depict the translation from mRNA and innate protein degradation,
respectively. The second and third lines represent the catalytic
reactions that involve UGT.

Model calibration

Model is calibrated to bilirubin rat data published in Apgar et al.
(Apgar et al., 2018). Kinetic parameters were estimated by fitting the
model to the data in MATLAB SimBiology. Specifically, total
amount of mRNA, whether in free form or encapsulated in LNP,

FIGURE 3
Overlay of model simulation and bilirubinemia data for juvenile and adult rats. Juvenile rat data for plasma mRNA (A), liver mRNA (B), UGT protein
level (C) were used to calibrate the model. Predicted total bilirubin level (D), indirect bilirubin level (E) and direct bilirubin level (F) are compared to raw
data. Simulation predictions are compared with adult rat treatment data under Q2W schedule with three different doses: (G) 0.1 mg/kg, (H) 0.2 mg/kg,
and (I) 0.5 mg/kg. Average weight was set to 84 g for juvenile rats, and 139 g for adult rats.
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was fitted to juvenile rat liver mRNA data to estimate Jin, kup, kescape,
kmRNA
deg , and kEndodeg in liver. The model was then fitted to the total
protein level to estimate ktranslate and kProteindeg . Subsequently, it was
fitted to the luciferase control case to estimate the synthesis rate of
bilirubin. Finally, the model was fitted to bilirubin data with
0.5 mg/kg single bolus treatment for 32 days to estimate kBildeg ,fast.
List of parameters are given in Supplementary Table S1–S5.
Supplementary section also contains details of parameter
estimation (Supplementary Figure S2 and Supplementary Table S6).

Model validation

The model is parameterized with bilirubinemia juvenile rat data
following a bolus 0.3 mg/kg treatment for 3 days, as shown in
Figure 3A–C. Model simulations using estimated parameters
successfully predicted the pharmacokinetic (PK) and
pharmacodynamic (PD) data as shown Figure 3D–I. A good
match was observed between indirect/direct bilirubin data and
model simulations as demonstrated by Figure 3D–F. The model
was then used to simulate total bilirubin for Q2W and Q4W
schedules and exhibited reasonable consistency with the observed
data as shown in Figure 3G–I and Supplementary Figure S4, S5A, B.
Furthermore, model simulations captured total mRNA in plasma
and liver (Supplementary Figure S3A, B) and total bilirubin and
protein (Supplementary Figure S3C, D) following single
bolus treatment.

Results

Parameter sensitivity analysis

A local sensitivity analysis was conducted to assess the impact of
parameters in the model. LNP design could impact six parameters in
the model and these parameters were selected for sensitivity analysis:
Jin, kup, kEndodeg , kescape, kmRNA

deg , and ktranslation. Each parameter was
varied by 50% from the baseline. Integration was performed on

FIGURE 4
Local sensitivity analysis. Parameters that are essential for treatment design (Jin , kup , Endo, kescape ,mRNA, and ktranslation) are varied by 50% from their
baseline, and percentage changes of hepatocyte UGT AUC from baseline are compared. Blue upward triangle indicates the percentage change from
baseline if the parameter is increased by 50%. Red downward triangle indicates the percentage change from baseline if the parameter is decreased by
50%. For example, decreasing endosomal degradation rate (kEndodeg ) by 50% increases protein AUC by 100%. Dosage is fixed to 0.5 mg/kg. Average
weight is set to 139 g, and recycling is turned off.

TABLE 1 Summary of fitted model parameters.

Parameter Fitted value Unit

Jin 0.0017 L/hr

kup 0.91 1/hr

kescape 0.0056 1/hr

kmRNA
deg 0.12 1/hr

kLNP
deg 1.65 1/hr

ktranslate 61,540 1/hr

kUGTdeg 0.019 1/hr

kBildeg ,fast
0.31 1/hr

kBilsyn
6.49 nmol/hr
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the hepatocyte UGT time-course to calculate the protein area under
the curve (AUC), and the percentage change in AUC from the
baseline for each parameter variation was plotted (Figure 4). The
sensitivities to the parameters were then ranked based on the
absolute magnitude of change in the protein AUC from the
baseline, as listed in Table 1. The recycling mechanism was
turned off for this analysis.

The model is most positively sensitive to the endosomal and
mRNA degradation rates (100% increase for both), followed by
the mRNA translation and escape rates (around 50% increase). It
is moderately sensitive to the cellular uptake rate, but not
sensitive to the transport rate from vascular into interstitial
space. A similar trend is observed in negative sensitivities: The
model is sensitive to translation rate, mRNA escape rate, and
LNP and mRNA degradation rates. It is insensitive to uptake or
tissue transport rates (Table 2). This initial sensitivity analysis
provides insights into the parameters that are more important to
consider when optimizing treatment design to achieve better
efficacy. The analysis suggests that the stability of LNP and
mRNA plays significant role in enhancing protein expression.
We also performed a global sensitivity analysis using the partial
rank correlation coefficient (PRCC) method to further explore
the strength and direction of the relationship between crucial
parameters and model output in the presence of the recycling
mechanism (Marino et al., 2008). Rankings of negatively/
positively correlated parameters to hepatocyte protein/mRNA
AUCs are presented in the supplementary material
(Supplementary Figure S6). We observed several parameters
highly correlated to hepatocyte protein AUC, such as protein
translation rate, mRNA escape rate, protein stability, and mRNA
degradation rate. Further, global sensitivity analysis identified a
more prominent role for tissue influx rate (Jin, Supplementary
Figure S6B) compared to local sensitivity analysis. On the other
hand, hepatocyte mRNA AUC is strongly correlated with cellular
uptake rate, endosomal degradation rate, tissue transport and
recycling rate (Supplementary Figure S6C, D).

Interplay of mRNA and protein degradation
in LNP-mRNA therapy

Next, we examined how protein expression is affected by
mRNA and protein stability. The degradation rates of mRNA
and protein were simultaneously varied from 0.2 to 5 folds, and

the resulting hepatocyte protein AUCs were plotted (Figure 5A).
Recycling mechanism is turned off for this simulation. The
protein AUC increased as either of the degradation rates were
reduced. The highest AUC was observed under the lowest
mRNA and protein degradation rates. Conversely, the lowest
AUC was observed under the highest degradation rates for both
mRNA and protein. Protein production time-courses at five
pairs of mRNA and protein degradation rates were also
plotted (Figure 5B).

In addition, protein AUCs are plotted under a fixed protein
degradation rate while varying the mRNA degradation rate
(Figure 5C). For a given level of protein degradation rate, one
can manipulate the final protein AUC by adjusting the mRNA
degradation rate. However, such an effect reaches saturation
beyond a certain level of mRNA degradation, implying a
threshold of mRNA stability beyond which protein exposure is
not impacted by underlying mRNA dynamics. Model simulations
also imply that mRNA stability has bigger impact on protein with
lower degradation rate (Figure 5C, dashed blue line) than a
protein with higher degradation rate (Figure 5C, dashed
yellow line).

Interplay of endosomal degradation and rate
of mRNA escape

We next examined how the interplay of endosomal LNP
degradation and mRNA escape rates would affect protein
expression. Both the endosomal degradation and mRNA escape
rates were varied by 0.2 to 5-fold simultaneously, and the resulting
protein AUCs were plotted (Figure 6A). Recycling mechanisms are
turned off in this simulation. Total protein expression decreases as
the endosomal degradation rate increases or the mRNA escape rate
decreases. The highest protein expression is observed under the
lowest endosomal degradation and fastest mRNA escape conditions
as expected. Five pairs of endosomal degradation and escape rates
were selected to plot the protein production time-
courses (Figure 6B).

Model simulations predict linear relationship between
protein AUC and mRNA escape rate as shown in Figure 6C.
The slopes of the lines are modulated by endosomal degradation
rates implying potential tuning of protein exposure with mRNA
escape rate.

Effect of recycling on LNP-mRNA
pharmacokinetics: The interplay of recycling
and uptake rates

Parameters related to LNP recycling mechanisms were varied to
investigate conditions for observing a robust second peak in plasma
PK of mRNA. The two critical parameters are as follows: krecycle,
which governs how rapidly LNP gets redistributed back to the tissue
space, and fp, which governs the re-uptake of recycled LNPs back
into the tissue space from the vasculature. The parameter krecycle was
varied from 0 to 5/hr and fp was simultaneously varied from 0 to
0.1, and the values for time to reach the second plasma mRNA peak
and amplitudes were plotted (Figure 7A, B). Simulations indicate

TABLE 2 Ranking of sensitivity.

Ranking Positive change Negative change

1 kEndodeg (+100%) ktranslation (−50%)

2 kmRNA
deg (+100%) kescape (−50%)

3 ktranslation (+50%) kEndodeg (−33%)

4 kescape (+50%) kmRNA
deg (−33%)

5 kup (+27%) Jin (−11%)

6 Jin (+5%) kup (−11%)
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that for a given recycling rate, there is a reuptake rate that would
guarantee no second peak in mRNA PK (dark blue region
Figure 7B). The time to reach the second peak is not impacted
by the recycling rate, as variations in recycling rate do not affect the
second peak time at a fixed fp value (Figure 7A). Both the recycling
and re-uptake rates can alter the amplitude of the second peak.
Highest amplitude of the second peak is observed for very low
reuptake rates and high recycling rates (Figure 7B, red region). An
example of the plasma mRNA time-course with robust second peak
is plotted in Figure 7C with krecycle and fp set to 5 and
0.05 respectively. Model simulations predict that mechanistically,
second peak is possible if the recycling rates is at a timescale of
minutes with much lower re-uptake rates.

We then investigated the impact of recycling parameters on
protein AUC (Figure 7D). There are two distinct regions with
different profiles. For very small reuptake rates (<0.0025), protein
AUC is reduced by increasing rates of recycling (Figure 7D, blue
region). However, for sufficiently high reuptake rates (>0.01),
increasing recycling rate would increase the protein AUC
(Figure 7D, red region). Moreover, for sufficiently high
recycling rate (>1/hr), increasing reuptake rate would increase
protein AUC. The different relationship profiles between protein
AUC and recycling are more clearly demonstrated by Figure 7E.
The plot shows that with fp � 0.05, increasing recycling rate
monotonically increases protein AUC (blue dashed line). For
fp � 0.0025, the profile is reversed indicating monotonically

FIGURE 5
Comparing the effect of mRNA degradation and protein degradation rates on protein expression. mRNA degradation rate and protein degradation
rates are varied by 0.2 to 5-fold simultaneously. (A) AUC 2D colormap. (B) Protein production time-courses under different levels of mRNA and protein
degradation rates. Baseline simulation is plotted in light green color. Down-arrow indicates 0.4-fold change in the rate, up-arrow indicates 2.5-fold
change in the rate, and the dashed line indicates baseline value. Each line is marked in the heatmap with diamonds with corresponding line colors
and rate values. (C) AUC values under different mRNA degradation rates and fixed protein degradation. Each protein degradation rate is shown in the
heatmap with matching line colors and styles. Dose is fixed to 0.5 mg/kg, body weight is fixed to 139 g, and recycling is turned off.

FIGURE 6
Comparing the effect of endosomal degradation and mRNA escape rates on protein expression. Endosomal LNP degradation and mRNA escape
rates are varied by 0.2 to 5-fold simultaneously. (A) The heatmap of AUC change from baseline. (B) Protein production time-courses under different level
of endosomal degradation andmRNA escape rate. Baseline simulation is plotted in light green color. Down arrow indicates 0.4-fold change in the rate, up
arrow indicates 2.5-fold change in the rate, and the dashed line indicates baseline value. Each line is marked in the heatmap with diamond dots with
corresponding line colors and rate values. (C) AUC under variedmRNA escape rate and three fixed endosomal degradation rates. Each degradation rate is
shown in the heatmap with matching line colors and styles. Dose is fixed to 0.5 mg/kg, weight is fixed to 139 g, and recycling is turned off.
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decreasing relationship between protein AUC and recycling rate
(red dashed line). Another intriguing prediction by the model is a
bimodal relationship between protein exposure and cellular
uptake rate (kup) as illustrated by Figure 7F. Increasing
cellular uptake rate initially leads to increase in protein AUC
until a critical value (indicated by vertical dashed black line) is
reached. Increasing uptake rate beyond that critical value leads to
decrease in protein AUC (Figure 7F). Furthermore, for a given
level of mRNA degradation, protein AUC is higher in the
presence of recycling (Figure 7F solid red vs solid blue
curves). As expected, enhanced mRNA stability (lower mRNA

degradation) significantly increases exposure with or without
LNP recycling.

Predicting efficacious dose and schedule
with virtual populations

A virtual population study was conducted to investigate
efficacious dose and schedule. A cohort of N = 100 virtual
animals was created by varying the following parameters: Jin,
kup, kmRNA

deg , kescape, krecycle, ktranslation, bodyweight, BilIC, and fp.

FIGURE 7
Effect of recycling rate and re-uptake of recycled LNP. Recycling rate is varied from0 to 5/hr, and scaling factor fp is varied from0 to 0.1. (A) The time
to reach second peak in plasma mRNA level. (B) Resultant amplitude of second peak in plasma mRNA level. (C) Example of plasma mRNA time-course at
krecycle � 5 and fp � 0.05. Corresponding rates and scaling factors are marked by blue diamond on the heatmaps. The dose is fixed to 0.5 mg/kg. (D)
Protein AUC colormap as a function of krecycle and fp. (E) Sample traces for protein AUC vs recycling rates for two different values of re-uptake rates.
The location of each simulation curve is marked with the same line color and style in the heatmap in 7D. (F) Protein AUC vs. cellular uptake rate in the
presence or absence of recycling for two different mRNA degradation rates.
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All these parameters were varied based on a log-normal
distribution, with coefficient of variation set to 30%. The
mean values of krecycleandfp were set to 5 and 0.05,
respectively. Efficacious dose was defined as the percentage of
patients maintaining a bilirubin level lower than 100 nmol for
more than 80% of the treatment time. Total of five doses were
given. The efficacy threshold (Figure 8, dashed red line) was set to
95% of patients achieving bilirubin level of lower than 100 nmol.

Three groups of virtual animals are compared: those receiving
a weekly dose, bi-weekly dose, and monthly dose (Figure 8A).
The model predicts a low inflection point for the cohort receiving
weekly treatment administration (~0.1 mg/kg). Reducing dosing
frequency (from weekly to monthly) increased the dose required
to reach efficacy threshold. Indeed, the required dose for efficacy
increases to around 0.4 and 17 mg/kg for bi-weekly and monthly
dosing schedules, respectively (Figure 8A- solid red and yellow
lines). Dosage of 0.05 and 0.5 mg/kg (vertical dashed black lines
in Figure 8A) were selected to illustrate the examples of virtual
patients’ bilirubin level time-courses, as shown in the
(Supplementary Figure S8).

Identifying design features of mRNA
therapies for enhanced efficacy with virtual
patient simulations

The model was then used to identify mRNA design features that
would recover efficacy under a monthly dosing schedule. We
focused on three parameters: mRNA degradation rate, endosomal
LNP degradation rate, and the cellular uptake rate of LNP. The first
two parameters (mRNA and LNP degradation rates) were varied by
10%, 20%, 50% and 100%, and the cellular uptake rate was varied by
50%, 100%, 150% and 200%. The treatment efficacy under a range of
doses is plotted in Figures 8B–D.

Model simulations demonstrate that under a monthly treatment
schedule, reducing mRNA degradation rate would significantly
enhance efficacy (lower dose required for 95% of patients having
lower than 100 nmol bilirubin). Indeed, a 5-fold increase in mRNA
stability (Figure 8B solid red line) would reduce the efficacious dose
from 17 mg/kg to ~1.5 mg/kg, demonstrating powerful impact of
mRNA degradation rate on efficacious dosing regimen.
Interestingly, modulating endosomal LNP degradation rate does

FIGURE 8
Comparing treatment efficacy under range of doses, dosing schedules, or parameters related to LNP-mRNA design. Treatment efficacy is defined as
percentage of animals maintaining bilirubin levels lower than 100 nmol for more than 80% of treatment time. (A) Dose response curves for dosing
schedules of weekly, bi-weekly, and monthly, (B) varying mRNA degradation rate while fixing the dosing schedule to be monthly, (C) varying endosomal
LNP degradation rate while fixing the dosing schedule to bemonthly, (D) varying uptake rate of LNP by phagocytic cells while fixing dosing schedule
to be monthly. 95% threshold is indicated by the dashed red line.
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not improve treatment efficacy (Figure 8C). On the other hand,
reducing cellular uptake rate of LNP may enhance treatment
efficacy. As shown in Figure 8D, as the uptake rate is reduced to
50% of base-value, the dose required for efficacy is reduced to
8 mg/kg. Overall, the greatest impact on efficacy in a virtual
animal cohort is by modulation of mRNA degradation rate as
in Figure 8B.

Discussion

In this study, we constructed a PBPK-QSPmodel and showed its
potential to serve as a platform model within the context of enzyme
replacement therapy. In the case of mRNA-loaded LNP-based
therapy for CN syndrome, our model successfully captured the
pharmacokinetics of mRNA, synthesized protein and downstream
reduction in bilirubin level under different dosing regimens.

Local sensitivity analysis revealed that parameters most
significantly impacting protein exposure are mRNA and LNP
degradation rates, mRNA escape rate from endosomes, and
mRNA translation rate. The analyses suggest that the stability of
mRNA and LNP are the most important factors for enhancing
encoded protein expression and exposure. This finding is consistent
with experimental results indicating that PEG-lipids on LNP surface
are crucial for particle stability and circulation half-life (Hald
Albertsen et al., 2022) and modification in LNP surface
properties can significantly modulate downstream protein
expression. Indeed, protein expression can be different by as
much as 50-fold depending on the LNP surface characteristics
(Arteta et al., 2018). Simulations predicted a highly nonlinear
dependence of liver AUC of encoded protein with mRNA
degradation rate, providing basis for the use of QSP modeling to
optimize mRNA stability early in development to achieve optimal
levels of protein exposure. The highly sensitive dependence of
protein exposure to the mRNA escape rate is also consistent with
experimental data suggesting that escape rate is the limiting step in
protein expression (Arteta et al., 2018) and underscores the
importance of examining the pKa value of the LNP, that is
related to the protonation of the LNP within the endosome
(Patel et al., 2021). Although less sensitive, it was also suggested
that protein exposure may be influenced by the cellular uptake rate
of LNP which may be modified by particle size. Previous
mathematical models predict that time required for receptor
mediated endocytosis of nanoparticles may be dependent on LNP
size (Gao et al., 2005; Zhang et al., 2015). Experimental work also
indicates that the biodistribution of mRNA loaded LNPs is affected
not only by the delivery route but also by particle sizes, with smaller
LNPs resulting in more accumulation in the liver or spleen, and
larger LNPs remaining and accumulating at the injection site (Di
et al., 2022). Another study suggests that the uptake rate of
nanoparticles may depend linearly on the radius of the cell,
highlighting the need to optimize LNP uptake rates for delivery
to cells of different sizes (Khetan et al., 2019).

We next attempted to identify mechanisms contributing to
potential second peak in mRNA PK and its implication for PD
response. LNP redistribution and recycling have been observed in
LNP based therapies (Goel et al., 2020; Abdelhady et al., 2023) and
the model provided a platform to study this effect in silico given the

absence of mechanistic empirical data. Simulations indicated that
this second peak is formed under fast recycling rates and slow re-
uptake rates. This implies that in order to observe a visible second
peak in plasma mRNA, LNP must be recycled on the timescale of
minutes with slow rate of re-uptake (1%–5% of base value).
Simulations identified two different profiles for the relationship
between protein AUC and recycling rate. Under a slow re-uptake
rate (<0.0025 of base uptake rate), protein exposure decreases as the
recycling rate increases. This observation is consistent with
experimental data where siRNA delivery was shown to be greatly
reduced as a result of exocytosis of the internalized siRNA from the
late endosomes (Sahay et al., 2013). For sufficiently high re-uptake
rates (>0.01 of base uptake rate), simulations predict a
monotonically increasing relationships between protein exposure
and recycling rate. To our knowledge, there is currently no
experimental data to test this prediction.

In the context of liver enzyme replacement therapy, the
existence of LNP recycling is predicted to lead to either
upregulation or reduction of protein exposure so that any
perturbations in LNP recycling would be expected to significantly
modulate downstream PD response. Another finding that may be
significant for design of LNP-mRNA is prediction of bimodal
response between protein AUC and cellular uptake rate. Indeed,
for cellular uptake rates above a threshold, the relationship between
protein AUC and uptake rate is monotonically decreasing. Further,
the bimodal relationship can be modulated by mRNA degradation
and recycling rates, highlighting the need to consider complex
interaction between mRNA stability and cellular uptake rate in
LNP-mRNA design. Previous data have shown less potency for LNP
systems that contain rapidly dissociating PEG-lipids (Chen et al.,
2016). Together with the hypothesis that LNP properties are
modified during the recycling process (Maugeri et al., 2019), we
would expect a complex interplay between LNP uptake, recycling,
and downstream protein expression. The model described here
serves as a platform to investigate different hypothesis related to
the interaction between LNP properties and the impact of LNP
uptake, recycling, and re-distribution on downstream
protein exposure.

A powerful application of QSP modeling is the ability to
generate virtual populations and perform trial simulations in
silico (Cheng et al., 2022). We examined how treatment efficacy
would change for the same virtual animal cohort under different
dosing regimens. As expected, increasing dosing interval increased
the dose required for efficacy highlighting critical role of dosing
frequency in modulation of efficacy and the rapid loss of efficacy
with reduced dosing frequency. This result was an impetus to further
investigate whether efficacious dose can be substantially lowered by
adjusting parameters relevant to the design of LNP-mRNA.
Accordingly, mRNA degradation rate and LNP uptake rate could
significantly lower efficacious dose level for monthly dosing. The
impact is particularly strong for mRNA degradation indicating that
perturbations in mRNA stability would profoundly impact
efficacious dose. Intriguingly, manipulating the endosomal
degradation rate of LNP did not significantly alter treatment
efficacy. This result was puzzling since our initial sensitivity
study revealed a high model sensitivity to endosomal degradation
rate. To understand this effect, we performed sensitivity analysis by
including LNP recycling mechanism and discovered that in the
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presence of recycling and redistribution of LNP, the model
sensitivity towards endosomal degradation decreases significantly
(see Supplementary Figure S9). This result highlights the need for
more detailed experimental investigation of the mechanisms
underlying LNP recycling and exocytosis as potential pathways
for tuning downstream protein exposure and PD response.

Another intriguing observation that emerged from our study
pertains to potential improvement of efficacious response achieved
through reduction of cellular LNP uptake. Model simulations
suggest that as the rate of cellular uptake is reduced from
baseline, the treatment response in animal cohorts is enhanced.
This result is explained by Figure 7F, demonstrating that increasing
uptake rate above a threshold level would in fact reduce protein
AUC due to simultaneous contribution of LNP and mRNA
degradation rates and cellular uptake rate at the level of escaped
mRNA that is subsequently translated to protein. We indeed
observed enhanced mRNA accumulation due to a higher uptake
rate, which would result in lower protein production due to LNP and
mRNA degradation, as shown in Supplementary Figure S10. These
results highlight the complex nature of interaction between different
mechanisms contributing to encoded protein expression and
emphasize the need to apply mechanistic model-based
approaches very early in the process of mRNA design to help
optimize LNP and mRNA properties for achieving optimal
efficacy and therapeutic index.

Our model has several limitations. The current model does not
include the transport of macrophages between tissue compartments,
and therefore, does not portray the transport of LNP-mRNA with
cellular transport. The model assumes linear rate of uptake by the
endothelial and phagocytic cells and therefore does not account for
potential target mediated disposition of LNPs that may manifest as
nonlinear PK profile. The focus of the model has been on
intravenous administration of LNPs. To simulate other routes of
administration such as subcutaneous or intramuscular, additional
skin and muscle sub-compartments need to be included in the
model. Another important aspect of LNP dynamics that is not
included is the impact of innate immune response on the PK/PD
properties of LNP-mRNA therapeutics (Muslimov et al., 2023).

Despite its limitations, our model establishes a general PBPK-
QSP platform to investigate LNP-mRNA biodistribution and
downstream protein exposure and PD. Current model
successfully captures the experimental PK/PD data and
provides an initial evaluation of critical parameters for
treatment optimization. The platform model can be applied to
other disease areas related to enzyme replacement therapy
(An et al., 2017; An et al., 2019; Attarwala et al., 2023).
Another strength of the model presented here is that it
explicitly tracks drug deposition and protein expression in
Kupffer cells, which have been shown to be one of the major
sites of LNP accumulation and gene expression following
LNP-mediated mRNA delivery (Witzigmann et al., 2020).

In all, this work introduced a platform PBPK-QSP model for
mechanistic investigation of LNP-mRNA mediated protein
replacement therapy. While the current model is applied within

the context of Crigler-Najjar syndrome, it is designed to serve as a
platform that can be adapted to be broadly applied across
rare diseases.
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