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Various chemical and physical methods have been proposed for the synthesis of
nanoparticles (NPs). However, these methods have disadvantages, such as high
energy loss and high capital requirements. To overcome these problems,
alternative methods for NP synthesis, such as biological or green synthesis,
are favoured to overcome these problems. Green synthesis of NPs is
environmentally friendly, economical and non-toxic. This review examines the
history of green synthesis, focusing on using environmentally friendly methods.
The integration of machine learning into NP production and a range of NP
applications in healthcare, disease treatment and the environment are also
covered.

KEYWORDS

green synthesis, nanomaterial, machine learning, sustainable, nanotechnology,
healthcare

1 Introduction

One of the foundations of the current nanoscience revolution is the semiconductor
nanocrystal as a nanomaterial (Kambhampati, 2021). The size of nanoparticles (NPs) is
usually smaller than 100 nm (>1 nm) and due to their smaller size, they are chemically stable
(Das, 2017; Marslin et al., 2018). The core of nanobiotechnology is the production of NPs
and other nanomaterials, which are used in various industries such as electrochemistry,
electrical and mechanical engineering, cosmetology, food, pharmaceuticals, medicine and
agriculture (Najahi-Missaoui et al., 2020; Khan et al., 2022). In recent years, the U.S. Food
and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) have
approved several pharmaceutical companies for the use and development of
nanotechnology-based drugs (Halwani, 2022).

Magnetic NPs derived from iron (Fe) are being actively explored for medical diagnosis
and therapy, including cancer treatment (Dürr et al., 2013), sorting and manipulation of
stem cells (Barrow et al., 2015), drug delivery (Estelrich et al., 2015), genome analysis (Tang
et al., 2020) and magnetic resonance imaging (Zhao et al., 2020), and copper (Cu) NPs are
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used as biosensors and electrochemical sensors (Qing et al., 2019).
Many silver (Ag) NPs are commonly used to treat viral and
microbial infections (Salleh et al., 2020). Platinum (Pt) NPs have
recently been investigated and used for the production of anticancer
drugs (Abed et al., 2022).

Nanomaterials are synthesised using two methods, namely, the
top-down and the bottom-up approach (Usman et al., 2020). The
top-down approach is usually done by physical processes such as
vaporisation, lithography, laser ablation, spraying, hydrolysis, photo,
irradiation and supersonic. In this method, a larger molecule is
broken down into atoms or ions that are much smaller (Gutiérrez-
Cruz et al., 2022; Harish et al., 2023). Co-precipitation,
photochemistry and reduction are chemical methods that can be
used in the bottom-up approach (Wang et al., 2021; Sajid, 2022). The
bottom-up method involves using microorganisms plants, algae,
bacteria and fungi (Salem and Fouda, 2020; Karunakaran
et al., 2023).

This review deals with the green synthesis of nanoparticles
through environmentally friendly methods. Different applications
of NPs in therapeutics and other fields have also been discussed.

2 Background of green synthesis

Green synthesis (GS) refers to the biological production of NPs
using enzymes from microorganisms or phytochemicals or other
sources (plants, algae, fungi, etc.) (Jeevanandam et al., 2022; Sharma
et al., 2022). GS is a safe, economical, environmentally friendly and
clean method of producing nanomaterials. It uses plants and other
biological materials such as bacteria, fungi and algae as substrates
(Huston et al., 2021; Dikshit et al., 2021). Many variables can affect
the nature and size of NPs, depending on the method and
component used for production, including temperature, particle
size, pH, extract concentration, reaction time, solvent used and
surface charge (Lombardo et al., 2020; Shafey, 2020; Usman et al.,

2020). Another important parameter for characterising NPs is the
type and intensity of the surface charge, which influences the
electrostatic interactions between NPs and their environment
(Modena et al., 2019). The final shape and size of NPs are
determined by various active molecules and precursors, including
a metal salt (Dikshit et al., 2021). Phytochemicals (amides,
terpenoids, carboxylic acid, ascorbic acid, etc.) can convert metal
salts into metal NPs. These potent phytochemicals present in the
extracts are the focus of extensive biodiversity research for green
production of NPs (Md Ishak et al., 2019).

3 Production of nanoparticles

3.1 Microbial synthesis

Various microorganisms - from bacteria, fungi and
actinomycetes to viruses - have been tested for their suitability
for the synthesis of NPs. They are used for biocorrosion,
bioremediation, biomineralization, bioleaching and other
applications in different industries (Dikshit et al., 2021).
Microbial synthesis is favoured due to the numerous advantages
it offers. They also have advantages such as scaling up the process
and other processes associated with synthesis (bottom-up or top-
down approaches) (Dikshit et al., 2021) (Supplementary Table 1A).

3.2 Nanoparticles from algal sources

In contrast to plants, algae (microalgae and macroalgae) do
not require any special additional chemicals (Mukherjee et al.,
2021). The production of NPs using algae is referred to as phyco-
nanotechnology (Chaudhary et al., 2020). Algae contain a variety
of phytochemicals, proteins and pigments that are ideally suited
as bioproducts for the production of NPs. Algae have shorter
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growth times (high growth rate), are easier to process, less
expensive, require fewer nutrients and are non-toxic. The
production of NPs in the solution containing algal extract and
metal solution is indicated by the change in colour. The colour
change indicates that the metal ions are in a zero-valent state. In
the production of gold (Au) NPs with Ulva intestinalis and
Rhizoclonium fontinales, there was a visible colour change
from green to purple in the thallus (Chaudhary et al., 2020).
Similarly, the colour of the cultured mixture of algal biomass of
Clavulina humicola together with Ag nitrate salts changed to
yellow, indicating the formation of AgNPs (Chan et al., 2022).
Many other algal species such as C. humicola, Padina boergesenii,
Gracilaria corticate, Anabaena doliolum and Spirulina were used
to produce NPs (Supplementary Table 1B).

3.3 Virus-derived nanoparticles

Plant viruses are preferred for the GS of NPs to minimise the risk
of the virus interacting with human proteins and causing toxic side
effects, infections and immune responses (van Kan-Davelaar et al.,
2014). Plant viruses are also ideal because they can self-assemble
around a nanoparticle in vitro and contain about 10 nm³ of particles
(Alemzadeh et al., 2018; Zhang et al., 2018). These properties are
mainly used to produce plant-derived viral NPs that are used for
targeted cancer treatment (Zhang et al., 2018; Venkataraman and
Hefferon, 2021).

Plant viruses can also be used as size-limiting vessels for the
production of NPs. Different sizes of co-particles produce virus-
like particles with different properties and distinct symmetries.
Particles composed of smaller NP cores are smaller than those
composed of large cores (Liu et al., 2021). The process for
producing plant viral NPs involves infecting the plant leaf
with the plant virus. There are several forms of the viral
capsid and it can be divided into different subunits such as
the inner, middle interface and outer. This enables numerous
applications for a single viral NP (Chung et al., 2020; Steinmetz
et al., 2020; Nooraei et al., 2021).

Viral NPs have protein monomers and encapsulate negatively
charged nucleic acids. This approach has been used to encapsulate
complexes of negatively charged polymers and cytotoxic drugs such
as doxorubicin so that the viral NPs can be used for targeted drug
delivery systems (Krissanaprasit et al., 2021; Li and Champion,
2022). Encapsulation of these synthetic NPs in viral NPs ensures
biocompatibility, prevents aggregation and enables bioconjugation
of functional ligands, such as targeting molecules, to achieve tissue
specificity (Färkkilä et al., 2021; Tufani et al., 2021). Bio-templating
is a process that mimics the process of bio-mineralisation, i.e., the
formation of minerals through the metabolic activities of
microorganisms (Homaeigohar, 2020; Magdum et al., 2024).
Protein cages for inorganic nanoparticles: The exterior and
interior of the Cowpea chlorotic mottle virus capsule are
chemically different environments (Kumari et al., 2021). The
inner surface is more positively charged than the outer surface so
it can serve as a nucleation site for crystal growth. The inner cavity of
the virion restricts mineral growth. Therefore, a spherical
nanoparticle with a maximum diameter of about 28 nm is
formed (Chakravarty and Rao, 2023).

3.4 Plants and their extracts: reducing and
stabilizing agents

The simplest green production method for the production of
metal and metal oxide NPs is the use of plant extracts
(Jeevanandam et al., 2022). Various metabolites or chemical
substances can be found in plant extracts. They can act as
stabilisers that enable the biodegradation of metal ions to NPs.
For example, to produce gold NPs, a metal salt solution such as
HAuCl4 and AgNO3 is added to the plant extract, and amino
groups (-NH3) help to degrade the metal ions from the salt solution
(Bharadwaj et al., 2021). The activation phase, the growth phase
and the process completion phase are all involved in the synthesis
of NPs with plant extracts. In the activation phase, the reduction of
metal ions takes place. As a result, reduced metal atoms are
formed, followed by a phase change of the nucleated metal
atom to the metal ion. The newly formed metal ion grows and
is further reduced in the subsequent growth phase. Plant tissues
from Ocimum sanctum, Desmodium trifolium, Cinnamomum
zeylanicum, Piper longum, Syzygium cumini and Melia
azedarach have been used to reduce Ag ions to particle sizes of
5–40 nm (Gour and Jain, 2019). According to Yadi et al. (2018),
extracts from Calotropis procera and Punica granatum are mixed
with Cu acetate to produce CuONP. The plant extracts can calcify
Cu acetate to CuNPs (Supplementary Table 1B).

3.5 In vitro synthesis of nanoparticles

The development and synthesis of NPs using in vitro approaches
is still in its infancy. Only a few reports have demonstrated the use of
in vitro-based synthesis of NPs (Satyavani et al., 2011; Iyer et al.,
2016; Jayappa et al., 2020). Satyavani et al. (2011) and Iyer et al.
(2016) synthesised 31 and 1 nm AgNPs from stem-derived calli
extracts of Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) and
calli culture of Vigna radiata (L.). R. Wilczek (Fabaceae) using
Murashige and Skoog (MS) medium supplemented with different
plant growth regulators. Zinc oxide (ZnO) NPs (5–20 nm) were
synthesised by Jayappa et al. (2020) using the leaf callus of
Mussaenda frondosa L. cultured on MS medium with NAA
2 mg/L and kinetin (kin) 4 mg/L. Therefore, the in vitro
approaches for the synthesis of NPs need to be explored as they
could be a potential method for the rapid and efficient
generation of NPs.

4 Characterization of nanoparticles

Common techniques used to characterise NPs are surface-
enhanced Raman spectroscopy (SERS), X-ray diffraction (XRD),
X-ray photoelectron spectroscopy (XPS), energy dispersive
spectroscopy (EDS) and ultraviolet (UV)-visible spectroscopy,
Fourier transform infrared spectroscopy (FTIR), atomic force
microscopy (AFM), atomic absorption spectroscopy (AAS),
dynamic light scattering (DLS), scanning and transmission
electron microscopy (SEM and TEM) and high angle dark field
(HAADF) (Ingham, 2015; Ealias and Saravanakumar, 2017; Sharma
et al., 2022; Vijayaram et al., 2024).
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5 Green synthesis: machine learning
and in silico approaches

The GS of NPs depends on various parameters, such as the
optimisation of the chemical processes involved in the synthesis, the
required precision and their production. These steps are usually very
expensive, labour-intensive, dependent and time-consuming. The
synthesis processes also require control of reagent concentrations,
temperature, mixing conditions and the reactor (Tao et al., 2021;
Nathanael et al., 2023). Varying the type, amount and concentration
of stabilising agents could lead to a change in the size of the NPs to be
synthesised (Tao et al., 2021; Nathanael et al., 2023). Due to the
progress and need for data collection and processing, artificial
intelligence and machine learning have been integrated with
nanotechnology in the synthesis and prediction of characteristic
features of NPs (Shafaei and Khayati, 2020; Mekki-Berrada et al.,
2021; Nathanael et al., 2023).

6 Factors affecting the synthesis

Various factors influence or determine the synthesis of NPs,
including features, characterisation, application, types and
concentrations of stabilisers, ionic stabilisers (citrate) and
pH (Patra and Baek, 2015; Nathanael et al., 2023). Some of the
other important parameters are the concentrations of the extracts
and raw materials used, the pH of the solution, the temperature, the
size of the raw materials and the process of synthesising the NPs
(Patra and Baek, 2015).

Process of synthesis: There are different types of NP synthesis,
namely, physical (arc discharge, mechanical grinding, electron beam
lithography, etc.), chemical (chemical reduction of metals,
electrolysis, microemulsion, etc.) and biological (with plant
extracts, algae, enzymes and biomolecules, etc.). However,
biological approaches to synthesise NPs are non-toxic and use
environmentally friendly materials and are therefore
environmentally friendly, efficient and more acceptable than
conventional methods (Patra and Baek, 2014).

pH: Maintaining pH is an essential factor as it may be involved
in the synthesis of NPs. The pH plays an important role in living
organisms as it influences the basic processes and therefore requires
optimal conditions for better functioning (Patra and Baek, 2014).

Temperature and pressure: It is also an important factor in
determining NP synthesis. It can be observed that physical methods
require about >350°C, while chemical methods require about 350°C
or less. However, biological methods require lower ambient
temperatures (<100°C). The temperature of the medium is crucial
as it helps to determine the nature of the NPs (Patra and Baek, 2014).

Time: Time is one of the most important factors in the synthesis
of NPs, as it controls the formation of NPs (quality and type), which
depends on the time allowed for the reaction and incubation time.
The time allowed for storage can influence the shelf life of the NPs
and the aggregation of the NPs.

Biomolecules and functional groups: The functional groups (thiols,
amines, sulphides, phosphines, carboxylic acids) have a major influence
on the nature of NPs to be synthesised and can change the surface
coating of theNPs. Therefore, the immobilisation of the groups will lead
to the synthesis of the desired NPs (Shreyash et al., 2021).

Other factors: Plants and microorganisms produce secondary
metabolites that serve as reducing and stabilising agents for the
synthesis of NPs. Particle size, pore size and shape play an
important role in determining the properties of NPs. It has
been found that the melting point of NPs decreases with
increasing particle size in the nanometre range (Akbari et al.,
2011). Similarly, the light conditions (quality, exposure time and
intensity) can alter the synthesis of NPs.

7 Applications of nanoparticles

There are various applications of NPs in different fields and
sectors such as agriculture, environment, targeted drug delivery,
cancer treatment, food and beverage industry and paints, etc. Some
of these applications are described below.

Cancer treatment: Cancer is one of the biggest global challenges.
Due to their anti-proliferative and cell death-inducing properties,
NPs (AgNPs, AuNPs, etc.) are very actively used in the treatment of
cancer. As they are small particles, they are easily circulated,
bioavailable, soluble, and non-toxic and are distributed and
transported by capillaries (Dikshit et al., 2021; Shreyash et al.,
2021; Ying et al., 2022).

Targeted drug delivery: The use of nanoparticles as effective
drug delivery systems is of great importance due to their size,
bioavailability, continuous drug release, significant drug
delivery capacity, prolonged circulation time, effective
intracellular penetration and ability to protect the active
ingredient from physiological barriers. The efficacy of cancer
treatment can be improved by dynamically focusing drugs at
preferred sites in vivo (Khatik, 2022). Biomaterials (growth
factors with living cells) or bioinks based (quantum dots,
polymeric micelles, gelatin methacrylate, etc.) on NPs have
potential applications in tissue engineering, regeneration and
treatment through artificial techniques such as human organs
(Salahshour et al., 2024). Similarly, nanocomposites (microbial-
and plant-based gums) can also be used for different therapeutic
purposes (cancer, water treatment, etc.) (Dhanda et al., 2025).

Anti-microbial properties: GS-NPs are effective against a range
of diseases caused by pathogens such as fungi, viruses and bacteria.
They can reduce the likelihood of antibiotic resistance and prevent
infectious diseases. This creates new opportunities for the
improvement of environmentally friendly nanobased
antimicrobials (Vanlalveni et al., 2021). AgNPs have been
reported to be excellent against multidrug-resistant strains of
Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus
and Escherichia coli (Roy et al., 2019).

Agriculture and environment: In agriculture, the use of nano-
fertilisers has recently increased and attracted great interest
(Dikshit et al., 2021). However, biofertilisers (TiO2, SiO2

including others) are preferred over fertilisers and the former
can also be applied to plants using nanocarriers (Kumar et al.,
2021; Zafar et al., 2024), taking advantage of the benefits of
nanotechnology. The NPs are also used in bioremediation
(metallic NPs), water purification (or wastewater treatment)
(MgO, TiO2 and ZnO), soil purification and detection of
heavy metal NPs (arsenic, chromium, mercury) (Dikshit
et al., 2021).
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Food preservation, packaging, supplements and value addition:
NPs (Ag-Cu, Au, Pt) are used in the food industry for the
production, storage, packaging and transport of products. They
increase shelf life, reduce the risk of microbial growth
(nanocomposite of starch and sorbic acid), increase the
absorption of vitamins, and vitamin-containing sprays with
nanodroplets (Fe, Zn) as nano-nutrients and develop
nanoparticles for smart packaging to trap oxygen and moisture
absorbers (Dikshit et al., 2021).

Renewable energy: Renewable energy is another area where
green synthesised NPs are very promising (Samuel et al., 2022).
Nanoparticles are used to improve the efficiency and performance of
solar cells, photocatalysts and energy storage devices. For example,
green synthesised ZnO nanoparticles produced from papaya leaf
extracts have been employed to improve the ability of solar cells to
store light, resulting in higher energy conversion efficiency
(Rathnasamy et al., 2017; Ali et al., 2023).

8 Limitations of green synthesis of
nanoparticles

The common problem encountered in the NPs synthesis is the
ability to control the size, regularity and shape of the particles
(Shreyash et al., 2021).

Consistency: The use of plant extracts or plant calli can influence
NP synthesis. The growth conditions such as the pH value and
temperature of the plants used in the GS also affect the consistency
of the synthesis of the nanoparticles. For example, the absorption
peaks of plant extracts and calli in Ag nitrate solution for the AgNP
production differ significantly, resulting in different properties (Ying
et al., 2022).

Synthesis pathway: The basic technique involves the use of
solutions of biological components (microbes, plants or their
extracts) mixed with metal salts such that metals get reduced to
produce NPs. As a result, the GS technique is in most cases very
arbitrary and without any control over product quality (Pal
et al., 2022).

Size and shape: During the manufacturing process, there is
limited control over the shape and dimensions of the desired end
product. The final dimensions of the NPs produced also depend on
the starting solutions and stabilising agents used (Baig et al., 2021;
Huston et al., 2021; Pal et al., 2022).

Commercial production: Green NPs are produced according
to need and application, so the desired size also varies according
to use thus limiting the scope for commercial purposes (Gupta
et al., 2023).

Reaction time (RT): The RT varies depending on the
biochemicals and biosynthesis pathways used. It can be shorter
or longer, which affects the properties of the end product (Alharbi
et al., 2022; Ying et al., 2022).

Stability: The stability of the NPs produced by GS is
impaired. The biological materials may also contain
impurities in the form of free radicals that affect their
stability (Gupta et al., 2023). There is a need for
standardisation of GS processes as batch-to-batch variations
are observed in GS (Rogers and Jensen, 2019).

9 Conclusion and future prospects

Green synthesis enables efficient use of resources and cost
efficiency. The nanoparticles produced by GS are highly
biocompatible and can therefore be used safely as nanomedicines.
Despite its importance, GS technology is subject to limitations in
terms of scalability, reproducibility and standardisation. In
conclusion, green synthesis is an important technique for the
environment-friendly production of nanoparticles and represents
a promising direction for sustainable nanotechnology.
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