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When nano-sized objects are introduced into biological systems they almost
inevitably will be exposed to a compositionally complex fluid environment. It is a
general observation that nanoparticles in such environments rapidly get covered
by a biomolecular corona composed of proteins, lipids, and sugars that adsorb to
the particle surface.While this phenomenon has been extensively studied from an
experimental point of view, and to some extent also theoretically and
computationally, we still lack a solid theoretical framework. Here we
investigate the kinetics of corona formation, particle-to-particle variability in
corona composition, and the spatial vicinity of different biomolecules in the
corona. We do so under the assumptions that biomolecular adsorption occurs
randomly, that adsorption is irreversible, and that there are no biomolecule-
biomolecule interactions. We derive analytical formulae but also illustrate their
outcomes using for experiments reasonable parameters. Overall, our results,
derived under simplifying assumptions, are intended as useful reference points
against which both experimental and more realistic computational and
theoretical studies can be compared.
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Introduction

The human body may be exposed to nano-sized objects, nanoparticles, from several
sources, including from traffic pollution (Rönkkö et al., 2017), nanoplastics in the water
(Leslie and Depledge, 2020; Mitrano et al., 2021), and food additives (Peters et al., 2012).
Meanwhile, nanoparticles may also be deliberately introduced into the human body, as a
means of delivering drugs (van der Meel et al., 2019; Mitchell et al., 2021) or as vaccines
(Friedrichs and Bowman, 2021; Nel and Miller, 2021). In all of these situations, the
nanoparticle will invariably be exposed to a compositionally complex biological fluid, such
as blood (for injected nanoparticles), lung surfactant fluid (inhaled), and gastrointestinal
fluid (ingested) (Soliman et al., 2024). Unless specifically designed to avoid it (Barz et al.,
2024), the sheer number of different types of biomolecules in biological fluids, together with
the nanoparticle interfacial energy, typically leads to the adsorption of a layer of
biomolecules onto the nanoparticle surface – the formation of a nanoparticle
biomolecular corona (Monopoli et al., 2012). Experimentally it has been observed that
for many nanoparticles, the biomolecular corona may be further subdivided into a hard and
soft corona (Walczyk et al., 2010). The hard corona is those biomolecules that remain with
the nanoparticle for long periods of time, at least several hours (Walczyk et al., 2010), while
the soft corona is those biomolecules that exchange much more rapidly, seconds or quicker
(Milani et al., 2012), with the surrounding fluid. In many cases, the hard corona
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biomolecules are likely to be those that bind directly to the
nanoparticle surface, while the soft corona biomolecules bind to
other biomolecules in the corona, sometimes building up successive
biomolecular layers (Milani et al., 2012). Fundamentally, though, it
seems preferable to define the hard and soft corona biomolecules
based on residence times. Given that many important biological
processes occur at minute timescales, the hard corona has been
identified as the de facto biological identity of the nanoparticle
(Lynch et al., 2009). Consequently, much effort has been devoted to
studying the composition of the hard corona, both in terms of
proteins (Walkey and Chan, 2012), lipids (Hellstrand et al., 2009;
Papafilippou et al., 2023), and sugars (Wan et al., 2015). The
composition naturally depends on the biological fluid in
question, giving a distinct biological identity, and hence
consequent biological interactions, depending upon the exposure
route (Westmeier et al., 2015).

While the majority of studies have investigated the biomolecular
corona experimentally, it has also been researched computationally.
Most such studies have been performed using coarse-grained
methods, ranging from modelling the biomolecules as ellipsoids
(Vilaseca et al., 2013), to molecularly more resolved approaches
(Ding et al., 2013; Wang et al., 2013; Shao and Hall, 2016; Power
et al., 2019), but studies with full atomistic resolution have likewise
been performed (Yu et al., 2016; Moya et al., 2019). Kinetic models of
increasing detail have also been utilised, starting with simple rate
equations (Dell’Orco et al., 2010), to rate equations taking into
account multiple binding (Darabi Sahneh et al., 2013; Rouse and
Lobaskin, 2021), to rate equations taking into account biomolecule-
biomolecule interactions (Vilanova et al., 2016). Many aspects of the
biomolecular corona nevertheless remain unresolved, both from an
experimental and a more theoretical/computational perspective,
including its kinetics and dynamics, particle-to-particle
variability, and spatial organisation, among others.

Here we study the kinetics, composition, and spatial
configuration of the hard biomolecular corona using simple
theoretical models. We do so under the assumptions that
biomolecular adsorption occurs randomly, that adsorption is
irreversible, and that there are no biomolecule-biomolecule
interactions. While these assumptions may not all be fulfilled in
reality, we stress that the purpose of this work is not mainly to
describe experimental results; rather, the objective is to provide a
theoretical framework within which to interpret experimental, and
even computational and theoretical, results. An example is perhaps
best to illustrate: Below we will consider the probability that two
different types of biomolecules in the corona are in the vicinity of
each other. We will do so without taking into account any
interactions between the two biomolecules. This may be a useful
approximation for some biomolecule pairs, and the results can then,
indeed, be directly compared to experiments. However, say that
experimentally it is observed that two biomolecules are often close to
each other in the corona, and it is suspected that this is due to a
favourable interaction between them (Monopoli et al., 2012). How
could we know whether this is, indeed, the case, or whether it is just
by chance? Our results would be useful to resolve this question, as
they provide the baseline against which to compare experimental
results. The situation is quite similar to the ideal gas, which certainly
is sometimes useful as an approximation to a real gas, but which is
also incredibly useful as the baseline against which observations are

measured. It is in this sense that we consider this work a
useful framework.

From this perspective, we consider three separate problems
related to the biomolecular corona: We start by considering the
kinetics of corona formation, with the specific aim of deriving the
timescale for complete coverage. We next consider the variability in
biomolecular corona composition between particles, that is, how
different is the composition particle to particle? Finally, we calculate
the probability that two biomolecules in the corona are in the
vicinity of each other. Throughout, we focus on analytical results
and illustrate the magnitude of them using realistic parameters
wherever possible.

Results

Scope and initial considerations

For definiteness we will only consider spherical nanoparticles.
While this limits the applicability somewhat, it should be noted that
spherical particles remain the most studied systems experimentally,
so this is in line with experimental efforts. Moreover, we will assume
that all particles are the same size, which is often approximately true
experimentally. We also focus on the hard biomolecular corona and
assume it is formed by those biomolecules that bind directly to the
nanoparticle surface (though fundamentally, as already mentioned,
the hard corona is defined by residence time). PEGylated
nanoparticles, and particles that have been designed to avoid
biomolecular adsorption in general (Barz et al., 2024), are thus
out of scope of this work.

Furthermore, we will assume that the particle is substantially larger
than the biomolecules that adsorb to it. Admittedly, typical nanoparticle
sizes whose biomolecular corona has been studied in experiments range
from hundreds of nanometres to just a few nanometres. However,
nanoparticles in the low nanometre range are of similar size, or even
smaller, than many biomolecules, raising the question of whether
binding should be described as the formation of a nanoparticle
corona or nanoparticle binding to biomolecules. Additionally, several
other effects, such as the nanoparticle high curvature relative to the size
of the biomolecules, likely become important. Such effects may lead to
entirely new phenomena and so it seems reasonable to treat the low
nanometre end as a separate case. Focussing on particles substantially
larger than biomolecules also has the practical advantage that several
mathematical formulae below can be expanded to obtain a
simpler form.

While the biomolecular corona typically is made up of a very
diverse set of biomolecules, it is necessary to make simplifying
assumptions in order to find general conclusions. We will thus
assume that all biomolecules have the same size and hence occupy
the same area on the nanoparticle surface. This allows us to consider
the nanoparticle as being made up of a certain number of binding
sites, N. We will use the estimate that the number of binding sites is
given by

N ~
4πR2

πR′2 � 4 R/R′( )2 (1)

where R is the radius of the particle and R′ the radius of a
biomolecule. In principle one could augment this formula with
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an additional factor to account for that the biomolecules cannot
utilise the full surface of the particle. For example, one could
consider the maximum number of biomolecules that could
possibly bind to the particle, for which there are models available
for spherical biomolecules (Soloviev et al., 2022); for a nanoparticle
substantially larger than the biomolecule, such an approach would
imply that we should simply multiply the right-hand side of
Equation 1 by π/(2√3) ≈ 0.91, the maximum packing density of
disks in two dimensions. It is, however, far from clear that
biomolecules in the corona can utilise the full extent of
maximum packing and random packing might be a better
approximation. Furthermore, matters get even more complicated
when the corona contains a complex mixture of different
biomolecules of different sizes and, for example, smaller
biomolecules could fill the gaps left by bigger ones. Overall, we
thus use the simple estimate represented by Equation 1 to get the
general dependence on the parameters roughly right, but the reader
should keep in mind its approximate nature and also consider
potential improvements valid under special circumstances (for
example, for coronae formed by a single type of a spherical
biomolecule).

We assume that the biomolecules in the biological fluid are
present in sufficient numbers compared to the biomolecules that
actually adsorb, so that we do not have to take into account depletion
of a certain biomolecule from the biological fluid. This is not
necessarily always the case experimentally, as sometimes
experiments are conducted using low biomolecular
concentrations, high nanoparticle concentrations, and/or large
nanoparticles (which, in combination with a high nanoparticle
concentration, leads to a high nanoparticle adsorption site
concentration). Furthermore, some biomolecules that adsorb to
nanoparticles are present in such low abundance in the biological
fluid that their concentration may actually be lower than the
nanoparticle (adsorption site) concentration, implying the
possibility of their depletion. However, if we consider a
nanoparticle that incidentally ends up in a human being in real
life, then the nanoparticle concentration is likely to be very low
compared to the biological fluid. Thus this assumption is often the
more relevant one for realistic situations.

While many of our results will be in terms of (dimensionless)
variables, it is nevertheless useful to have specific systems at hand for
illustrative purposes and to demonstrate the magnitude of the
effects. Typical experimental control parameters include the type
of biomolecule dispersion, as well as its concentration, together with
nanoparticle size. For the biological dispersion, let us consider
experiments on cells which are often conducted with cell culture
medium supplemented with bovine serum at a concentration of
10%, corresponding to around 4mg/mL. Aside from proteins, such a
dispersion also contains other biomolecules, such as lipids and
sugars, that also form part of the corona. As concentrations of
the individual biomolecular species are not so easy to come by, we
only take into account the proteins for simplicity. Indeed, even if we
just consider the proteins, the number of biomolecules in serum is
not well-known, but it will be sufficient for our purposes to make an
order of magnitude estimate (Vtyurina et al., 2021). Thus, the most
abundant protein in serum is albumin, which has a molecular
weight of around 66 kDa; if we take this as a typical protein mass,
then 4 mg/mL corresponds to a molar concentration of 60.6 μM or

a number concentration of 3.6·1022/m3. Naturally, including other
biomolecular species such as lipids and sugars would make this
estimate higher.

As exemplar nanoparticles, we will consider (spherical)
nanoparticles with a radius of 25, 50, and 100 nm, which are all
substantially bigger than typical biomolecules. As for the size of ‘a
biomolecule’, this is obviously not well-defined as proteins, lipids,
sugars, etc. vary widely in size. However, for illustrative purposes we
consider the proteins which are the most well-studied. Based on a
few different proteins (Vtyurina et al., 2021), we may then estimate
that the surface area occupied by a biomolecule in the corona is
around 50 nm2, corresponding to a radius of around 4 nm. This
number would be substantially lower, for example, for a lipid, but
does correspond to the (hydrodynamic) radius of serum albumin
(Armstrong et al., 2004), the most common protein in blood plasma
(Anderson and Anderson, 2002). With these numbers in mind, we
can estimate from Equation 1 that nanoparticles of radius 25, 50, and
100 nm have around 160, 630, and 2500, respectively,
adsorption sites.

Finally, while not explicitly considered in our models, it is
perhaps worthwhile to note that the nanoparticle dispersion must
remain colloidally stable for this approach to make sense.

Kinetics of corona formation

After these initial considerations we start by considering the
kinetics of corona formation, where one of our key objectives is to
derive an analytical expression for the timescale of complete corona
formation. More specifically, we focus on the hard corona and
assume that binding is irreversible so the timescale of complete
corona formation is really the timescale of complete nanoparticle
coverage. While we thus neglect exchange dynamics of the hard
corona biomolecules, this is likely not very severe; the hard corona
has been shown to remain with the nanoparticle for several hours
(Walczyk et al., 2010), suggesting that the hard corona biomolecules
do not leave the complex by themselves and that exchange depends
upon the presence of incoming biomolecules (Monopoli et al., 2012).
As long as this remains true, the timescale of complete corona
formation thus remains the same, with or without exchange (though
the composition will change).

Let us denote a nanoparticle with n biomolecules adsorbed to
it by NP-BMn. n can range from n = 0, the bare nanoparticle with
no biomolecules adsorbed to it, to n = N, a nanoparticle where all
available adsorption sites, N, are occupied. Furthermore, we let
BM denote a biomolecule. Assuming irreversible binding, we can
then write the kinetics of corona formation as the
following scheme

NP-BM0 + BM → NP-BM1

NP-BM1 + BM → NP-BM2

..

.

NP-BMn + BM → NP-BMn+1
..
.

NP-BMN−1 + BM→ NP-BMN.

(2)

Assuming the law of mass action, this kinetic scheme then translates
into the differential equation system
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d NP-BM0[ ]
dt

� −k0 BM[ ] NP-BM0[ ]
d NP-BM1[ ]

dt
� k0 BM[ ] NP-BM0[ ] − k1 BM[ ] NP-BM1[ ]

..

.

d NP-BMn[ ]
dt

� kn−1 BM[ ] NP-BMn−1[ ] − kn BM[ ] NP-BMn[ ]

..

.

d NP-BMN[ ]
dt

� kN−1 BM[ ] NP-BMN−1[ ]

(3)

where [NP-BMn] is the concentration of nanoparticles with n
biomolecules adsorbed to them, [BM] is the concentration of
biomolecules, and kn is the rate constant for the adsorption of a
biomolecule to a nanoparticle that already has n adsorbed
biomolecules. This equation system is similar to previous
approaches (Darabi Sahneh et al., 2013; Rouse and Lobaskin, 2021).

Let us now consider the rate constant, k0, for a biomolecule
adsorbing to the bare nanoparticle. Under the stated assumptions,
we can take this rate constant directly from Smoluchowski’s theory
for colloidal aggregation kinetics (Chandrasekhar, 1943; Evans and
Wennerström, 1999; Minor and van Leeuwen, 2005); for the
association of two spherical objects of different size, the rate
constant is given by (Evans and Wennerström, 1999)

k0 � 4π R + R′( ) D +D′( ) (4)
where D and D′ are the diffusion coefficients corresponding to a radius
of R and R′, respectively. The sum of radii stem from that this is the
distance between the centres of the objects upon contact. Likewise, the
sum of diffusion coefficients takes into account the mutual diffusion of
the particle and the biomolecule; however, for a particle that is
substantially larger than the biomolecule, the diffusion is dominated
by that of the biomolecule. Under these conditions we can replace the
sum of diffusion coefficients by the diffusion coefficient of the
biomolecule, as we will shortly do, in particular because this is an
assumption that is often implicitly made in the literature. Indeed, using
the Stokes-Einstein equation for the diffusion coefficients, we find

k0 � 4π R + R′( ) kT

6πη
1
R
+ 1
R′( ) � 2

3
kT

η
2 + R/R′ + R′/R( ) (5)

where η is the viscosity of the medium, T the absolute temperature,
and k the Boltzmann constant. When the size of the particle is much
larger than the size of the biomolecule, R′/R ≪ 1, this simplifies to

k0 ~
2
3

kT/η( ) R/R′( ). (6)

In this approximation, the rate constant is consequently proportional
to the radius of the particle, implying that the rate constant for
adsorbing to a particle is higher the larger the particle. This occurs
because the probability that a biomolecule collides with a particle is
higher the larger the particle, and while the larger particle diffuses
slower, this is a smaller effect (not visible in this approximation).

Let us now consider the rate constants, kn for n = 1, 2, . . . , for
adsorbing to a particle when there are already some biomolecules
adsorbed to it. Naturally, it will be easier for a biomolecule to find an
empty adsorption site in the beginning of corona formation (n low), as

most adsorption sites are still available, and hence the rate constant
will be similar to the rate constant for adsorbing to the bare particle.
Towards the end of corona formation (n comparable to N), when
most adsorption sites are already occupied, the rate constant will be
lower as it gets increasingly more difficult to find an empty spot.
Additionally, there is the small effect that the particle diffuses slower
the larger it is, but, as just discussed, we do not expect that to play any
role in our approximation.

To begin with, we will work under the assumption that
regardless of the number of already adsorbed biomolecules, the
whole particle can be adsorbed to, that is, we will not consider the
problem of finding an empty adsorption site. This is a good
assumption in the initial stages of corona formation, but
obviously worsens as empty adsorption sites start filling up. The
utility of this assumption is that we may assume the rate constants to
be independent of the number of pre-adsorbed biomolecules and
equal to the Smoluchowski expression

kn � k0 � 2
3
kT

η
2 + R/R′ + R′/R( ) ~ 2

3
kT/η( ) R/R′( ). (7)

Under this assumption, and using that no particles have any
adsorbed biomolecules initially, the solution to the rate equation
system is given by

NP-BMn[ ] t( ) � NP[ ] k0 BM[ ]t( )n
n!

e−k0 BM[ ]t n � 0, 1, . . . , N − 1

NP-BMN[ ] t( ) � NP[ ] 1 − ∑N−1

n�0

k0 BM[ ]t( )n
n!

e−k0 BM[ ]t⎛⎝ ⎞⎠ n � N

(8)

where [NP] is the total concentration of nanoparticles, whether they
have adsorbed biomolecules or not. The expression for [NP-BMN](t)
can be reformulated into

NP-BMN[ ] t( ) � NP[ ] γ N, k0 BM[ ]t( )
Γ N( ) � NP[ ]P N, k0 BM[ ]t( ) (9)

where Γ(n) is the gamma function, γ(n,z) the lower incomplete
gamma function (Arfken and Weber, 2001; Jeffrey et al., 2007), and
P(n, z) the regularised lower incomplete gamma function (Paris,
2010). The last expression is numerically more convenient whenN is
large, as it typically is in our application.

It is evident from this equation – in fact, already from the
differential equation system – that the time dependence is given by
the dimensionless quantity

k0 BM[ ]t � 2
3

kT/η( ) 2 + R/R′ + R′/R( ) BM[ ]t ~

~
2
3

kT/η( ) R/R′( ) BM[ ]t.
(10)

This implies that the kinetics scales directly with the concentration
of biomolecules, [BM], and absolute temperature, T (assuming no
other effects, e.g., on the stability of the particle or biomolecule
dispersions). Furthermore, the kinetics also scales approximately
with the radius of the particle, R.

Another observation we may make is that the solution is
independent of the total number of adsorption sites, N, aside
from when n = N. While we have derived this result under the
assumption that a biomolecule does not have to spend time finding
an empty adsorption site, we expect this to be a good assumption in
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the initial stages of corona formation. Thus, the initial stages of
corona formation are independent of the size of the particle, in the
sense that the number of particles with n adsorbed biomolecules, for
n small, evolve in the same way regardless of the size of the particle.
(Nevertheless, there is a dependence on the size of the particle, R,
‘hidden’ in the rate constant, k0.)

More concretely, Figure 1A shows the time-evolution of the
number of particles with n = 0, 1, 2, and 3 adsorbed biomolecules. As
is natural, we observe that the number of bare particles (i.e., particles
with 0 biomolecules adsorbed) rapidly decreases with a half-life ~(k0
[BM])−1. Concomitantly, the number of particles with one adsorbed
biomolecule increases, followed, with a bit of a delay, by the number
of particles with two adsorbed biomolecules, then by the number of
particles with three adsorbed biomolecules, etc., with the delay
increasing with more biomolecules adsorbed.

Within this model, the timescale of corona formation is best
measured by the number of particles that are completely covered,
[NP-BMN]. Figure 1B shows the number of such particles as a function
of time, normalising time with the number adsorption sites per particle,
N. We observe that when the particle only has N = 10 adsorption sites,
the number of fully covered particles grows continuously until all
particles are fully covered. However, as the number of adsorption
sites (i.e., the size of the particle), increases, the transition from almost
no fully covered particles to all particles covered becomes increasingly
sharp, and is centered on k0[BM]t ~ N. Note that for the nanoparticle
radii 25, 50, and 100 nm we use as examples, the transition is sharper
than illustrated by Figure 1B, as these particle sizes all correspond to
more adsorption sites (around 160, 630, and 2500, respectively). The
sharpness of the transition is an important outcome, for it implies that
when the particle is much larger than the biomolecules, we expect the
timescale of corona formation to be given by

~
N

k0 BM[ ] �
6η

kT BM[ ]
R/R′

1 + 2 R′/R( ) + R′/R( )2 ~ 6η
kT BM[ ] R/R′( )

(11)
where we have used the Smoluchowski expression for the rate constant
and inserted the expression (Equation 1) for the total number of

adsorption sites, N. This result shows that the timescale of
corona formation is inversely proportional to the concentration
of biomolecules. Furthermore, it is directly proportional to the
radius of the particle.

Let us now estimate what this result implies in terms of explicit
numbers. As discussed above, we consider nanoparticle radii of R =
25, 50, and 100 nm, and a biomolecule concentration representing
(the protein part of) 10% bovine serum. At a temperature of 25°C
the viscosity of water is 890 μPa·s. We then find that the timescale
of corona formation is 0.2, 0.4 and 0.8 ms for particles of radius R =
25, 50, and 100 nm. In other words, compared to typical
experimental timescales (minutes to tens of minutes), corona
formation is expected to be very fast, at least under the stated
assumptions.

Let us now make more realistic, but mathematically more
complex, assumptions on the rate constants. So far we did not
take into account that it becomes increasingly difficult for a
biomolecule to find an empty site on the particle as corona
formation progresses. Determining the probability that a
biomolecule can find an empty site on a particle partially covered
by other biomolecules in some random arrangement is a formidable
problem. Nevertheless, there are useful approximate expressions
available in the literature. For instance, the classic result due to Berg
and Purcell (1977) can be used to estimate the rate constant for
adsorption to a particle when the empty sites are fairly few and well-
distributed over the surface. More complex approaches are also
available in the literature Rouse and Lobaskin (2021). Here,
however, we will use an improvement on the Berg and Purcell
formula due to Zwanzig (1990), that has a larger range of validity but
nevertheless remains fairly simple, viz.

k � 4πD′R N − n( )R′
N − n( )R′ + πρR

(12)

where the area fraction of occupied sites, ρ, is

ρ ~
nπR′2

4πR2
� n

4
R′/R( )2 (13)

so that

FIGURE 1
Kinetics of biomolecular corona formation under the assumption that the rate of adsorption is independent of the number of already adsorbed
biomolecules. Particle concentrations have been normalised with the total concentration of particles, while time has been rendered dimensionless by
multiplying with the rate constant, k0, and biomolecular concentration, [BM]. (A) Concentration of particles with 0, 1, 2, and 3 biomolecules adsorbed to
them as a function of time. (B) Concentration of particles fully covered by biomolecules as a function of time and for several different particle sizes
(i.e., number of adsorption sites, N). Aside frommaking time dimensionless, it has been further normalised by the number of adsorption sites, N, so as to
present the results on the same scale.
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kn � 4πD′R N − n

N − n + π/4( )n R′/R( ) ~
~
2
3
kT

η
R/R′( ) N − n

N − n + π/4( )n R′/R( ) ≡
≡ k0

N − n

N − n + π/4( )n R′/R( )
(14)

again using the Stokes-Einstein equation for the diffusion coefficient
and also identifying the Smoluchowski rate constant, k0. For a bare
particle (n = 0) this reduces to the Smoluchowski result, as is
reasonable. Similarly, for an almost completely occupied particle
(n = N − 1) the rate constant becomes

kN−1 ~ k0
1

1 + π/4( ) N − 1( )n R′/R( ) �
� k0

1

1 + π R/R′( ) − π/4( ) R′/R( ) ~ k0
R′
πR

� 2
3
kT

η

1
π
.

(15)

We can compare this to the result expected for a large particle of radius
R with a single patch of radius R′, for which it has been derived (Berg
and Purcell, 1977; Shoup and Szabo, 1982) that the rate constant is

kN−1 ~ 4D′R′ � 2
3
kT

η

1
π

(16)

which is clearly exactly the same result.
Compared to our approximation that the rate constant does not

change regardless of the number of adsorbed biomolecules (kn = k0), the
rate constant for the last adsorbing biomolecule is consequently reduced
by a factor πR/R′. Using a biomolecule radius of 4 nm like above, this
amounts to a reduction of around 20, 40, and 80 for a particle radius of
R = 25, 50, and 100 nm, respectively. This is a substantial reduction,
though it should of course be emphasized that this is in the very last stage
of corona formation when only a single free adsorption site remains.

Indeed, we have that

k0
kn

~
N − n + π/4( )n R′/R( )

N − n
� 1 + π

4
n/N

1 − n/N
R′/R( ) (17)

which is a quite slow-varying function of n/N and especially so for R/R′
large. Figure 2 illustrates this for a few selected radii ratios, R′/R. We

observe that the rate constant for adsorbing to a nanoparticle with n
biomolecules already adsorbed is essentially the same as if the particle
was completely bare, as long as the number of already occupied sites is
not too large. Especially for larger particles, the range for which the
particle appears to be bare is quite large; using the same conditions as
described above and a particle radius of 100 nm, the number of
occupied sites has to reach 90% before the rate constant is lowered
by 25% of the value for a bare particle [this effect is essentially one of the
main outcomes of the original Berg and Purcell (1977) work, though
reformulated to the present completely different context]. We thus
expect that our original model, where we assumed that the rate constant
was the same regardless of corona coverage, will provide a reasonable
description for an extended period of time during corona formation,
especially for large particles.

Let us thus, after these initial deliberations, consider the full model.
Due to the simplicity of the kinetic scheme, it admits an analytical
solution also when the rate constants depend upon the number of
already adsorbed biomolecules, n. Thus the solution now reads

NP-BMn[ ] t( ) � NP[ ]∏n−1
l�0

kl∑n
m�0

e−km BM[ ]t

∏n
l�0,≠ m kl − km( ) n � 0, 1, . . . , N − 1

NP-BMN[ ] t( ) � NP[ ] 1 − ∑N−1

n�0

NP-BMn[ ] t( )
NP[ ]

⎛⎝ ⎞⎠ n � N. (18)

Unfortunately, these expressions are numerically not very stable (in
particular for larger n and smaller R′/R) and so a numerical
integration of the kinetic scheme often seems better.

Figure 3A shows the time-evolution of the number of particles with
n = 0, 1, 2, and 3 adsorbed biomolecules for a nanoparticle of radius R =
25 nm and using a biomolecule radius of R′ = 4 nm as done throughout
thiswork (the number of adsorption sites is then around 160). As expected
based on the argument above, we observe no major difference in the
kinetics compared to when assuming that the rate constant for adsorption
is independent of the number of already adsorbed biomolecules
(Figure 1A). This depends very much on the fact that the number of
adsorbed biomolecules here is low compared to the number of available
sites (n = 0, 1, 2, 3≪ N ≈ 160). A bit more detailed comparison between
the more realistic kinetics considered here and that which results from
assuming that the rate constant is independent of the number of already
adsorbed biomolecules is given by Supplementary Figure S1.

Of more immediate interest to us is the time-evolution of the
number of nanoparticles with a full corona, [NP-BMN]. Figure 3B shows
the number of such particles as a function of time, normalising timewith
the number adsorption sites per particle, N. As above (Figure 1B), we
observe that the number of particles with a full corona remains negligible
for an extended period of time, after which it grows very rapidly and all
particles complete their coverage in a short period of time. The larger the
particle (relative to a biomolecule) the sharper the transition between no
particles with a complete corona and all particles with a complete
corona. However, compared to when we assumed that the rate constant
was independent of the number of particles already adsorbed (Figure 1B)
the time at which the particles become fully covered shifts (most readily
illustrated by Supplementary Figure S2).

To quantify this, consider the half-time, t1/2, that is, the time it
takes for half of the nanoparticles to have a full corona. When
assuming that the rate constant is independent of the number of
particles already adsorbed, the half-time is proportional to the
number of adsorption sites, N (Figure 1B). Thus, let us consider

FIGURE 2
Rate constant for the adsorption of a biomolecule to a particle as
a function of the number of biomolecules already adsorbed. The
results are presented for three different particle sizes, in inverse form
(k0/kn), and the number of biomolecules already adsorbed has
been normalised to the total number of adsorption sites, N.
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the half-time divided by the number of adsorption sites, t1/2/N.
Figure 3C shows this quantity as a function of particle radius, from
which we observe that the shift is fairly moderate, increasing only by
a factor of around 1.5 or less for nanoparticles substantially larger
than a biomolecule. Thus our final conclusion on the timescale of
corona formation remains, at the order of magnitude level, that the
corona is completely formed within

~
N

k0 BM[ ] �
6η

kT BM[ ] R/R′( ). (19)

Above (in relation to Equation 11) we used this result to estimate
that corona formation on nanoparticles of radii R = 25, 50, and
100 nm is complete within a few milliseconds when such
nanoparticles are dispersed in cell culture medium containing
10% bovine serum. In doing so, we used a biomolecule
concentration estimated based only on the proteins, noting that
the concentration would actually be higher if we also consider the
lipids, sugars, etc. in the dispersion. A higher concentration would
give a consequent decrease in the corona formation time. Overall, we
thus conclude that corona formation is, for typical nanoparticle
sizes, complete well within a few milliseconds.

Particle-to-particle variability in corona
composition

Next we consider the composition of the corona and, in
particular, how the composition varies particle-by-particle. While
many techniques and most studies measure averages over particles,
single particle approaches have also been developed, for example,
based on electron microscopy (Kelly et al., 2015) or super-resolution
fluorescence microscopy (Feiner-Gracia et al., 2017). It is
consequently of interest to understand to what extent corona
compositions differ among particles.

In doing so, we assume that there are no interactions between
the different biomolecules in the corona. This is in line with the

general objective of this work, namely, that our results should serve
as a baseline against which experimental results can be compared
to. Under the assumption that there are no biomolecule-
biomolecule interactions, the variability between different
particles becomes a combinatorial problem which can be solved
analytically. We also assume that the biomolecules in the biological
fluid are present in sufficient numbers compared to the
biomolecules that actually adsorb, so that we do not have to
take into account depletion of a certain biomolecule from the
biological fluid.

We consider just two different types of biomolecules, which we
may denote type A and type B. Obviously this could represent the
situation that the particles were dispersed in a biological fluid only
containing two different types of biomolecules. However, our
description is equally suitable for a more complex biological
fluid, where one is particularly interested in describing a specific
biomolecule (say, type A) while not paying particular attention to
the identity of all the other biomolecules (type B). Denote the total
number of such biomolecules in the dispersion by MA and MB,
respectively. Under our stated assumption, both of these numbers
are large compared to the total number of biomolecules that actually
adsorb to the particles.

Now consider the “first” particle and the number of ways of
forming a particle that has adsorbed NA A biomolecules and NB B
biomolecules. For the first A biomolecule there areMA biomolecules
to choose from, for the secondMA − 1, etc., so that in total there are

MA MA − 1( )/ MA −NA + 1( ) (20)
possibilities. However, since the order of the adsorption is irrelevant,
we should reduce this number by the number of permutations of NA

objects, so we get

MA MA − 1( )/ MA −NA + 1( )
NA!

(21)

possibilities. If we repeat the same line of reasoning for the B
biomolecules we find

FIGURE 3
Kinetics of biomolecular corona formation when the rate of adsorption depends on the number of already adsorbed biomolecules. Particle
concentrations have been normalised with the total concentration of particles, while time has been rendered dimensionless by multiplying with the rate
constant for adsorption to the bare particle, k0, and biomolecular concentration, [BM]. (A) Concentration of particles with 0, 1, 2, and 3 biomolecules
adsorbed to them as a function of time for a nanoparticle of radius R = 25 nm and a biomolecule radius of R′ = 4 nm. (B) Concentration of particles
fully covered by biomolecules as a function of time and for several different particle sizes. Aside from making time dimensionless, it has been further
normalised by the number of adsorption sites, N, so as to present the results on the same scale. Dotted vertical line indicates t = N/k0[BM], the half-time
under the assumption that the rate of adsorption is independent of the number of already adsorbed biomolecules (Figure 1B). (C)Half-time as a function
of particle size. Half-time is here defined as the time it takes the number of particles with a full corona to reach half of itsmaximal value, andwas divided by
the number of adsorption sites, N, as this is the half-time when assuming the rate of adsorption is independent of the number of already adsorbed
biomolecules. The results in panels B, C were evaluated by numerical integration, because the analytical solution (Equation 18) is not numerically stable
when the number of adsorption sites is large and when considering particles with many adsorbed biomolecules (N ≫ 1 and n ~ N).

Frontiers in Nanotechnology frontiersin.org07

Åberg and Jansen 10.3389/fnano.2025.1537076

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2025.1537076


MA MA − 1( )/ MA −NA + 1( )MB MB − 1( )/ MB −NB + 1( )
NA!NB!

(22)
different possibilities.

We should now continue by considering the “second” particle,
then the “third” and so on (and after all particles have been
considered remove particle permutations). However, the
combinatorial problem is vastly simplified by our assumption
that the number of biomolecules in the dispersion is in excess of
the number of biomolecules that adsorb. Under this assumption, the
pool of biomolecules is never depleted and the particles become
independent of each other. That is, the configuration of one particle
does not depend on what the previous particles have adsorbed. Thus
the expression above gives the number of possible ways of forming a
particle with NA A biomolecules and NB B biomolecules. The
assumption that MA and MB are large also allows us to simplify
this expression, which, while not crucial, is useful for mathematical
expediency. ThusMA − 1 ≈ MA,MA − 2 ≈ MA, . . . ,MA − NA + 1 ≈
MA and similarly for the B biomolecule. We then find that the
number of possibilities of forming a particle that has adsorbed NA A
biomolecules and NB B biomolecules is approximately

MNA
A MNB

B

NA!NB!
. (23)

In order to calculate a probability for a particular (NA, NB)
configuration, we also need the total number of possible particle
configurations. This is given by

MA +MB( ) MA +MB − 1( )/ MA +MB −NA −NB + 1( )
NA +NB( )! . (24)

Again assuming that MA and MB are large we may simplify this to

MA +MB( )NA+NB

NA +NB( )! . (25)

We are now ready to calculate the probability, P(NA, NB), of
finding a particle with NA A biomolecules and NB B biomolecules. It
is given by dividing the above expressions by each other to yield

P NA,NB( ) ≈ MNA
A MNB

B

MA +MB( )NA+NB

NA +NB( )!
NA!NB!

. (26)

Alternatively, instead of explicitly calculating the total number of
possible particle configurations, one can sum all the possible particle
configurations

∑N
NA�0

MNA
A MNB

B

NA!NB!
� ∑N
NA�0

MNA
A MN−NA

B

NA! N −NA( )! �
1
N!

∑N
NA�0

N

NA
( )MNA

A MN−NA
B �

� 1
N!

MA +MB( )N
(27)

where we in the first equality have used that NB = N − NA, in the
second equality have identified a binomial coefficient, and in the final
equality used the binomial theorem; division of the number of
possibilities of forming a particle that has adsorbed NA A
biomolecules and NB B biomolecules then gives the same
expression for the probability (cf. the usage of partition functions,
rather than normalised probabilities, in statistical mechanics).

It is useful to translate this to more ‘common’ quantities, rather
than the for combinatorics convenient quantities used thus far. We

thus let ϕA = MA/(MA + MB) denote the fraction of A biomolecules
in the dispersion and likewise let ϕB = MB/(MA + MB) = 1 − ϕA
denote the fraction of B biomolecules. We then have

P NA, NB( ) ≈ N!

NA! N −NA( )!ϕ
NA
A 1 − ϕA( )N−NA ≡

≡ N
NA

( )ϕNA
A 1 − ϕA( )N−NA (28)

which we may identify with the probability mass function
of a binomial distribution with parameters N and ϕA. For
particles substantially larger than the biomolecules, the
number of adsorption sites, N, is large. We can then use the
de Moivre-Laplace approximation to the binomial distribution
so that

P NA, NB( ) ~ 1�������������
2πNϕA 1 − ϕA( )√ e

− NA−NϕA( )2
2NϕA 1−ϕA( ) (29)

which is a normal distribution with mean NϕA and variance NϕA ×
× (1 − ϕA). We thus draw the conclusion that the mean density in
the corona is the same as the concentration in the biological fluid,
which is of course not unexpected under the stated assumptions.
The variance, however, seems less immediately obvious.

To illustrate the results, let us again consider nanoparticles of
radii, R = 25, 50, and 100 nm, and the same biomolecule radius
R′ = 4 nm used throughout this work. Within our model, the
(average) number of biomolecules is governed by ϕA, so to find
realistic coronae we have to make a choice of this parameter.
Experimentally, though, the number of biomolecules in the
corona varies greatly with the biomolecular species so there is
no ‘typical’ number. For definiteness, we consider a previous
experimental work where the biomolecular corona on
polystyrene particles of radius 100 nm was studied using
electron microscopy and immunogold labelling (Kelly et al.,
2015). When these nanoparticles were exposed to 80% human
plasma one observes around 60 transferrin and
60 immunoglobulin G proteins (technically epitopes) in the
hard corona in exemplar electron microscopy images. We
thus use ϕA = 0.025, 0.05, and 0.1 in our illustration, because
the first number indeed results in an average number of A
biomolecules of 60 for a particle radius R = 100 nm.

Figure 4 shows shows the distribution of the number of A
biomolecules, NA, for these nanoparticle sizes and for the different
fractions, ϕA, of A biomolecules. We observe that, for all particle
sizes, the more A biomolecules there are in the dispersion, the
broader is the distribution. Furthermore, we observe that the width
of the distribution is narrower for larger particles, taking into
account that a larger particle naturally adsorbs more
biomolecules. This is more clearly illustrated by considering the
coefficient of variation, that is, the standard deviation of the
distribution divided by its mean. Both the binomial distribution
(Equation 28) and the normal distribution approximation (Equation
29) gives the coefficient of variation������������

1 − ϕA( )/NϕA

√
(30)

which indeed exhibits a decrease as a function of particle size
(Supplementary Figure S3).
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While we have derived these results taking into account only the
abundance of the biomolecules in the dispersion, we expect that they
will remain valid also when the different biomolecules have different
affinities for the particle surface, as long as the relevant biomolecules
are not depleted from the dispersion. In this case, however, we ought
to replace the fraction, ϕA, of A biomolecules in the dispersion with
something that takes into account also the affinity, kA, of the A
biomolecule to the particle surface. The simplest option would be
kAMA/Z, where Z is a normalisation factor to ensure that the
probabilities add up to unity.

Spatial proximity in the corona

Finally, we consider how biomolecules are arranged spatially in
the particle corona. More specifically, we study the likelihood that
two different types of biomolecules are close to each other. In line
with the general focus of this work on providing a baseline against
which experimental and computational/theoretical results can be
compared to, we estimate this likelihood in the absence of any
biomolecule-biomolecule interactions. It is perhaps worthwhile to
note that experimentally it is, at least in general, not known a priori
which biomolecule-biomolecule interactions are present or strong
enough to make a difference. Thus one situation where our results
could be useful is if it is found experimentally that two biomolecules
are often found in close proximity to each other: Is this purely due to
chance or should this be interpreted as a biomolecule-biomolecule
interaction (or some other mechanism)? The natural reference point
is then, indeed, the probability that this happens in the absence of
any interactions. Another situation when spatial proximity is of
interest is when considering the potential exposure of anomalous
epitope combinations (Monopoli et al., 2012; Dawson and Yan,
2021), that is, when two biomolecules expose two different epitopes
that are normally not found close together because the biomolecules
adsorb close to each other in the corona. What is the likelihood that
this happens by chance?

We will thus consider two types of biomolecules,
biomolecules of type A and biomolecules of type B, which are
present in the corona in some numbers, NA and NB, respectively.
There could also be other types of biomolecules in the corona, but
they will not affect our considerations. Note that here our starting
point is that a given number of biomolecules are present in the
corona, so we expect that these considerations will have a wider

validity than just a completely random corona composition, as
the processes giving the composition have, in a sense, already
been included in the starting point. The question we will answer
is: What fraction of the NA biomolecules of type A are in the
vicinity of one or several of the NB biomolecules of type B? Note
that this fraction is, in general, not symmetric in which type of
biomolecule is considered A and B. Furthermore, since we are
considering the biomolecular corona on a spherical particle, we
will consider spatial proximity of the two biomolecules in terms
of the geodesic distance on the sphere.

In a previous work (and in a completely different context) we
have argued that the fraction, x, of NA objects of type A that are
“close” toNB objects of type B, when those objects are put at random
into a certain space, is approximately given by Åberg and
Robinson (2021)

x(NA,NB, ξ) � 1 − (1 − P(ξ))NB . (31)
The main assumption underlying this result is that the probability
that an object of one type is close to an object of the other type is
independent of the position of all the other objects, which is a good
approximation when either type of objects are not too many. The
space into which these objects are put is fairly general; in our case it
will be the surface of a sphere. The expression is then a good
approximation when the number of biomolecules of type A and B on
the sphere surface, NA and NB, are not too many. What “close”
means is given by the probability, P(ξ), that two objects placed at
random into the space are within a given distance, ξ, from each
other. The pivotal observation that allows us to progress is that this
latter probability may be found from the distribution, f(ρ), of all
possible distances, ρ, viz.

P ξ( ) � ∫ξ

0
f ρ( )dρ. (32)

The distribution of distances does not depend upon the number
of objects, but is a purely geometrical feature of a given space. We
have previously derived analytical formulae for the distribution of
distances for a few simple geometric shapes (Kelly et al., 2015; Åberg
and Robinson, 2021), both in terms of real coordinates but also in
terms of projected coordinates, which are sometimes more useful for
comparing to experiments (Kelly et al., 2015; Åberg and Robinson,
2021). In our case, we are specifically interested in the distribution of
geodesic distances on the sphere, which takes the simple form (Kelly
et al., 2015)

FIGURE 4
Distribution of the number of A biomolecules in the corona. Particle radius, R, of (A) 25 nm; (B) 50 nm; and (C) 100 nm, and biomolecule radius, R′, of
4 nm. The normal approximation (Equation 29) was used, but the exact results are essentially identical.
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f ρ( ) � sin ρ/R( )
2R

. (33)

This expression is normalised such that its integral over all distances,
ρ∈[0,πR], is unity. Insertion of this expression into the probability
that two objects are close, P(ξ), then gives

P ξ( ) � ∫ξ

0
f ρ( )dρ � 1 − cos ξ/R( )

2
. (34)

We then find that the fraction of biomolecules of type A that are
close to biomolecules of type B in the corona is given by

x NA,NB, ξ( ) � 1 − cos
ξ

2R
( )( )2NB

. (35)

Now consider the distance, ξ, defining when the two biomolecules
objects are “close”. For cases of interest we expect this to be of molecular
scale and of the order of the size of the biomolecule, R′. Since we are
considering particles much larger than the size of a biomolecule, R′/R≪
1, it is consequently consistent to assume ξ/R is small; a Taylor
expansion then gives to first non-vanishing order

x NA,NB, ξ( ) ~ 1
4
NB ξ/R( )2. (36)

We observe that the fraction of A biomolecules that are close to B
biomolecules is independent of the number, NA, of biomolecules of
type A. This is actually an exact result under the stated assumptions,
as all previous formulae also share this feature; it will, however, not
be the case if the number of objects is many. Furthermore, the
fraction of A biomolecules that are close to B biomolecules is directly
proportional to the number, NB, of B biomolecules. Finally, in terms
of geometry, the fraction of A biomolecules that are close to B
biomolecules is directly proportional to the distance, ξ, which
defines what ‘close’ means squared, and inversely proportional
the radius of the sphere, R, squared. This seems reasonable for a
quasi two-dimensional space, though it will be modulated to non-
leading order by the finiteness and curvature of the sphere.

To examine the magnitude of the result, let us again consider
nanoparticles of radii, R = 25, 50, and 100 nm, and a biomolecule
radius of R′ = 4 nm. Furthermore, as a distance of interest, ξ, let us
use two biomolecule radii, ξ = 2R’ = 8 nm. The number of
biomolecules on the surface clearly depends on the biomolecular
species and particle; for definiteness, we again consider polystyrene
particles of radius 100 nm exposed to 80% human plasma, for which
example electron microscopy images suggest there are around
60 transferrin and immunoglobulin G proteins (technically
epitopes) in the corona (Kelly et al., 2015). These numbers
correspond to a biomolecule surface density of 5·10–4/nm2. We
kept this surface density constant and multiplied with the surface
area of the particles, resulting in higher numbers of biomolecules on
the larger particles. We thus consider a maximum number of B
biomolecules of 4, 15, and 65 for a radius of R = 25, 50, and 100 nm.

Figure 5 shows the fraction of A biomolecules that are close to B
biomolecules for the three radii and as a function of the number,NB, of
B biomolecules. Overall, we observe that the fraction can be quite
substantial, reaching numbers as high as 10% – and this is under
conditions when the biomolecules occupy just above 2% of the available
adsorption sites; for a higher number of biomolecules, this fraction will
obviously increase even further. This is an important conclusion from

an experimental point of view, as it implies that a substantial proximity
of two biomolecules in the corona is not necessarily indicative of
interactions or some specific phenomenon.

We also observe from Figure 5 that, for a given number of B
biomolecules, the fraction of A biomolecules close to them is
substantially higher the smaller the particle, a natural outcome of the
fact that, to first non-vanishing order, the fraction scales inversely with
the square of the radius of the particle. The figure also shows the roughly
linear dependence on the number of B biomolecules.

We have derived these results under the assumption that there are
no biomolecule-biomolecule interactions, the idea being that the results
are simple enough that they can be used to identify actual examples of
biomolecule-biomolecule interactions from experimental data. Once
identified, amore detailed description of such cases will, however, has to
be done using numerically more complex methods; previous literature
has indeed already demonstrated that biomolecule-biomolecule
interactions can be incorporated (Vilanova et al., 2016) though not
specifically for proximity considerations.

Conclusion

We have presented a “zeroth order”model for the hard biomolecular
corona forming on spherical nanoparticles. Our underlying assumptions
are that biomolecular adsorption occurs randomly, that adsorption is
irreversible, and that there are no biomolecule-biomolecule interactions.
These assumptions are fulfilled to varying degrees in real systems.
Regardless, our results can serve as a baseline, against which
experiments and more realistic and theoretical results can be
compared, and we therefore give explicit references to the key
equations below. We studied three different aspects of the
biomolecular corona: the kinetics of its formation, its variability
particle-to-particle, and the spatial proximity of two biomoleculeswithin it.

For the kinetics, we derived an explicit expression for the timescale
of complete coverage (Equation 19). This estimate was derived under
the assumption that adsorption onto the particle is independent of the

FIGURE 5
Fraction of A biomolecules close to B biomolecules in the
corona. The results are shown for a few different nanoparticle sizes (ξ/
R ratios), varying the number of B biomolecules; the results are
independent of the number of A biomolecules (as long as the
numbers are not too high). (Symbols) Exact results, under the stated
assumptions (Equation 35). (Dotted lines) First non-vanishing order
approximation (Equation 36). Numerical simulations under the same
conditions (Supplementary Figure S4) show that the analytical
approximations are very good for these cases.
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number of already adsorbed biomolecules; nevertheless, we showed that
it also provides the correct order of magnitude under the more realistic
scenario that the adsorption is slower the more adsorbed biomolecules
are present. Furthermore, the estimate gets increasingly accurate the
larger the particle compared to a biomolecule. In practice, our estimate
suggests that corona formation is complete within milliseconds for
typical nanoparticle sizes, vastly quicker than typical experimental
timescales of minutes or longer.

To estimate the distribution, particle-to-particle, of the number
of a certain biomolecule in the corona we assumed that the number
of biomolecules is in excess compared to the numbers that adsorb to
the particles. Under this assumption we showed that the distribution
is a binomial distribution (Equation 28) which can be approximated
by a normal distribution (Equation 29) when the particle is
substantially larger than the biomolecule.

Finally, as an important question on the spatial organisation of the
biomolecular corona, we considered the probability that two biomolecules
of the corona would be found in close proximity to each other purely due
to chance.We derived an analytical expression (Equation 35) valid as long
as the number of the considered biomolecules within the corona are not
too many. An interesting outcome is that the probability that two
biomolecules are close to each other can become surprisingly large for
realistic numbers of biomolecules and particle sizes. A consequence of this
is that if it is observed experimentally that two biomolecules are often
found close to each other in the corona, this cannot necessarily be
interpreted as a result of biomolecule-biomolecule interactions.

Overall, we intend the results derived here to function as
reference points to compare future and previous results to.
Thereby this work can function as a theoretical framework in
further explorations of the many interesting and important
aspects of the biomolecular corona.
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