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Multimetallic nanoparticles (MMNPs) produced by fungus-mediated synthesis
have attracted a lot of interest as an environmentally friendly and sustainable
nanotechnology method. Fungi are effective bio-factories that create complex
nanoparticles with special qualities by using their metabolic and enzymatic
capabilities. When compared to their monometallic counterparts,
MMNPs—which are composed of combinations of two or more metals—offer
synergistic benefits such increased catalytic activity, higher stability, and superior
biocompatibility. In addition to highlighting the structural diversity of MMNPs,
such as core-shell, alloy, and Janus configurations, this review investigates the
mechanisms underpinning fungal-mediated synthesis, including enzymatic
reduction and stabilisation pathways. Additionally covered are characterisation
methods for examining functionality, morphology, and composition. The
potential applications of MMNPs synthesized by fungi in biomedicine,
environmental remediation, biosensing, and catalysis are highlighted in the
article. This green synthesis method, which makes use of the natural benefits
of fungus and multimetallic systems, responds to the increasing need for
sustainable nanomaterials and opens the door to novel uses in both the
scientific and industrial fields.
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1 Introduction

Nanotechnology has emerged as a revolutionary force, poised to transform industries
and tackle some of the most pressing global challenges. As an interdisciplinary field, it
harnesses the unique properties of materials at the nanoscale, offering unprecedented
potential across various sectors, including medicine, environmental remediation,
biosensors, and agriculture (Yang et al., 2019; Tao et al., 2023; Sidhu et al., 2022;
Verma et al., 2024; Gaber et al., 2024). Researchers worldwide are dedicating significant
time and resources to exploring the vast applications of nanotechnology, recognizing its
potential to drive innovation and create sustainable solutions. From enhancing drug
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delivery systems to enabling eco-friendly materials and
revolutionizing diagnostics, nanotechnology is rapidly becoming a
cornerstone of modern science. As human civilization faces an array
of complex challenges—ranging from climate change and resource
scarcity to emerging diseases and technological gaps—the
application of nanotechnology presents an innovative and
transformative path forward. This dynamic field holds the
promise of addressing critical issues, paving the way for a future
where science and technology work in harmony to improve quality
of life and sustainability at a global scale (Verma et al., 2023).

While most studies focus on the delivery and application of single
metallic nanoparticles (MNPs), recent advancements have explored
the combinatorial potential of multi-metallic nanoparticles (MMNPs),
nanocomposites (NCs), and synergistic blends of mono-metallic
nanoparticles. Multi-metallic nanoparticles are emerging as highly
functional materials that integrate two or more metals, forming
alloys with enhanced properties, such as superior catalytic activity,
optical tunability, and high stability. The ability to modify their
chemical composition, morphology, and structure enables MMNPs
to achieve maximum synergistic performance (Zhang et al., 2017).

The synthesis of MMNPs can be achieved through various methods,
including physical, chemical, and biological routes. Among these,
biological synthesis especially using fungi, presents a highly promising
and underexplored avenue. Fungi offer several advantages for
nanoparticle synthesis due to their ability to secrete a wide range of
bioactive metabolites, including enzymes, proteins, and secondary
metabolites. These biomolecules act as natural reducing, capping, and
stabilizing agents, facilitating the environmentally friendly and cost-
effective synthesis of nanoparticles (Madigan et al., 1997; Zhao et al.,
2024). Furthermore, fungal synthesis aligns with the principles of green
chemistry by eliminating the need for toxic chemicals, high energy inputs,
or harsh physical conditions. This energy-efficient and sustainable
approach minimizes environmental impact while maximizing
scalability. Fungi are also easy to cultivate on inexpensive substrates,
enabling large-scale biomass production and, consequently, the synthesis
of MMNPs in an economical manner (Honary et al., 2013). Their
inherent ability to act as biological factories for nanoparticle synthesis
eliminates the need for external reducing agents, making the process even
more eco-friendly (Yadav et al., 2015; Sidhu and Kaushal, 2023; Hashem
et al., 2023). Despite these advantages, the potential of fungi in
synthesizing MMNPs remains relatively underexplored compared to
other natural systems, such as plants and bacteria.

This review provides a comprehensive discussion on the fungal
synthesis of MMNPs, emphasizing the mechanisms of synthesis,
their characterization, and their diverse applications across
medicine, antimicrobial agents, drug delivery systems, and
bioimaging agents, biosensors, agriculture, and environmental
sustainability. By delving into the unique capabilities of fungi in
nanoparticle synthesis, this work aims to highlight the untapped
potential of fungi-mediated approaches for the production of
MMNPs and their transformative impact on multiple sectors.

2 Fundamentals of fungal-mediated
nanoparticle synthesis

Fungi have emerged as highly effective agents for the biogenic
synthesis of nanoparticles due to their distinct biological features

and considerable benefits over alternative systems. Their ability to
resist high metal concentrations, combined with the development of
numerous extracellular proteins, ensures that nanoparticles remain
stable during synthesis. Many fungi are resistant to metal toxicity by
active and incidental mechanisms, making them ideal candidates for
metal immobilisation and mineral dissolution (Dhillon et al., 2012;
Sidhu and Kaushal, 2023). Fungi also create a variety of reducing
agents, including enzymes and proteins, which aid in nanoparticle
production. These characteristics, together with their quick growth
and simple biomass processing, make fungi an efficient and feasible
option for large-scale nanoparticle manufacturing (Fouda et al.,
2020; Rai et al., 2021). Furthermore, fungi produce more biomass
and reduce the need for sophisticated extraction techniques, giving
them a considerable advantage over bacterial systems (Hashem et al.,
2023). The structural features of fungi make them ideal for
nanoparticle production. Their filamentous mycelial network,
which has a high surface area-to-mass ratio, is rich in metal-
binding functional groups in the cell wall and extracellular
polymeric substances (EPS), making it an effective template for
nanoparticle nucleation. Moreover, the hydrated mucilaginous
coating promotes geochemical processes, while branching hyphae
provide several locations for nanoparticle synthesis, highlighting
fungi’s versatility and effectiveness as green nanotechnology agents
(Gadd, 2010; Gadd and Raven, 2010; Li et al., 2022). The
environmentally benign methodologies demonstrate fungi’s
enormous potential for large-scale nanoparticle manufacturing.
Their distinct biological and structural properties make them
critical for furthering green nanotechnology.

2.1 Mechanisms of synthesis

Fungi use complex metabolic processes to synthesise metallic
nanoparticles, taking advantage of their special features. Fungi can
synthesize nanoparticles via both intracellular and extracellular
methods, using their metabolic pathways to convert metal ions
into nanoparticles (Figure 1).

Fungi release a wide variety of extracellular metabolites,
including enzymes, proteins, polysaccharides, flavonoids, and
phenolic compounds, which act as both reducing and stabilising
agents during nanoparticle (NP) formation (Zhao et al., 2024).
These metabolites reduce metal ions like Ag+ or Au+ in the
extracellular environment, resulting in the synthesis of
nanoparticles (Xu et al., 2024). The NADH-dependent nitrate
reductase process delivers electrons to metal ions, resulting in
their neutral metallic state (M0). Furthermore, secondary
metabolites such as anthraquinones and hydroxyquinoline act as
electron donors, helping to reduce and stabilise the nanoparticles
(Rai et al., 2021). Given that the particles are formed outside of
fungal cells, the extracellular synthesis route has considerable
advantages in terms of efficiency, scalability, and nanoparticle
recovery simplicity.

In the intracellular approach, the metallic precursor is added to
the fungal mycelia culture. Fungal cells synthesise nanoparticles by
binding metal ions (M+) to their surfaces. This adsorption occurs
due to electrostatic interactions between positively charged metal
ions and negatively charged lysine residues on the fungal cell
membrane (Yadav et al., 2015). Once attached, metal ions are
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reduced by enzymes and metabolites found within the fungal cell
membrane. Biochemical agents transform metal ions into neutral
metal atoms (M0), resulting in the formation and aggregation of
nanoparticles beneath the cell surface (Rajput et al., 2016). This
reduction process is dependent on enzymes such as nitrate reductase
and cofactors such as NADH. Fusarium oxysporum, for example,
uses NADH-dependent nitrate reductase to drive the intracellular
production of silver nanoparticles (AgNPs), demonstrating the
importance of specific enzymatic pathways in nanoparticle
formation (Rai et al., 2021). In a study demonstrating
intracellular synthesis of NPs, Au3+ ions were reported to
penetrate the cell membrane via ion channels and then reduced
by cytosolic redox enzymes (Xu et al., 2024).

2.2 Stabilization of the synthesized
nanoparticles

Fungi serve as a stabilising and reducing agent in the production
of metal nanoparticles (Sidhu et al., 2022). Fungi produce
biomolecules that attach to nanoparticles, increasing their
stability and preventing agglomeration, which helps to improve
the stability and biological activity of the nanoparticles (Priya et al.,
2021). Proteins and amino acid residues cover the surfaces of the
nanoparticles to give stability and prevent agglomeration, and these
biomolecules have a high tendency to adhere to the surfaces of the
nanoparticles (Basavaraja et al., 2008). It is believed that the free
amino groups—often referred to as cysteine residues—interact with

and bind the surfaces of the nanoparticles. Additionally, it is believed
that the negative carboxyl groups provided by cell wall enzymes help
to create the electrostatic attraction between biomolecules and
nanoparticles (Durán et al., 2011; Husseiny et al., 2015; Gole
et al., 2001). Several investigations have shown that biomolecules
from fungal extracts work as a capping agent. Studies have employed
FTIR, XRD, EDS analysis, and UV-visible spectroscopy to show that
nanoparticles have a capping agent on their surface. In the majority
of research, proteins are discovered to be the primary capping
biomolecule. Researchers observed signals for biomolecules (C, N,
and O) as well as a strong signal for the metal used to synthesise
nanoparticles (Das et al., 2009; Elgorban et al., 2016). The presence
of capping protein on the surface of the nanoparticles may also be
determined by recording fluorescence spectra at an excitation
wavelength of 280 nm, which represents the transitions arising
from aromatic amino acids tyrosine and tryptophan of proteins
present on the particle surface (Kadam et al., 2019).

2.3 Factors affecting biological synthesis of
the metal nanoparticles

The production of nanoparticles by biological methods results in
great variation in form, size, and polydispersity, which is regulated
by a variety of interacting factors. For instance, biologically
synthesised AgNPs typically range in size from 20 to 40 nm, but
they are frequently larger than those made chemically (Spagnoletti
et al., 2021). These nanoparticles can have spherical forms, however

FIGURE 1
A schematic illustration of fungal-mediated synthesis of multimetallic nanoparticles (MMNPs) via external and intracellular pathways. Secreted
fungal enzymes, proteins, andmetabolites act as reducing, stabilising, and capping agents in the extracellular environment, allowingMMNP production to
occur more easily. The intracellular approach involves the bioaccumulation of metal ions within fungal cells, where enzymatic and metabolic processes
decrease the ions to produce MMNPs, which are then recovered from the fungal biomass.
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they tend to form agglomerates, resulting in less uniform dispersion.
Important variables that affect nanoparticle properties include pH,
temperature, and reaction time (Cruz et al., 2024) (Table 1). For
example, biogenic particles are typically 42.4 nm in size at pH 6, but
they are smaller and monodisperse at pH 11 (21.4 nm) (Amaladhas
et al., 2012). While neutral to slightly basic pH (5–7) primarily
creates spherical nanoparticles, acidic circumstances (pH 3) produce
a variety of morphologies, such as rods, triangles, and spheres
(Rajput et al., 2016). The synthesis of nanoparticles is also greatly
influenced by temperature and reaction time. Spherical
nanoparticles between 2 and 5 nm in size form in 24 h at 30°C
and pH 7, whereas bigger particles (up to 80 nm) are produced after
72 h of incubation. Extending the reaction time causes the
nanoparticle shape to change from spherical to a combination of
spherical, triangular, and rectangular forms at higher pH 9,
according to Kumari et al. (2017). These results demonstrate that
the characteristics of biogenic nanoparticles are not determined by a
single component, but rather by a special equilibrium of
environmental and physical factors, which makes biological
synthesis a highly flexible but intricate process (Rozhin et al., 2021).

To synthesise multimetallic nanoparticles (MMNPs) for
instance bimetallic nanoparticles (BMNPs), two aqueous metal
precursor salt solutions are mixed with the fungal extracts. The
existence of twometal ions with distinct reduction potentials leads to
competitive reduction in the process. Metal ions with higher
reduction potential are quickly reduced, followed by those with
lower reduction potential (Sasireka and Lalitha, 2021). During the
synthesis of bimetallic Cd/Hg nanoparticles, Romero-Núñez et al.
(2019), proposed that NPs may develop inside the cell as follows:
initially toxic metals are delivered into the cytoplasm via
components that interact with these cations. Once in the
cytoplasm, Cd2+ and Hg2+ bind to anions, which inhibits
transport and forms coordinated complexes with biomolecules
and sulfhydryl groups that keep them there and reduce them to
form Bimetallic Nanoparticles.

3 Synthesis of multimetallic
nanoparticles using fungi

Metallic nanoparticles are classified into monometallic,
bimetallic, and trimetallic categories based on the number of
metals involved in their synthesis. Various metals have been
utilized for their production, often with biological extracts
serving as reducing and stabilizing agents (Gebru et al., 2013).
Multimetallic nanoparticles are typically synthesized using co-
reduction or successive reduction techniques. The integration of
two or three metals or metal oxides into a single structure results in
materials with unique and multifaceted properties that arise from
the synergistic interaction of their components. These properties
enable multimetallic nanoparticles to exhibit enhanced functionality
compared to their monometallic counterparts (Sumbal et al., 2019).

To broaden their applications, researchers have focused on
optimizing the size and morphology of multimetallic
nanoparticles, creating structures such as heterodimers, core-
shells, and alloys. These structural modifications further enhance
their utility across various fields, making them a promising class of
nanomaterials for advanced applications (Hashem et al., 2023).
However, it could be hypothesized that, nanostructures could
exhibit one or more of the following topographical features,
random, cluster-in-cluster, core-shell and nano-alloy structures.
In random structure, atoms are oriented randomly. While in
cluster-in-cluster structure, one metal organized as nano-cluster
and the others acted as binders. In core-shell structure, one metal is
nucleated firstly in reaction liquor to form the core, while the other
metals were clustered later as the outer shells. In nano-alloy
structure, the metal nanoparticles were assumed to be
synthesized in reaction medium nearly with the same rate. In
case of nano-alloy, when the as-nucleated nanoparticles exhibited
similar particle sizes it could result in production of a random nano-
alloy, while that with different atomic sizes were resulted in inter-
metallic nano-alloy (Yang et al., 2008; Ahmed and Emam, 2020).

TABLE 1 Factors influencing fungal-mediated synthesis of multimetallic nanoparticles (MMNPs).

Factor Description Effect on MMNP synthesis References

Fungal Strain Different fungal species produce varying enzymes and
metabolites, influencing nanoparticle synthesis

Affects size, shape, stability, and composition of
MMNPs

Hashem et al. (2023)
Yadav et al. (2025)

Metal Ion
Concentration

Higher metal ion concentrations impact nanoparticle
nucleation and growth

Excess ions can lead to particle aggregation, affecting
morphology

Sidhu and Kaushal (2023)
Kumar et al. (2021)

pH of Medium pH affects enzyme activity and fungal metabolism, influencing
reduction and stabilization

Alters nanoparticle size, charge, and dispersion Guleria et al., 2023
Thakur et al. (2021)

Incubation Time Duration of fungal interaction with metal ions Longer incubation may lead to larger or more
aggregated particles

Rossi et al., 2017

Temperature Optimal temperature enhances enzymatic activity for metal
reduction

High temperatures may cause shape variations and
agglomeration

Tortella et al., 2023
Verma et al. (2024)

Aeration and
Agitation

Oxygen availability and mixing influence the metabolic state of
fungi

Higher aeration promotes uniform size and stability Bernela et al., 2023
Madigan et al. (1997)

Biomass
Concentration

Amount of fungal biomass used for synthesis Higher biomass may enhance reduction efficiency but
also increase particle aggregation

Zhao et al. (2024), Honary
et al. (2013)

Type of Metabolites Presence of reducing agents like enzymes, proteins, and
polysaccharides

Determines nanoparticle stability, shape, and
functionalization

Sidhu and Kaushal, 2023
Ditta et al. (2015)
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Chemical co-reduction technique is a type of simultaneous
methodologies that generatemultimetallic nanostructures from
the reduction of metal precursors to zero-valent metallic forms.
This method is mainly advantageous by its versatility and
simplicity.Simultaneous reduction of metal precursors is a
straightforward route to prepare random alloy nanoparticles,
especially when the alloyed metal elements have similar
reduction potentials. In this process, supersaturation of
monomers is induced by the introduction of an appropriate
reducing agent, such as hydrazine, NaBH4, or polyol, into the
precursor solution, followed by the nucleation and growth
processes (Kim et al., 2022).

The successive or seed mediated growth method is processed
via the reduction of metal ions over the surface of other pre-
nucleated nanoparticles followed by the cluster growth of the other
particles by time. The seed-mediated growthproceeds by
synthesizing a seed nanoparticle from metal precursor under
the action of reducing agent and subsequently started for
growing in reaction liquor. Such synthetic technique was
typically applied for preparation of core-shell and intermetallic
alloyed nanostructures owing to its controllability under the effect
of the reducing agent for production of highly composition, size
and shape regulated multimetallic nanostructure (Xia et al., 2017).
Seed-mediated synthesis involves a two-step process comprising
the preparation of seed nanoparticles and incorporation of
secondary (or more) metal species on seeds forming random
alloy nanoparticles. The prerequisites to achieving
homogeneous random mixing of metals are similar
physicochemical properties of the constituent metals and
sufficiently high temperatures (Kim et al., 2022).

3.1 Types of multimetallic nanoparticles
synthesized

Multimetallic nanoparticles (MNPs), composed of two or more
different metals, have gained significant attention for their unique
functionalities and advanced material properties. These
nanoparticles, often forming alloys or core–shell nanocomposites,
exhibit enhanced chemical, optical, and catalytic properties
compared to monometallic and bimetallic NPs. The synergistic
interactions between different metals or metal oxides contribute
to their superior performance in various applications, particularly in
catalysis, where combined metal action significantly improves
efficiency and selectivity (Buchwalter et al., 2015).

Multimetallic NPs are classified into categories such as
bimetallic, trimetallic, and quadrometallic, based on the number
of metals incorporated into their structure. Among these, binary,
ternary, and quaternary combinations often display specialized
characteristics, including increased chemical reactivity and
improved optical and catalytic behavior, making them highly
versatile materials. These advanced properties underline the
growing interest in multimetallic NPs for diverse scientific and
industrial applications (Zhang et al., 2017; Basavegowda and
Baek, 2021). The majority of the research on multimetallic
nanoparticle synthesis utilising fungi focus on the production of
bimetallic and timetallic nanoparticles (Table 2).

3.1.1 Bimetallic systems
Bi-metallic nanoparticles (BMNs) are nanostructures composed

of two different metals, either in alloyed or core–shell
configurations, exhibiting unique physical, chemical, and
biological properties. Their exceptional biological potential arises
from the synergistic activities of their constituent metals (Sharma
et al., 2019). These synergistic effects influence variations in
configuration, strength, binding, and interaction, contributing to
their remarkable reactivity.

The spatial arrangement of metal atoms, driven by physical and
chemical interactions, determines whether BMNs form core–shell
structures or alloys (Godfrey et al., 2017). Incorporating a second
metal enables precise tuning of geometric and electronic structures,
enhancing catalytic activity and selectivity. This structural and
functional versatility creates novel opportunities for diverse
biomedical and industrial applications (Elemike et al., 2019).

BMNs, such as Ag/Au, Ag/Cu, Au/Pt, Au/Pd, Ag/Fe, Fe/Pt, Cu/
Zn, Cu/Ni, Au/CuS, and Fe3S4/Ag, exhibit distinct surface activities,
while bimetallic oxides like MgO/ZnO, CuO/ZnO, and Fe3O4/ZnO
show unique antibacterial properties. These enhanced antibacterial
effects are often attributed to tensile strain and the synergism
between their metallic components. By leveraging their size,
shape, and morphology, BMNs offer unparalleled potential in
catalysis, biomedical applications, and environmental solutions
(Das and Karankar, 2019).

The biosynthesis of nanoparticles employing fungal and
microbial species has shown tremendous promise in a variety
of applications due to its environmental friendliness, efficiency,
and cost-effectiveness. Romero-Núñez et al. (2019) found that
Candida species may synthesise bimetallic (Cd/Hg) nanoparticles
with a circular morphology and diameter of 10 nm. These
Cd4HgS5 nanoparticles show great promise for a variety of
applications. Singh et al. (2020) used Trichoderma reesei
(NCIM992) microbial biomass to rapidly bioreduce Ag and
Au, resulting in the creation of Au-Ag nanoparticles. These
nanoparticles were discovered to be extremely efficient against
nosocomial pathogen infections, demonstrating their potential for
medical applications. Similarly, Castro-Longoria et al. (2011) used
Neurospora crassa to synthesise Ag-Au bimetallic nanoparticles
(BNPs) and monometallic nanoparticles. The wild-type strain
N150 was grown in Vogel’s Minimal Medium containing
sucrose, then subjected to aqueous solutions of AgNO3 and
HAuCl4. The bio-reduction process was tracked with UV-Vis
spectroscopy, and the nanoparticles were characterised with
confocal and transmission electron microscopy (TEM). This
study highlighted the versatility of fungal-mediated synthesis
by demonstrating that a single fungus species may successfully
generate a wide range of nanomaterials. Abdullah et al. (2020)
found that Lecanora muralis (LM) lichen aqueous extract can
biosynthesise Fe3O4/SiO2 and ZnO/TiO2/SiO2 nanocomposites in
a simple, cost-effective, and quick manner. The lichen extract was
analysed using GC-Mass, which confirmed the presence of
bioactive phytochemicals that played an important part in the
synthesis process. These green-synthesized nanocomposites
demonstrated significant bioactivity against common harmful
bacteria and fungus, indicating their potential for antibacterial
applications.
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TABLE 2 Table summarising multimetallic nanoparticles (MMNPs) synthesised by fungi, including their structural configurations, essential features, and
applications in biomedicine, agriculture and environmental remediation, and catalysis.

Sr.No. Fungi used Multimetallic
nanoparticle
synthesized

Bioextract
used

Size and
properties of the
nanoparticles

Applications References

1 Fusarium
semitectum

Au-Ag Biomass Filterate 18 nm — Sawle et al. (2008)

2 Fusarium
oxysporum

Au/Ag Fungal Biomass 8–14 nm — Senapati et al.
(2005)

3 Cetrariaislandica
(L.) Ach

Ag-Au Ethanolic extract of
powdered lichen

Alloy structure
nanoparticles spherical
and polygonal
structureswith size
between 6 nm and 21 nm

Catalytic reduction of
nitrophenols (4-nitrophenol; 4-
NP) to aminophenols (4-
aminophenol; 4-AP) with
sodium borohydride (NaBH4)

Çıplak et al. (2018)

4 Aspergillus niger Ag/Au Xylanase 520 nm capped and
stabilized by protein
molecules

Anticoagulant and thrombolytic
activities using human blood

Elegbede et al.
(2019)

5 Trichoderma
longibrachiatum

Ag/Au Xylanase 534 nm capped and
stabilized by protein
molecules

anticoagulant and thrombolytic
activities using human blood

Elegbede et al.,
2019

6 Candida Species Cd4HgS5 Fungal
cultures

Intracellular synthesis
with diameter 10 nm

- Romero-Núñez
et al. (2019)

7 Ramaria botrytis Ag/Au Polysaccharide rectangular in shape with
an average diameter of
0.15 μm

Catalytic reduction of 4-
nitrophenol antioxidant,
antibacterial activity against
Pseudo monasaeruginosa

Banja et al., 2020

8 Lecanora muralis
(LM) lichen

Fe3O4@SiO2 Aqueous extract 53 nm Antimicrobial activity against
three pathogenic bacterial
species (Staphylococcus aureus
Escherichia coli, and
Pseudomonas spp.) and five
pathogenic fungal species
(Candida albicians, Candida
spp., Aspergillus flavus
Aspergillus niger, and Aspergillus
terrus)

Abdullah et al.
(2020)

9 ZnO@TiO2@SiO2 Aqueous extract 55 nm

10 Neurospora crassa Ag/Au Washed biomass with average diameter of
32 nm

— Castro-Longoria
et al. (2011)

11 Humicola sp α-Ag2S Washed biomass 15–40 nm Antimicrobial, Anti-cancer and
Anti- leishmania activity

Syed et al. (2021)

12 Metarhizium
anisopliae

ZnO/TiO2 Cell-free fungal
extract

9.50 nm Larvicidal activity on third instar
S. frugiperda larvae

Kumaravel et al.
(2021)

13 Aspergillus terreus Ag-Cu Fungal biomass 20–30 nm Anti microbial activity against
human pathogens: Klebsiella
pneumoniae, Enterobacter
cloacae, and Pseudomonas
aeruginosa. Escherichia coli,
Enterococcus faecalis, and
Staphylococcus aureus

Ameen (2022)

14 Aspergillus niger Trimetallic
copper–selenium–zinc
oxide nanoparticles (Tri-
CSZ NPs)

Cell free extract 26.3 ± 5.4 nm and a shape
similar to a stick, with
ends showing a tetragonal
pyramid shape

Antifungal activity
against Mucor racemosus,
Rhizopus microsporus,
Lichtheimiacorymbifera, and
Syncephalastrumracemosum

Hashem et al.
(2023)

15 Talaromyces
haitouensis

Se-BiO-CuO Cell free extract 66–80 nm antimicrobial against ESBL-
producing Escherichia coli of
veterinary origin

Raseed et al., 2024

16 Aspergillus niger Ag/Au Culture
supernatant

spherical, with a mean
diameter of 8–10 nm

Thrombolytic,antiplatelet
aggregation actions and anti-
tumor activity

Abu-Tahon et al.
(2024)

(Continued on following page)
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3.1.2 Trimetallic
Trimetallic nanoparticles (TNPs) are composed of three distinct

metals, designed to reduce metal consumption, optimize atomic
ordering, and fine-tune their size and morphology. These
nanoparticles exhibit superior catalytic selectivity, activity, and
efficiency compared to monometallic and bimetallic counterparts,
making them valuable in applications such as biomedical,
antimicrobial, catalytic, active food packaging, and sensing
technologies. The incorporation of three metals allows for diverse
structural possibilities, including core–shell, mixed structures,
subcluster-segregated, and multishell configurations (Ali et al.,
2020; Basavegowda and Baek, 2021).

By modifying atomic distribution and surface composition,
TNPs can also be engineered as alloys or intermetallic
nanoparticles to enhance catalytic performance. Their innovative
physicochemical properties stem from synergistic and
multifunctional effects, enabling their potential in diverse
applications (Zaleska-Medynska et al., 2016). Despite these
advantages, studies on antimicrobial effects of TNPs remain
limited compared to those on mono- and bimetallic
nanoparticles. However, TNPs demonstrate efficient antibacterial
activity, often outperforming bi- and monometallic nanoparticles at
lower concentrations (Yadav et al., 2015; Das and Karankar, 2019).

An example is the synthesis of Tri-CSZ nanoparticles using
AspergillusnigerAH1 biomass filtrate, reported by Hashem et al.
(2023). The fungus-produced cell-free filtrate was combined with
copper acetate, sodium selenite, and zinc acetate. The resulting
nanoparticles, confirmed by a color change to dark green,
showed significant antimicrobial activity against Mucorales fungi.

4 Characterization of fungal-
synthesized multimetallic
nanoparticles

Characterization of NPs is important for unravelling their
physical and chemical properties. This process helps in
determining the average size, shape, and unique features of
synthesized NPs. Xray based methods like X ray diffraction
(XRD) and Xray Photoelectron Spectroscopy (XPS) are used to
determine crystal nature and elemental composition of particles.
Microscopic analyses, such as scanning electron microscopy (SEM),
transmission electron microscopy (TEM), high-resolution TEM

(HRTEM), atomic-force microscopy (AFM), have been used to
examine the size, morphology, and distribution of nanomaterials.
Energy dispersive spectrometry (EDS) is an accessory of electron
microscopy instruments (TEM and SEM)that is used to determine
the chemical nature of the core and shell. EDS displays the
distribution of elements in the samples. Characterization
techniques are discussed below which givesthe widespread
overview of approaches used to characterize fungal synthesized
monomeric and multimetallic nanoparticles.

4.1 Structural analysis

According to Khatami et al. (2018), core-shell nanoparticles
(NPs) are made up of two ormore nanomaterials, including a variety
of organic and inorganic nanomaterials (such as metals or
polymers). One of these nanomaterial serves as the core, and the
second nanomaterial is positioned around the core, known as the
shell. They are made so that the shell material can improve the core
material’s oxidative state, thermal stability, or reactivity. Type of
shell material used in NPs depends on their application. Based on
research interests and unique properties different shapes of core
-shell nanoparticlesare made (Shanmuganathan et al., 2020). Alloy
nanoparticles with different compounds can be synthesized by
altering molar proportion of the metal ions in the synthetic
solutions (Boroumand Moghaddam et al., 2015). Core-shell
structures have different spectral behaviours as compared to alloy
structures. The core–shell type structures show two plasmon bands
while alloy NPs shows only one plasmon band (Chen et al., 2006;
Sawle et al., 2008; Tripathi et al., 2015 showed that the fungal
biomass of Trichoderma harzianum acts as a reducing and capping
agent for the synthesis and stabilisation of Au–Ag alloy.

4.2 Composition and stability

Multimetallic nanoparticle analysis using UV-visible
spectroscopy is a potent method that makes it possible to
quantify surface-conjugated molecules and characterise the
characteristics of nanoparticles. A study by Çıplak et al. (2018)
used the UV-Vis spectra of Ag, Au monometallic, and Ag-Au
bimetallic NPs to perform a preliminary examination of the Ag-
Au bimetallic nanoparticles. Metal NPs were successfully generated

TABLE 2 (Continued) Table summarising multimetallic nanoparticles (MMNPs) synthesised by fungi, including their structural configurations, essential
features, and applications in biomedicine, agriculture and environmental remediation, and catalysis.

Sr.No. Fungi used Multimetallic
nanoparticle
synthesized

Bioextract
used

Size and
properties of the
nanoparticles

Applications References

17 Aspergillus
fumigatus

Zno-CuO Fungal Filterate Semi shpherical, 54.18 ±
1.9 nm

Anti-fungal activity against
Fusariumoxysporum

Gaber et al. (2024)

18 Trichoderma virens CuO/TiO2 Cell-free filtrate Antibacterial activity against
food borne and phytopathogenic
bacteria

Omran et al.
(2024)

19 Aspergillus
fumigatus

ZnO-CuO Cell free filterate 92.85 Anti fungal activity against plant
pathogen Fusarium oxysporum

Gaber et al. (2024)
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using C. islandica (L.) Ach, as evidenced by the presence of a surface
plasmon resonance (SPR) band of monometallic and bimetallic NPs.
The SPR band maxima of monometallic Ag (Ag100Au0) and Au
(Ag0Au100) nanoparticles are 410 nm and 534 nm, respectively. In
contrast, the absorption bands of Ag and Au monometallic NPs are
between the SPR bands of bimetallic NPs. Although UV-visible
spectroscopy is a reliable technique for examining multimetallic
nanoparticles, complementary methods like transmission electron
microscopy and dynamic light scattering must be taken into account
in order to validate results and guarantee thorough characterisation
(Potts et al., 2023). X-ray Diffraction (XRD) is a non-destructive
technique used to examine the crystal structure and phase purity of
the synthesised nanoparticles (Khatami et al., 2018). X-rays of a
fixed wavelength and the intensity are passed over a crystalline or
powdered sample placed over a sample holder and the intensity of
the reflected radiation is recorded using a goniometer. Data are then
analysed by Bragg’s equation and Debye–Scherrer to calculate inter
atomic spacing for the reflection angle and crystalline nature and
size, respectively (Khandel and Shahi, 2018). Xray Photoelectron
Spectroscopy (XPS) analysis is conducted for further identification
of the oxidation states, elemental compositions, and electronic states
of the nanoparticles (Omran et al., 2024). XPS analysis irradiates the
surface of material with X-ray’s and measures the kinetic energy of
ejected photoelectrons. Researchers have used either or both
techniques for characterization of monomeric and multimetallic
nanoparticles where XRD confirmed crystalline structure (Table 3).

XPS analysis showed peaks for the individual elements like Cu, Ti, O
and Ag, Au present in fungus mediated CuO/TiO bimetallic and
coreshellAg@Au nanoparticle, respectively (Omran et al., 2024;
Bhanja et al., 2020).

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a
ultrasensitive method used to identify and quantify the elemental
composition and concentrations of samples. ICP-MS provides rapid
multielement analysis with low detection limits. Usually Single
particle ICP-MS (SP-ICPMS) which is an emerging technique
used for analysis. Thistechnique relies on two factors: i) their
number concentration (ii) the size or the element mass per NP.
The numerical concentration of NPs has a direct correlation with the
pulse frequency. The intensity of each pulse is proportional to the
mass of element, in fact to the number of atoms, in each detected NP
(Laborda et al., 2014). Earlier ICP-MS have been used for
determination of NPs in complex matrices (Peters et al., 2015).

4.3 Morphological features

The morphological characterization of NPs is important to
know about their properties. Transmission electron microscopy
(TEM) and scanning electron microscopy (SEM) are essential
methods for describing multimetallic nanoparticles (MMNPs),
offering vital information about their surface characteristics, size,
and shape. These methods are commonly used in nearly all MMNP

TABLE 3 Phase analysis via XRD of fungal mediated multimetallic nanoparticles.

NPs Fungi employed Phase analysis via XRD References

Ag Rhizopus stolonifer
Aspergillus clavatus
Amylomycesrouxii
Cladosporium cladosporioides
Duddingtoniaflagrans
Macrophominaphaseolina

Face-centred cubic
Face-centred cubic
Face-centred cubic
Face-centred cubic
Face-centred cubic
Face-centered cubic

Abdel Rahim et al. (2017)
Verma et al. (2010)
Mussarat et al., 2010
Hulkire et al., 2019
Barbosa et al. (2019)
Spagnoletti et al. (2019)

Au Mariannaea sp.
Aspergillus sp.

Face-centered cubic
Face-centered cubic

Pei et al. (2017)
Shen et al. (2017)

Se Mariannaea sp. HJ
Aspergillus oryzae

hexagonal phase
face-centered cubic

Zhang et al. (2019)
Mossalam et al., 2018

Co3O4, CuO, Fe3O4

NiO
Aspergillus terreus ORG-1 Crystalline Mousa et al. (2021)

Zno Cordyceps militaris
Cochliobolusgeniculatus
Alternaria tenuisima
Aspergillus niger
Aspergillus terreus ORG-1

hexagonal wurtzite
hexagonal
Single-phase
Hexagonal
Crystalline

Li et al. (2019)
Kadam et al. (2019)
Abdelhakim et al. (2020)
Kamal et al. (2023)
Mousa et al. (2021)

CoFe2O4 Monascuspurpureus inverse cubic spinel El-Sayed et al. (2020)

CuO/TiO2 Trichoderma virens Monoclinic and Tetragonal Omran et al. (2024)

Ag@Au Ramaria botrytis crystalline Bhanja et al. (2020)

Au-Ag Trichoderma harzianum Face-centered cubic Tripathi et al. (2015)

Tri-CSZ Aspergillus niger hexagonal Hashem et al. (2023)

Se-Bio-Cuo Talaromyceshaitouensis crystalline Rasheed et al. (2024b)

Zno-Cuo Fusarium oxysporum Face-centred cubic Gaber et al. (2024)

Ag/Cuo Aspergillus terreus Face-centred cubic Ameen (2022)
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studies because, when paired with energy-dispersive X-ray
spectroscopy (EDS), they allow for a thorough understanding of
particle distribution, shape uniformity, and elemental composition
(Romero-Núñez et al., 2019; Anjum et al., 2022; Saqib et al., 2022;
Nyabadza et al., 2023). Their combined use is essential for verifying

the successful synthesis of nanoparticles and customising their
characteristics for a certain use. Different methods exist to
characterize NPs for studying their morphology, but techniques
that use microscopy such as SEM, TEM is widely used. In SEM
which is a surface imaging method, surface of specimen is scanned

TABLE 4 SEM/TEM analysis of mono and multimetallic nanoparticles.

Nps Fungi used Size o Shape References

Ag Fusarium oxysporium
Aspergillus clavatus
Amylomycesrouxii
Cladosporium cladosporioides
Duddingtoniaflagrans
Fusarium scirpi
Penicillium polonicum
Trichoderma atroviride
Trichoderma longibrachiatum
Macrophominaphaseolina
Rhizopus stolonifer
Rhizoctoniasolani Cladosporium cladosporioides
Botryosphaeriarhodina

20–50 nm
10–25 nm
20 nm
30–60 nm
4.51 ± 3.25 nm
2–20 nm
10–15 nm
15–25 nm
1–25 nm
5–35 nm
9.46 ± 2.64 nm
80–100 nm
20–25 nm

Spherical
Spherical/
hexagonal
Spherical
Spherical
Spherical
quasi-spherical
Spherical
Anisotropic
Spherical
Spherical
Spherical
Spherical
Triangular/
rectangular/
spherical

Durán et al. (2005)
Verma et al. (2010)
Musarrat et al. (2010)
Hulikere and Joshi (2019)
Barbosa et al. (2019)
Rodríguez-Serrano et al. (2020)
Neethu et al. (2018)
Elamawi et al. (2018)
Spagnoletti et al. (2019)
Abdel Rahim et al. (2017)
Malik et al. (2024)
Akther et al. (2019)

Au Trichoderma sp.
Mariannaea sp.
Aspergillus sp.
Aspergillus terreus IF0
Aspergillus candidus IF1

1–24 nm
11.7 nm
2.5–6.7 nm
20–29 nm
22–25 nm

Spherical
Spherical and pseudo-spherical
Spherical
Elongated, triangular, and rod shaped
Spherical

Qu et al. (2019)
Pei e al., 2017
Shen et al. (2017)
Priyadarshini et al. (2015)

Fe3O4 Trichoderma asperellum
Phialemoniopsisocularis
Fusarium incarnatum
Aspergillus terreus
ORG-1

25 ± 3.94 nm
13.13 ± 4.32 nm
30.56 ± 8.68 nm
5–50 nm

Spherical
Spherical

Mahanty et al. (2019)
Mousa et al. (2021)

Co3O4 Aspergillus nidulans
Aspergillus terreus
ORG-1

10–30 nm
5–50 nm

Spherical
Spherical

Vijayanandan and Balakrishnan
(2018)
Mousa et al. (2021)

CoFe2O4 Monascuspurpureus 3–15 nm Spherical inverse cubic spinel type El-Sayed et al. (2020)

Au, Ag
Au/Ag

Neurospora crassa 3–100 nm
3–110 nm

Triangular
Spherical or ellipsoidal

Castro-Longoria et al. (2011)

Nio Aspergillus terreus
ORG-

5–50 nm Spherical Mousa et al. (2021)

TiO2 Aspergillus flavus
Trichoderma virens

62–74 nm
-

Spherical, Oval
Quasi spherical

Rajakumar et al. (2012)
Omran et al. (2024)

CuO Trichoderma virens
AspergillusterreusORG-1

-
5–40 nm

plate/flake-shaped structure
Spherical

Omran et al. (2024)
Mousa et al. (2021)

Se Mariannaea sp. HJ
Aspergillus oryzae

45.19 nm
70 nm

Spherical
Sphere isotropic

Zhang et al. (2019)
Mosallam et al. (2018)

ZnO CochliobolusgeniculatusAlternariatenuisima
AspergillusterreusORG-1

2–6 nm
15.45 nm
5–50 nm

Quasi spherical
Spherical
Spherical

Kadam et al. (2019)
Mousa et al. (2021)

Ag/Cuo Aspergillus terreus 20–22 nm Spherical Ameen (2022)

Zno/Cuo Aspergillus fumigatus 14.73–72.07 nm Spherical Gaber et al. (2024)

Tri CSZ Aspergillus niger 26.3 ± 5.4 nm stick, with ends showing a tetragonal pyramid
shape

Hashem et al. (2023)

Cuo/
TiO2

Trichoderma virens - plate/flake-shaped structure Omran et al. (2024)

Ag@Au Ramaria botrytis 0.15 μm Core shell, rectangulr Bhanja et al. (2020)

Note: not determined.
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using electron beam of accelerated voltage. Backscattered electrons
are collected by the detector and analysed to obtain an image. This
method is capable of resolving different particle sizes and their
distributions, nanomaterial shapes and the surface topology of the
particles. The limitation of SEM is that, it is not able to resolve the
internal structure (Khandel and Shahi, 2018). SEM coupled
withenergy-dispersive X-ray spectrometry (EDS) allow the
analysis ofsample surface morphology, the inner structure and
the elemental composition. TEM depends on electron
transmissionto image a nanoparticle sample, providing much
higher resolution. It is preferred method to directly measure
nanoparticle size and their distribution. SEM, TEM, EDS have
been widely used for determination of shape, size and elemental
analysis of mono-, bi- and multi-metallic nanoparticles (Table 4).
SEM images are not applicable for studying the structure of
core–shell NPs since they characterise the surfaces while TEM
images are useful for studying the structure of core–shell NPs
considering its ability in measuring the thickness and spacing
between core and shells.

5 Unique properties of fungal-derived
multimetallic nanoparticles

The synergistic interactions of two different metals in a
nanoparticle system produce novel nanostructural topologies that
are very different from those of monometallic nanoparticles
(Sasireka and Lalitha, 2021). Multimetallic nanoparticles
(MMNPs) generated from fungi often have smaller diameters,
greater surface-to-volume ratios, and improved surface reactivity,
which results in more active sites for catalysis and adsorption (Zhao
et al., 2024). This lowers the energy barrier for electron transport and
reaction kinetics, which improves catalytic efficiency.

The charge transfer and electronic characteristics of metals give rise
to their catalytic potential, and metallisation in multimetallic systems
can greatly increase these characteristics—a result that is not commonly
seen inmonometallic nanoparticles (Sasireka and Lalitha, 2021; Li et al.,
2022). Superior selectivity and stability in a range of applications are
made possible by the fine adjustment of geometrical designs and
functionalities made possible by the inclusion of several metal
components (Rodriguez and Goodman, 1992; Wang et al., 2017).
The remarkable catalytic, electrical, and optical capabilities of these
bimetallic and multimetallic systems are a result of their unique bi-
functional and synergistic effects (Habas et al., 2007). The
multifunctional properties of MMNPs are further enhanced by band
structure alterations, lattice strain effects, and electronic interactions
among the metal components (Chen et al., 2005; Senapati et al., 2005).

Despite these advances, research on fungal-mediated MMNPs is
still limited, and more studies are needed to completely understand
their structural evolution, stability, and functional features in
various application domains.

6 Applications of fungal-synthesized
multimetallic nanoparticles

The synergistic interactions between different metals inMMNPs
allow for customisable features, making them applicable in a variety

of sectors. Furthermore, fungal-mediated synthesis is consistent
with green chemistry principles, providing a sustainable
alternative to traditional chemical and physical synthesis
processes. These features make fungal-synthesized MMNPs
interesting candidates for a variety of applications, including
biomedicine, environmental remediation, catalysis, and
more (Figure 2).

6.1 Biomedical applications: drug delivery
systems, bioimaging agents, and
photothermal therapies, leveraging the
enhanced biocompatibility of biologically
synthesized particles

In recent years, biologically produced metal nanoparticles have
developed as a lively field of research with substantial implications
for biomedical applications. The various uses of biologically
synthesised particles in biomedicine are drawing more and more
attention. These particles are frequently produced using
environmentally friendly or biologically friendly synthesis
techniques (Soni et al., 2021; Osman et al., 2024). They are
especially well-suited for delicate medical applications due to
their improved biocompatibility and environmentally friendly
manufacturing process (Das et al., 2017). The capacity to
overcome biological barriers, surface functionalisation, and
customised size of biologically synthesised nanoparticles make
them effective drug carriers (Ahmad et al., 2022; Deshmukh
et al., 2024). They increase treatment efficacy and minimise
negative effects by improving targeted medication delivery.
Biologically produced nanoparticles are perfect for bioimaging
because of their optical characteristics. Fluorescence imaging,
magnetic resonance imaging (MRI), and other imaging
modalities use biologically synthesised metal-based nanoparticles,
magnetic nanoparticles, and quantum dots (Mirabello et al., 2015;
Das et al., 2019; Truong, et al., 2024). Their sensitivity and accuracy
in illness diagnosis are improved by their capacity to be
functionalised for particular biomarkers (Shnoudeh et al., 2019;
Han et al., 2019; Thakare, 2023). In photothermal therapy (PTT),
cancer cells are specifically killed by use of nanoparticles that have
the ability to absorb light and transform it into heat (Alamdari, et al.,
2022). In PTT, biologically produced particles—especially those
made of gold or graphene—are beneficial because of their
adjustable photothermal characteristics and lower toxicity (Chen,
et al., 2019). The biocompatibility of these particles, in contrast to
their chemically synthesised counterparts, minimises toxicity
problems and immunological reactions in all of these
applications. They are therefore a viable path towards safer and
more efficient biological treatments (Abbasi et al., 2023; Oladipo
et al., 2023). Like, Gold nanoparticles, including those containing
gold cores, provide a versatile platform with desirable properties for
application in biomedicine, particularly in tissue imaging,
photothermal therapy, and theragnostic (Yang et al., 2019;
Ehrhardt Jr and Güleç, 2020). Moreover, by adding two or more
contrast agents, such as fluorophores, MRI agents, photoacoustic
agents, or surface-enhanced Raman spectroscopy reporters, gold
nanoparticles can be used to give multimodal imaging. This method
minimises the effect on patients’ immune systems while improving
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the characterisation of the disease (Pillai, 2019). Gold nanoparticle-
based targeted photothermal therapy in conjunction with a
chemotherapeutic agent has proven to be a successful treatment
for multidrug-resistant cancers (Kesharwani et al., 2023).

6.2 Environmental remediation

6.2.1 Resource recovery
Entomopathogenic fungi (EPF) are a significant source of

secondary metabolites, particularly low-molecular-weight organic
compounds released in response to environmental stimuli. These
metabolites are crucial for maintaining host functionality and
successfully infecting pathogens by damaging their nervous
system or lowering insect resistance (Donzelli and Krasnoff,
2016; Vivekanandhan et al., 2018; Karthi et al., 2018).

Due to their high enzymatic activity, ability to produce bioactive
compounds, and adaptability to culture media, EPF is also being
explored in nanoparticle biosynthesis and bioconversion of
flavonoids and steroids, which hold significant economic
potential (Różalska et al., 2018). One widely studied EPF species,
Metarhizium anisopliae, is commonly used as a biocontrol agent
against agricultural pests (Faria and Wraight, 2007). These fungi
produce various metabolites, including destruxins (DTXs)—cyclic
depsipeptides composed of L-proline, L-isoleucine, N-methyl-L-
valine, N-methyl-L-alanine, β-alanine, and a D-α-hydroxy acid,

which varies among destruxin subtypes (A-E), primarily isolated
from Metarhizium species (Arroyo-Manzanares et al., 2017).

6.2.2 Pollution remediation
The biocompatibility of biologically synthesized nanoparticles,

in contrast to their chemically synthesized counterparts, minimizes
toxicity issues and immunological reactions in various applications.
As a result, they offer a safer and more efficient approach to
biological treatments. Their production through biological
processes—using fungi, microorganisms, or plants—reduces
environmental impact during synthesis and contributes to large-
scale environmental cleanup initiatives due to their scalability and
versatility (Abdellatif et al., 2021; Oladipo et al., 2023).

Biologically produced nanoparticles, such as those composed of
iron, silver, and zinc, exhibit remarkable adsorption and reduction
capacities for removing heavy metals like lead, cadmium, and
arsenic from contaminated water (Kumar et al., 2021; Zaimee
et al., 2021; Razzak et al., 2022).

These nanoparticles also demonstrate potential in degrading
organic contaminants, including dyes, insecticides, and
pharmaceutical residues. For example, silver nanoparticles have
been used under mild conditions to catalyze the breakdown of
industrial dyes (Abbas et al., 2016; Feisal et al., 2024), while
biologically synthesized iron nanoparticles efficiently degrade
chlorinated organic compounds (Ismail et al., 2019; Chaudhari
et al., 2024; Venkateshaiah et al., 2022).

FIGURE 2
Illustration demonstrating the various characteristics and broad applications of multimetallic nanoparticles (MMNPs) synthesised using fungal-
mediated methods. These nanoparticles’ key properties include increased catalytic activity, higher thermal and chemical durability, improved
biocompatibility, optical tunability, and novel structural configurations. The image also shows the adaptability of fungal-synthesizedMMNPs in a variety of
domains, including biomedicine, environmental cleanup, catalysis, and agricultural development.
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Additionally, these nanoparticles have been employed in soil
remediation and air purification. Microbially synthesized iron oxide
nanoparticles have shown effectiveness in reducing soil contamination
caused by hydrocarbons and other hazardous pollutants (Bolade et al.,
2021; Tao et al., 2023). Compared to conventional methods, biologically
synthesized nanoparticles offer superior efficiency with lower
environmental toxicity, making them an eco-friendly solution for
pollution control. Their scalability and versatility are increasingly
driving their adoption in global environmental restoration programs.

6.2.3 Bioenergy production
Biologically synthesized nanoparticles have gained attention for their

potential role in bioenergy production. Certain fungi andmicroorganisms
used in the biosynthesis of nanoparticles also contribute to
bioconversion processes, where they facilitate the breakdown of
organic matter into biofuels and other energy-rich compounds.

For instance, some entomopathogenic fungi (EPF) with high
enzymatic activity are being investigated for their role in converting
biological waste into energy sources. These fungi, by producing
secondary metabolites and enzymes, can aid in the degradation of
lignocellulosic biomass—a crucial step in bioethanol and biogas
production. Their efficiency in breaking down complex organic
materials highlights their potential in sustainable bioenergy initiatives.

6.2.4 Soil treatment
Certain soil-borne plant pathogens, particularly those affecting

economically important crops, cause severe yield losses by impairing
plant growth at various stages (Granzow et al., 2017; Ali et al., 2021).
Wilting diseases and root rot are often attributed to latent soil fungi
(Stoddard et al., 2010; Levenfors, 2003). Among them, Fusarium wilt
disease is particularly damaging, as it compromises plant immunity,
significantly reducing both yield and quality (Elamawi and Al-
Harbi, 2014; Mahmoud, 2016; Maity et al., 2022).

During the planting season, Fusarium wilt begins in the root
system, gradually spreading throughout the plant. The pathogen
obstructs vascular tissues, disrupting water and nutrient transport,
ultimately leading to wilting, leaf necrosis, and plant death (Elamawi
and Al-Harbi, 2014). Chemical control methods have proven
challenging and environmentally harmful, making biological
control strategies a more suitable alternative. Biocontrol
approaches are cost-effective, eco-friendly, and efficient in
managing Fusarium wilt (Yu et al., 2021; Abdelaziz et al., 2022;
Hashem et al., 2022; Attia et al., 2022; Abdelaziz et al., 2023).

Entomopathogenic fungi, particularly species like Metarhizium
anisopliae, have demonstrated effectiveness in controlling soil-borne
pathogens through their ability to produce antifungal metabolites and
induce plant resistance mechanisms. The integration of biological
nanoparticles and fungal biocontrol agents presents an innovative
strategy for soil health management and sustainable agriculture.

6.3 Sensors and biosensors: leveraging
optical and electrical properties for sensitive
detection in environmental or medical
diagnostics

Sensors and biosensors are essential to contemporary
diagnostics because they provide quick, precise, and sensitive

detection techniques, especially for medical and environmental
monitoring applications (Haleem, et al., 2021; Bhatia et al., 2024).
To identify chemical, biological, or physical changes in a system,
these instruments take advantage of special optical and electrical
characteristics (Singh et al., 2020; Hemdan et al., 2024). They are
made up of a reader device for data collection, a signal transducer
that transforms the biological reaction into an electrical signal, and a
recognition component that recognises the analyte and produces a
corresponding signal. In industries ranging from environmental
monitoring to healthcare, these instruments are essential for
identifying and measuring a variety of chemicals (Jain, 2012).
Additionally, biosensors such as the DNA and microbial
biosensors are essential for monitoring contaminants in
environmental applications, enabling prompt actions that greatly
aid in environmental conservation.Research in the Journal of
Medical Internet Research suggests that the use of wearable
biosensors for remote patient monitoring has significantly
reduced hospital readmission rates, saving healthcare systems
throughout the world a significant amount of money (Turner,
2013). Moreover, biosensors make it possible to conduct high-
throughput screening in drug discovery, which significantly cuts
down on the amount of time needed to find possible therapeutic
options. Adoption of biosensors has significantly increased research
productivity worldwide. The extensive use of biosensors in research
labs across continents is expected to drive the global biosensors
market to reach USD 35.5 billion by 2026, according to a report by
Research and Markets.Moreover, analytes are detected and
measured by optical sensors using light. Methods including
Raman spectroscopy, surface plasmon resonance (SPR), and
fluorescence are frequently employed (Wang et al., 2017;
Bousiakou et al., 2019; Philip and Kumar, 2022). SPR-based
biosensors, for example, are perfect for medical diagnostics such
as identifying biomarkers in blood or saliva because they can identify
molecular interactions in real-time without the need for labels (Das
et al., 2023; Swami et al., 2024). High-sensitivity detection in
environmental monitoring, such as the detection of pollutants or
toxins, is made possible by fluorescence-based sensors, which are
frequently augmented with nanomaterials like quantum dots
(Thakur and Kumar, 2022; Mohkam et al., 2023; Udhayakumari,
2024). When interacting with the target analyte, electrical sensors
rely on changes in electrical signals, such as resistance, capacitance,
or current. In medical diagnostics, electrochemical biosensors—like
glucose meters—are well-known examples. Ion-selective electrodes
(ISEs) are employed in environmental applications to identify ions
such as heavy metals or nitrates in water. These sensors’ sensitivity
and selectivity are improved by the incorporation of nanostructured
materials like graphene or carbon nanotubes (Sharma et al., 2021;
Polidori et al., 2024). The integration of electrical and optical sensing
modalities, cost reduction, and portability are the main goals of
recent developments (Heikenfeld et al., 2018). Wearable biosensors,
smartphone-integrated platforms, and point-of-care (POC) devices
are all growing in popularity. These developments address issues in
both resource-rich and resource-limited environments by
guaranteeing that sensitive and accurate diagnostics are available
in a variety of contexts (Colombo, 2022). Finding pollutants in
water, soil health indicators, and air quality measures is known as
environmental diagnostics. Monitoring chronic diseases, identifying
infectious disorders, and identifying cancer biomarkers are all
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examples of medical diagnostics. Next-generation sensors are being
developed as a result of the intersection of nanotechnology, material
science, and data analytics, which has the potential to revolutionize
environmental sustainability and global health. For instance, among
the most destructive plant diseases are Fusarium species. In order to
inhibit the growth of F. oxysporum, Aspergillus fumigatus was used
to myco-synthesize bimetallic zinc oxide-copper oxide nanoparticles
(ZnO-CuO NPs). After being separated from soil, A. fumigatus was
detected both physically and genetically (Gaber et al., 2024).

For example, biosensors such as the enzyme-linked
immunosorbent assay (ELISA) and glucose biosensor have
revolutionised diabetes treatment by facilitating precise and real-
time glucose level monitoring, which is essential for efficient disease
management. Biosensors such as the fiber-optic and piezoelectric
biosensors have made it easier to quickly identify pollutants in food
products, hence improving food safety. By quickly detecting
infections like Salmonella and E. coli in food samples, these
biosensors protect the public’s health. Additionally, biosensors
such as the DNA and microbial biosensors are essential for
monitoring contaminants in environmental applications, enabling
prompt actions that greatly aid in environmental conservation
(Bhatia et al., 2024). For instance, the potential of gold
nanoparticles as multifunctional sensors has been thoroughly
studied. Gold nanomaterials can be tailored for certain uses by
varying their shape; moreover, gold nanoparticles, nanorods, nano-
shells, and nanocages all have unique thermal and optical properties
that make them promising theragnostic agents (Prakash, 2023).

Plant infections caused by Fusarium species are among the most
damaging. Using A. fumigatus, bimetallic zinc oxide-copper oxide
nanoparticles (ZnO-CuO NPs) were myco-synthesised to prevent
the growth of F. oxysporum. Physically and genetically, A. fumigatus
was identified after being isolated from soil. Omran et al., 2024
studied, the cell-free filtrate of the endophytic fungus T. virens was
used to create CuO/TiO2 NPs. Mycosynthesis of CuO/TiO2 NPs was
the outcome of the fungal filtrate’s reaction with the two metal salts,
CuSO4.5H2O and TiO2. Utilizing XRD, FTIR spectroscopy, EDX,
DLS, zeta potential analysis, XPS, Raman scattering, FESEM, and
HRTEM, the produced bimetal oxide nanoparticles were studied.
The monoclinic CuO and tetragonal rutile TiO2 crystal planes were
represented by the diffractionPeaks of the mycosynthesizedCuo/
TiO2 nanoparticles. This study evaluated an environmentally
acceptable approach for the mycogenic synthesis of the bimetallic
oxide, CuO/TiO2 NPs, using the cell-free filtrate of Trichoderma
virens. In order to address the severity of plant diseases and
foodborne illnesses and contribute to meeting the global food
and agricultural needs, the effectiveness of the mycogenicCuO/
TiO2 NPs against foodborne and phytopathogenic bacteria was
then assessed.

7 Challenges and limitations

MMNPs have great interest as compared to single metals-based
nanoparticles because of their good stability, numerous
morphologies, synergistic effect of multiple metals, improved
optical, catalytic, magnetic, and electronic properties
(Basavegowda and Baek, 2021). Biogenic synthesis of MMNPs is
considered as simple, economically feasible and scale-up approach

due to the presence of fast growth of fungal cultures, different
reducing agents (enzymes, proetins), non-toxicity of fungal cell
extract (Rasheed R. et al., 2024). Despite its advantageous usage,
there are some limitations of MMNPs including selection, type of
nanoparticle, structure, size, stability, dosage, mode of application,
batch to batch variability, toxicity, environmental, and health
hazards. Firstly, selection of multiple metals specific precursors,
compatibility with different precursors, ratio of multiple metals,
reaction time, and conditions (pH, temperature) for uniformmixing
of all the metals is the biggest challenge in the synthesis process of
MNPs. Secondly, requirement of advanced characterization
approach of MMNPs is also the major problem (Dey et al.,
2024). Moreover, different types of metals have their own
physical and chemical properties that may interfere with the
crystallization, aggregation, and penetration of MMNPs to the
target site (Yapa et al., 2024). Besides this, optimization of fungal
culture media, different growth conditions is also important for the
production of bioactive compounds that acts as stabilizing, reducing
agents and also controls the uniformity, shape and size of the
synthesized MMNPs (Adeleke et al., 2024). In Addition to above,
batch-to-batch variability remains a key challenge due to
fluctuations in environmental factors such as pH, temperature,
and nutrient availability, which can influence fungal metabolism
and nanoparticle characteristics. To address this, advancements in
bioreactor-based production, genetic engineering for metabolically
stable fungal strains, and process optimization strategies are being
explored to enhance reproducibility. Therefore, proper research is
required for the selection of metallic nanoparticles, their physical
and chemical nature, and more focus should be on studying the
toxicity of MMNPs. Regulatory approvals, safety and handling rules,
and economic viability should be imposed for the efficient
development of MMNPs. Moreover, the fungal metabolism
should also be carefully examined for determining the mode of
action of reducing agents that may controlled the aggregation,
dispersion, shape and size of nanoparticles.

8 Future directions

The study and production of metallic NPs using fungi are
increasing and have received great attention from scientific and
technological communities due to their ease of handling and high
metal tolerance. The biogenic method provides natural agents for
reduction, capping and stabilization of NPs (Sidhu et al., 2022).
Metal nanoparticles, due to their quantum effects and high surface-
to-volume ratio, have outstanding ultraviolet-visible sensitivity,
electrical, catalytic, thermal, and antibacterial properties (Mekuye
and Abera, 2023). Fungal-mediated production of multimetallic
nanoparticles (MMNPs) has various intriguing future directions.
Optimising fungal strains through genetic engineering and
metabolic pathway alteration can improve the efficiency, yield,
and specificity of MMNP production. Addressing scalability and
reproducibility issues is critical, necessitating the creation of
standardised processes to assure uniform particle composition,
size, and morphology in large-scale production. Integrating
MMNPs with other nanomaterials to form hybrid systems opens
up possibilities for multifunctional applications in sectors such as
medication delivery, biosensing, and environmental remediation.
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Furthermore, getting deeper mechanistic insights into the enzymatic
and metabolic pathways involved in fungal-mediated synthesis can
lead to improved process control and nanoparticle property
customisation.

In multi-metallic nanoparticles metals form layer around each
other exhibiting good optical properties (Srinoi et al., 2018). Although
studies about the formation of multi-metallic NPs using fungus are
few. Employing fungus these kinds of nanoparticles can be rapidly
synthesized, giving NPs of different morphologies. (Aigbe and
Osibote, 2024). To ensure safe and sustainable use, thorough
research on the toxicity, environmental effect, and biocompatibility
of fungal-derived MMNPs are required. Tailoring MMNP features to
specific applications in agriculture, healthcare, catalysis, and
environmental research can increase their practical utility. Finally,
fostering multidisciplinary collaborations among microbiologists,
chemists, materials scientists, and engineers will be pivotal in
accelerating research advancements and industrial applications of
this green synthesis approach. Together, these activities will realise the
full potential of fungal-mediated MMNPs, resulting in long-term
solutions across a wide range of industries.

9 Conclusion

The production of multimetallic nanoparticles (MMNPs) using
fungus-mediated synthesis offers an environmentally responsible
and sustainable substitute for traditional chemical and physical
processes. Fungi’s natural capacity for enzymatic reduction,
biostabilization, and the release of bioactive metabolites makes it
possible to produce MMNPs with special structural and functional
characteristics, like increased catalytic activity, improved stability,
and biocompatibility. Because of their synergistic qualities, MMNPs
are very adaptable for use in biomedicine, environmental
remediation, biosensing, and catalysis.

Despite tremendous advancements, issues such as
reproducibility, scalability, and precise control over particle
composition continue to be important impediments to the
widespread use of fungal-mediated synthesis. Addressing these
problems would necessitate a multidisciplinary strategy that
includes sophisticated strain optimisation, genetic engineering,
and the integration of fungal systems with hybrid technology.
Furthermore, the study of novel fungus species and their
metabolic processes may open up new avenues for adapting
MMNP features to specific applications.

This study highlights the potential of fungi as bio-factories for
green MMNP synthesis, offering an attractive path to meeting the
growing need for sustainable nanomaterials. Researchers and

industry can expedite the creation of creative solutions to global
difficulties in agriculture, medicine, and environmental
sustainability by capitalising on the benefits of fungus and
multimetallic systems. Future research should focus on bridging
the gap between laboratory-scale synthesis and industrial-scale
production, paving the door for practical fungal-mediated
MMNP applications in a variety of domains.
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