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In recent years, the interest of science in big data sensing, storage and processing
has been growing fast. Nano-materials have been widely used in resistive
switching devices thanks to their distinguished properties. Furthermore, they
provide nano-scale dimensions and compatibility with fabrication procedures
and complementary metal oxide semiconductor (CMOS) technology. Nano-
materials can also enhance the performance of memristive structures. The
operation of a memristor, which enables efficient resistive switching
characterized by fast response, increased storage density, and low power
requirements, depends largely on nano-materials and deposition techniques.
Herein, a comprehensive brief review of nano-material RRAM arrays and their
application in biomedical is discussed. First, we introduce planar and array
resistive switching structures. Second, we report the different nanomaterial
categories that can be used in resistive random-access memories (RRAMs).
Then, we focus on the integration of 3D nano-material-based memristive
crossbars for in-memory computing and biosensing arrays and discuss
representative applications. The exploration of nano-materials enables the
development of enhanced resistive switching architectures with increased
signal integrity, great speed, and ultra-high sensitivity towards thermally and
electrically stable memristive biomedical platforms.
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1 Introduction

Since their breakthrough in 2008, HP memristors have been broadly used in various
applications (Strukov et al., 2008), including analogue and digital circuits, biosensors,
artificial neurons and synapses, as well as RRAMs for memory storage (Homsi et al., 2023; Li
et al., 2018; Barraj et al., 2024). Resistive switching devices, often referred to as non-volatile
memories, consist of sandwiched structures evolving metal-insulator-metal materials. They
store data by alternating the insulator material’s resistive level between high and low states.
RRAMs are characterised by rapid switching speed and ON/OFF ratio, efficient endurance,
and long retention time (Bouzouita et al., 2024). These memristive operating standards are
often affected by different properties of nanomaterials (Zahoor et al., 2020). In other words,
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memristive benchmarks interconnect the choice of nanomaterials
with memristor performance (Wang Miao et al., 2018) through the
diversity of intrinsic physical and chemical reactions of materials, as
well as fabrication techniques and defect engineering that benefit the
development and destruction of the conductive filament within the
insulator layer. Various review papers on nanomaterials for
memristive architectures exist in this context. In 2018, Ahn et al.
explored sp2 hybridised carbon nanostructures, including fullerene,
carbon nanotubes and graphene for RRAMs, focusing on their roles in
electrodes, interfacial layers, resistive switching media, and memory
selectors (Ahn et al., 2018). In addition, by 2020, Rehman et al. focused
in their review on 2D nanomaterial-based RRAMs and their
nanocomposites by covering device structure, conduction
mechanisms, resistive switching properties that exceed 10 years of
retention time, fabrication technologies, challenges, and future
prospects (Muqeet Rehman et al., 2020). In the same year Shen
et al. reviewed RRAMs in means of thin film nanomaterials,
resistive switching mechanisms, and artificial intelligence
applications (Shen et al., 2020). Last but not least, in 2024, Singh
et al. explored memristive devices in terms of 2D nanomaterials for
various resistive switching scenarios and 2D neuromorphic systems
reporting their main challenges (Singh and Gupta, 2024). The
implementation of RRAM generates two main functions. By over-
passing conventional Van Neumann architecture, RRAM has been
widely integrated for in-memory-computing and multi-array sensing.
In 2019, Bankman et al. elucidated a research paper on RRAM-based
in-memory devices for deep neural networking deployment (Bankman
et al., 2019). This study highlights the importance of implementing
RRAM in-memory processing units (IPUs) for reducing energy
consumption, memory capacities, and arithmetic operations without
sacrificing the system’s linearity. RRAM-based multi-sensing arrays
generally pave the way towards compact human sensory perception for
neural therapeutics and prosthetics. In 2019 Zhou et al. fabricated an
organic RRAM (ORRAM) array for vision in-sensor application to
achieve in-memory image sensing and neuromorphic pre-processing
with high recognition accuracy, efficient edge computing and less
complex circuitry (Zhou et al., 2019). Different from the existing
review papers, in this work, we first report briefly the different
memristive structures. Secondly, we classify the nanomaterials
employed in the different parts of the RRAMs according to their
dimensions. Then our interest focuses on reviewing the integration
of RRAMs for in-memory computing and multi-sensing applications
towards diversified memristive biomedical applications.

2 Introduction to RRAM

2.1 RRAM structure

Various RRAM structures have recently been investigated to
enhance performance and address emerging computational and
storage challenges. This paper discusses three primary RRAM
architectures: (a) metal-insulator-metal (MIM) or planar, (b)
Crossbar arrays, and (c) three-dimensional (3D) RRAM.

2.1.1 Planar structure
In 1967, Simmons et al. introduced the first proposed MIM

structure (Figure 1a) in which resistive switching is attributed to the

formation and rupture of conductive filaments in the insulating
layer (Simmons and Verderber, 1967; Sawa, 2008). The MIM
structure has shown high endurance >1012 cycles, extended data
retention (>10 years), and fast switching speeds <10ns (Ahn et al.,
2015; Lee et al., 2011; Kim et al., 2023; Fang Lu et al., 2021).
Nevertheless, MIM architectures are limited in scalability due to
lithographic limits and increased variability at small feature sizes
(Wang et al., 2007; Stelling and Retsch, 2018).

2.1.2 Crossbar array structure
In crossbar array structures (Figure 1b), RRAM cells are placed at

the intersections of perpendicular electrode lines, allowing a higher
integration density than the planar configuration. Crossbar arrays have
the potential for cell sizes as small as 4F2, where F is the minimum
feature size, resulting in storage densities exceeding 100 Gb/cm2 (Ali
et al., 2016). However, crossbar arrays are plagued by sneak path
currents that corrupt stored data and can lead to erroneous readouts
(Huang et al., 2011; Son and Min, 2014). To overcome this problem,
selector devices, including diodes or transistors, are added to RRAM
cells to control sneak currents and enhance the reliability of the array
(Linn et al., 2010; Yin Chee et al., 2022).

2.1.3 3D RRAM structure
3D RRAM structures (Figure 1c) utilize vertical space in the

three dimensions to construct multilayer memory arrays and
increase storage capacity with a reduced footprint (Deng et al.,
2013). Its implementations can be broadly categorized into (i)
Horizontal Stacked 3D RRAM (HRRAM) and (ii) vertical
(VRRAM) schemes, which are distinguished to scalability and
fabrication complexity (Kim and Li, 2020).

HRRAM is a memory architecture composed of multiple planar
2D RRAM layers superimposed as shown in Figure 1cII. (Chen et al.,
2021; Wang et al., 2015). Wang et al. fabricated a 3D RRAM cube by
strategically stacking a 2D MoS2 layer, which proved a promising
pathway for high-density neuromorphic computing systems (Yoon
et al., 2023). Despite the innovative design of HRRAM, some critical
technological challenges have been reported (Wang Chenyu et al.,
2023). One of the significant issues is the fabrication complexity
(Kim and Li, 2020; Wang Chenyu et al., 2023). Then, the
manufacturing overhead indicates increasing stack quantities,
leading to linear cost increase (Kim and Li, 2020; Wang Chenyu
et al., 2023; Park et al., 2022). Finally, scalability constraints have
been mentioned due to the 2D layer nature compared to VRRAM
(Wang Chenyu et al., 2023; Park et al., 2022).

The conventional horizontal crossbar array structure is vertically
extended for 3D VRRAM (Figure 1cIII; Chen et al., 2022). It is
organized in two configurations: The plane word line (WL)
structure and the even/odd WL structure (Kim and Li, 2020). It
shows increased storage capacity with a small footprint (Kim and Li,
2020; Yue et al., 2014). In particular, compared to 2D crossbar array, 3D
VRRAM with an even/odd WL structure occupies only 256F2, 6 times
less than the total size of an 8 × 8 image when processed (Yue et al.,
2015). This shows higher bit-cost scalability than other 3D RRAM
structures, and is most promising for deploying neural networks (Yue
et al., 2014; Yue et al., 2015; Yu et al., 2016).

Structural innovations introduced in these devices give rise to
next-generation memory solutions in diverse computing
applications (Ielmini and Wong, 2018).
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2.2 Nano materials in RRAM structures

Nanomaterials thanks to their properties at the nanoscale, have
been revolutionizing modern science and technology. Unlike their

rival bulks, Nano-materials’s size and shape determine their unique
optical, chemical, thermal, electrical, mechanical, and catalytic
properties (Mekuye and Abera, 2023). Nanomaterials are
generally known for their dimensional configuration

FIGURE 1
(Continued).
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diversification ranging between 1 and 100 nm (Baig et al., 2021).
These invaluable features pave the way for emergent fields of
applications citing, energy storage and conversion (Yu et al.,
2024), environment pollutants degradation (Saroha et al., 2023),
disease diagnosis and drug delivery (Karnwal et al., 2024; Singh et al.,
2022; Singh et al., 2023), as well as memory architectures like

RRAMs (Xu and Liu, 2024). In general, nanomaterials are
important for RRAMs’ operational characteristics (Xiao et al.,
2023). Indicatively, various memristive metrics such as resistive
switching behaviour, ON/OFF ratio, set/reset voltages, retention
time, endurance and power consumption (Zayer Fakhreddine et al.,
2019) are directly linked to the RRAM nanomaterial properties,

FIGURE 1
(Continued). Comprehensive overview of RRAM structures, nano-materials, and characteristics. (a) Conductive filament dynamics and resistive
switching processes. (a.I): Atomic-scale filament formation. (a.II): Operational phases. (b) Crossbar topology with word lines (WLs) and bit lines (BLs) and
voltage distribution in the reading scheme. (c) RRAM crossbar array architectures and scaling approaches. (c.I): Planar crossbar array: Single-layer
configuration with memory cells at word-line bit-line intersections. (c.II): Horizontal 3D stacking (HRRAM). (c.III): Vertical 3D architecture (VRRAM).
(d) 0D nano-materials used in RRAMs. (e) 1D nano-materials used in RRAMs. (f) 2D nano-materials used in RRAMs. (g) Proposed M3D-LIME Chip
Architecture with multiple layers. (h) RRAM-based Processing-in-Memory (PIM) Architecture. (i) RRAM array for multisensory perception. (j) Device-level
calibration of the PSA sensing array baseline. (k) Sneak path effect that corrupts the stored data and lead to erroneous readouts. (l) examples of RRAM
challenges. (m) Proposed solution: synthesis methods and applications of metal-organic frameworks (MOFs). (a) Reprinted from Sawa (2008). Copyright
(2008), with permission from Elsevier. (b, c, g, h, j, k, l, m) reprinted with modification and permission. “Creative Commons Attribution” from (Chen et al.,
2024; Wang Chenyu et al., 2023; Wang Hongzhe et al., 2023; Li Yijun et al., 2023; Tzouvadaki et al., 2020a; Shi et al., 2020; Adam et al., 2018; Li et al.,
2024). (i) Reprinted from Zhu et al. (2022). Copyright (2022), with permission from John Wiley and Sons.
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namely, the electrical, physical, thermal and mechanical properties
(Dongale et al., 2016; Shen et al., 2020; Das et al., 2023). Hence, it is
essential to study the different memristive materials dimensional
configuration categories (0D, 1D, 2D) (Panisilvam et al., 2024).
Numerous nano-materials can be employed for the fabrication of
RRAMs, the most common ones are metal oxides, perovskites, and
organic materials. Furthermore, other nanomaterials contribute to
RRAMmodelling, for instance, transition metal oxides (TMOs), and
transition metal dichalcogenides (TMDs), etc. Table A1 of the
appendix and Figures 1d–f outline the categories of
nanomaterials used in RRAMs according to their dimensions.

2.2.1 0D nano-materials in RRAMs
0D carbon nano-materials like carbon nano-dots, graphene

quantum dots, and fullerenes assist in memristive functional
layer growth through the generation of directional conductive
filament formation (Yang Fan et al., 2024). Furthermore, metallic
nanoparticles (MNPs) like copper (Cu) and sliver (Ag), are proven
to exhibit an important influence on the memristive switching with
alternating voltage under 4 mV showing extremely low variability
(Liu et al., 2022; Jean Yoon et al., 2019). Within the framework of
their study, Wang et al. demonstrated that NiFe2O4 MNP-
memristors have shown low Set/Reset voltages less than 2.15 V/
0.83V, an elevated retention time of 103 s, and a 103 of endurance
cycles (Wang et al., 2022).

2.2.2 1D nano-materials in RRAMs
1D nano-materials, thanks to their nanoscale size, unique

transport and high electric conductivity at low voltage, are widely
used in RRAMs (Zhang et al., 2023). For instance, 1D carbon
nano-materials are proven to be good candidates for elaborating
highly performing RRAMs because of device stability and weight
tunability (Patil et al., 2024). Moreover, metal oxide nanowires
and nanorods, such as zinc oxide (ZnO), titanium dioxide
(TiO2), nickel oxide (NiO), and tungsten trioxide (WO3) are
employed in memristors to improve the volume to surface ratio
(Lu and Lieber, 2007) and scalability, as their bottom-up self-
assembly capability guarantees high-precision control of the
dimension (Milano et al., 2019). In 2018, Ting-Kai Huang
et al. reported Ni/NiO/HfO2-based memristive 1D-RRAM
with endurance of 200 cycles, retention up to 107s, ON/OFF
ratio close to 104, and set/rest maximum voltages equal to 3V and
2 V respectively (Huang et al., 2018).

2.2.3 2D nano-materials in RRAMs
2D nano-materials are known for ultra-thin, flexible, and

layered structures (Muqeet Rehman et al., 2020). 2D TMDs
semiconductors such as tungsten disulfide (WS2) and
molybdenum diselenide (MoSe2) exhibit high scalability and
integrity. Thus, they are used for high-density and low-power-
consumption RRAMs (Xiang et al., 2018). 2D graphene oxide
(GO), reduced graphene oxide (rGO), and hexagonal boron
nitride (h-BN), also called white graphene, show potential
utility for performant RRAM cells. The origin of memristive
behaviour in these materials is the vacancies-initiated conductive
filament alternative construction (Qian et al., 2016; Kim et al.,
2015). In 2023, Yan et al. modelled RRAM based on strontium
titanate (SrTiO3) perovskite oxide thin film highlighting the set

voltage and endurance of 2V and 100 cycles, respectively (Yan
et al., 2023a). Vertically stacked 2D nanomaterials can enhance
the performance of RRAMs as they guarantee distinguished
uniformity and resistive switching (Huh et al., 2020). In 2019,
Zhang et al. (2019) performed a study on vertical TMDs,
molybdenum ditelluride (MoTe2−) RRAM with retention time,
set voltage and, power consumption of 103 s, 2.3 V, and 2.3 mW
respectively.

3 3D RRAM for in-memory computing
for biomedical applications

3D RRAM-based systems provide better performance and
energy efficiency than traditional computing architectures by
computing directly within the memory array (Yan et al., 2019).
Several 3D RRAM-based in-memory computing architectures
have been proposed and demonstrated in recent years. Wang
et al. propose a 3D RRAM-based processing-in-memory (PIM)
architecture (Figure 1g) that integrates 3D RRAM with CMOS
logic, enabling in situ computation with reduced data movement
and energy (Wang Hongzhe et al., 2023). For heavy-load
convolutional neural network (CNN) algorithms, the RRAM
PIM generally outperforms other architectures in terms of
identification rate, speed, and image size (Burr et al., 2017).
Building on this, Yao et al. developed a 3D RRAM-based
neuromorphic computing system for more efficient processing
and analyzing of large-scale datasets, such as images and time
series. This system achieved a classification accuracy of 97.8% on
the Modified National Institute of Standards and Technology
(MNIST) dataset (Peng et al., 2020). Hao et al. presented a study
of computing-in-memory macro based on 3D RRAM in 2022.
Their work was based on a 3D VRRAM in which they introduced
a two-kilobit non-volatile computing-in-memory (nvCIM)
macro. They demonstrated an energy efficiency of 8.32 tera-
operations per second per watt on 3D vector-matrix
multiplication operations. This advancement can facilitate
more efficient management of medical imaging data,
improving diagnostic accuracy (Wang Tian-Yu et al., 2021). It
was found that the brain Magnetic Resonance Imaging (MRI)
edge detection performance and the inference accuracy on the
Canadian Institute for Advanced Research (CIFAR-10) dataset
were improved compared to conventional approaches (Wang
Tian-Yu et al., 2021). In 2023, Li et al. recently introduced the
monolithic three-dimensional integration of hybrid memory
architecture based on RRAM, named M3D-LIME. This M3D-
LIME chip (Figure 1h) demonstrated approximately 96%
accuracy on the Omniglot dataset with 18.3 × higher energy
efficiency compared to graphics processing unit (GPUs),
showcasing its potential for efficient processing of complex
healthcare datasets and potential use of this technology for
medical image processing and efficient analysis of MRI or
computed tomography (CT) scans (Li Yijun et al., 2023). In
the same year Ge Shi et al. proposed a two-kilobit CIM macro
based on an 8-layer 3D vertical RRAM to implement complex
neural networks for drug discovery processes and potentially
helping in identifying the new therapeutic compounds (Wang
Chenyu et al., 2023).
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4 3D RRAM for multi-sensing arrays for
biomedical applications

RRAM architectures can be integrated as chemical signal
sensors for disease biomarker detection (Bouzouita et al., 2024)
and drug delivery and electrical signal sensors for human multi-
sensory perception (Tzouvadaki et al., 2023). Indeed, thanks to
their efficient ON/OFF ratio, fast response, low power
requirements, low cost, etc. RRAMs can be implemented as
highly performing bio/chemical sensing arrays (Tzouvadaki
et al., 2020b). In this case, each RRAM layer or section is
transformed into a single sensing device, leveraging
advancements in memristive nano-materials and biomedical
technologies, like lab-on-chip perspectives to simultaneously
harvesting multiple responses. In 2018, Adeyemo et al.
simulated the detection of three different gases with an 8 ×
8 memristive crossbar array. The simulation results
highlighted a ten-times increase in accuracy compared to
single biosensing devices (Adeyemo et al., 2018). In 2020,
Ioulia Tzouvadaki et al. demonstrated a chemical biosensor
array (Figure 1i) directly transducing Prostate Specific Antigen
(PSA) cancer biomarker concentration levels to discrete memory
states, expressing a device-level calibration of the sensing array
baseline (Tzouvadaki et al., 2020a). Moreover, in 2023, Doowon
Lee et al. developed a highly accurate zirconium nitride (Zr3N4) -
gas sensor array with efficient power nitric oxide (NO) gas
detection and increased accuracy by 2.5% (Lee et al., 2023).
This study is dedicated to artificial olfactory sensory
perception (Milozzi et al., 2024), (Wang Tong et al., 2021). In
fact, parallel to multi-chemical sensing applications, RRAMs are
considered a promising technology for artificial multi-sensory
perception (Kwon et al., 2024)as they can mimic biological neural
systems because of their characteristics such as synaptic
plasticity, analogue data processing, complex parallel
computing (Moon et al., 2019), etc. In this context, the
feasibility of multi-sensory chips (Figure 1j) (Li Zhiyuan et al.,
2023) is proposed to overcome some neural impairments by
advancing promising neural sensory prosthetics. In 2023,
Xiaobing Yan et al. implemented a ferroelectric memristor
crossbar for visual-tactile multimodal sensory. This study
shows high stability with an endurance value of 1010 and low
field voltage between −1.3 V and −2.1 V (Yan et al., 2023b).

5 Challenges and future directions

5.1 Challenges of 3D RRAM technologies

While memristive crossbar arrays offer considerable potential
in the biomedical field, they face numerous obstacles that could
impact their development and implementation. While advancing
RRAMs, certain critical barriers have emerged in both vertical
and horizontal directions. In their work, Gina C. Adam et al.
reported potential challenges of memristive matrix integration
(Figures 1k, l) citing variability, density, latency, and technology
feasibility (Adam et al., 2018). For instance, as RRAM arrays
simulate processing operations, errors may appear due to large
device variability. Indeed, memristive crossbar arrays often

exhibit vast variability due to stoichiometric inconsistency of
inharmonious temporal memristive dimensions. Specifically, the
variability of selected cross-points within the RRAM causes
signal decay (Chen and Lin, 2011). A.P. James et al.
emphasized that the variability problem originates either from
device-to-device variations, or the nonlinearity of latency and
programming. In memristive crossbars, the current flowing
through the metal wires (Figure 1k) causes the reduction of
voltage drop through the structure. This problem induces the
damage of metal wires. The elevation of resistance is a further
challenge causing thermal crosstalk and energy loss. All these
circumstances initiate signal integrity obstacles (Li et al., 2021;
Xu et al., 2015). In general, RRAM challenges reflect on the
correct functioning of memristive biosensing devices, therapeutic
systems and neural prosthetics since these applications
necessitate specific performance metrics citing the response
time, sensitivity, stability, reliability, etc., which are linked
originally to used memristive device and nanomaterials (Yang
Yulong et al., 2024; Zhu et al., 2024).

Various works have been addressing RRAM challenges and
proposing solutions. Several nanomaterials have shown a
potential to solve some remaining RRAM bottlenecks. For
example, it is proved that titanium nitride, while deposited as an
atomic layer (ALD-TiN), reduces the penetration of titanium (Ti)
atoms to hafnium oxideHfOx. Thus, the layer enhances the oxygen
vacancy generation and conductive filament forming (Fang et al.,
2018). In addition, innovative bias scheming and interconnect nano-
materials like CNT can tackle voltage dropping and crosstalk
challenges ensuring uniform voltage and thermal distribution
(Zayer F. et al., 2019). Equally important, structural and training
compensation techniques are adopted to enhance the overall RRAM
performance (Pappachen James and Chua, 2022). For instance, the
integration of modular arrays, or tiled crossbars to decrease the
sneaky-path current and employing offline training to improve
RRAM variability and sensitivity approaches.

5.2 Future directions

There are several significant research opportunities in the
future for the 3D RRAM nanomaterial memristive architectures
for biomedical applications. Among these, the interconnecting
and evolving of new nanomaterials and 2D materials with CIM
sensing, and computing properties are paramount. Materials like
TMDs, graphene and metal-organic frameworks (MOFs)
(Figure 1m) bear the pre-scientific potential to improve the
device performance in high-density, multifunctional
biomedical implants, diagnostics and real-time health
monitoring devices (Zahoor et al., 2023). Specifically, MOFs,
with their high surface area and tunable porosity, improve the
switching behaviour of RRAM devices through increased ion
mobility and low energy consumption. This makes them suitable
for neuromorphic systems in implantation devices thus making
them potential implant sources (Zhang et al., 2022; Li et al.,
2024). Improving these materials to get the best switching
characteristics is very important for protracted implantable
devices (Shen et al., 2020). However, reducing device
variability is an issue that has not yet been solved successfully.
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More investigations should be dedicated to the reliable
suppression of device-to-device and cycle-to-cycle fluctuations
to promote the stability of neuromorphic designs for neural
computing: sensory signal processing in real-time, control of
prosthetic devices, etc., (Shen et al., 2020; Donati and Valle, 2024;
Buccelli et al., 2019). The bio-electronic interface is another area
with considerable potential for advancement. Therefore, it is
desirable that future studies must further extend efforts in
stable and long-lasting operation of these interfaces in
physiological conditions for the further effectiveness of
implantable devices (Zahoor et al., 2023). Recent research on
combining RRAM with CMOS chips has shown that on-chip
processing is possible at an energy density close to 10 fJ/operation
- a critical feature for implantable biomedical applications (Shen
et al., 2020). Prospective work should focus on how to continue
driving energy consumption down while, at the same time,
enhancing the computational abilities of the end-devices, so
that in the future it can be possible to perform local analysis
and decision making of the data (Li Yijun et al., 2023; D’Agostino
et al., 2024; Huo et al., 2022; Aziza et al., 2021). Furthermore,
identifying ways in which 3D RRAM devices may be applied for
closed-loop therapeutic systems, personalized healthcare, and
AI-based diagnosis is another interesting research direction.
Additionally, when combined with other new technologies like
flexible electronics and biodegradable materials the 3D RRAM
may revolutionize the wireless implantable and wearable
medicine (Zahoor et al., 2023). Overall, these aspects can open
new paths for the use of 3D RRAM nanomaterial memristive
architectures in biomedical applications, significantly benefiting
healthcare.
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Appendix

TABLE A1 Nano-materials for RRAM applications.

Material Device ON/OFF ratio V reset (V) V set (V) E (cycle) RT(s)

0D Nano-materials Ag/Ag: Ag2O/Ag (Jean Yoon et al., 2019) 109 < 0.3 > − 0.6 102 ~ 105

ITO/CdS QDsPV P/Al (Betal et al., 2023) > 104 −0.72 1.08 > 102 > 104

ITO/HfOx/MoS2 Pd NPs/ITO (Wang et al., 2018b) > 103 < − 0.8 −0.1 to 0.3 200 104

1D Nano-materials Ag/ZnO doped Ga2O3/Au (Li et al., 2022) — > -1.49 > 0.51 60 104

ITO/GZO/ZnO/ITO (Huang et al., 2014) 102 −7.2 5.7 7x103 105

Cu/TiW/Nds/ZnO/ITO/Glass (Singh et al., 2018) 30 −2 1.5 102 103

2D Nano-materials ITO/PVA GO/ITO (Wen et al., 2020) > 10 0.2 −0.2 5x102 104

Ag/InSe/Ag (Tang et al., 2021) 4.5x104 −0.7 0.3 3x102 3.5x103

Pt/h − BN/Ag (Li et al., 2016) 108 −0.1 0.3 107 —

V Reset: reset voltage, V Set: set voltage, E: endurance, RT: retention time.
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