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Nanometrology is vital for the advancement of nanotechnology but faces
significant computational demands due to the complexity of measurements at
the nanoscale. This review identifies two primary challenges: first, achieving
super-resolution in microscopy imaging, where capturing detailed nanoscale
information over large areas is handled with various strategies; second,
characterizing the stochastic nature of nanostructure morphologies, which
requires advanced methods to accurately analyze random and disordered
features. We examine the limitations of existing image enhancement
techniques and explore computational strategies for analyzing both discrete
and continuous nanostructured surfaces. Addressing these challenges
emphasizes the critical need for developing new computational methods to
enhance precision and reliability in nanoscale measurements, thereby fostering
continued innovation in nanotechnology.
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1 Introduction

According to the International Bureau for Measurements and Standards “Metrology is
the science of measurement, embracing both experimental and theoretical determinations
at any level of uncertainty in any field of science and technology” (BIPM, 2012). During the
last decades, both experimental and theoretical metrology have been endowed by the
development of properly designed computational methods which is partially due to the
complicated nature of several modern measurement techniques and of obtained
measurement data. As an example, we may consider the measurement of the thickness
of a thin film which is a critical metrological step in several applications of thin film
technology. In order to extract the value of thickness from the measurement process,
advanced computational methods for the physics-based modelling of the measurement
process are required exploiting the theory of electromagnetism to solve the so-called inverse
problem in metrology, i.e., to predict a physical quantity (film thickness) from the measured
spectrum (Park et al., 2024). Additionally, computational methods have been extensively
utilized in the statistical analysis of the measurement results to quantify their uncertainty.
These methods encompass Monte Carlo simulations of the propagation of measurand
distributions as well as recent Bayesian-based considerations (Committee for Guides in
Metrology, 2008; Meija et al., 2023).
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Therefore, the main focus of the conventional computational
approaches in metrology is twofold: a) First to provide the means for
a deeper understanding of the measurement process with the
additional benefit of using the obtained knowledge to facilitate
the translation of measured data to measurand values and b)
Secondly, to offer the tools for the statistical analysis of
measurement results aiming at the reliable estimation of the holy
grail of metrology, i.e., the measurement uncertainty.

The rapid advancements in nanotechnology have raised
unpresented metrology challenges which demand computational
solutions besides the realm of the conventional ones outlined above.
The aim of this review is to focus on some of these challenges and
describe mathematical and computational methods enabling their
treatment. The proposed methods can be based on either totally new
insights or strong updates of well-known mathematical tools. In
order to explore the new challenges and the efforts to cope with
these, we divide our paper into three sections addressing the
questions of why, how and where. First, in the next section, we
explore the question of why we need innovative mathematical and
computational methods in nanometrology. Then we pose the
question of how this need can be further elaborated considering
a) the challenge of super-resolution in microscopy imaging and b)
the characterization of the stochasticity in nanostructure
morphology and surfaces. Finally, a short reference is made on
where these new approaches can be applied and deliver new insights
and results.

2Why dowe need novel computational
methods in nanometrology?

The vast majority of applications in nanotechnology are based
on nanostructuring surfaces of selected materials or the reinforcing
material matrices with nanofillers such as nanowires, nanoparticles,
nanotubes, nanosheets, etc. The core idea is that the added
nanostructuring to the materials surface or bulk can modify
significantly the physicochemical properties (optical, mechanical,
thermal, wetting, bioadhesive, tribological) of materials enhancing
accordingly their functionality (Logothetidis, 2012). The
quantitative characterization and control of these nano-enabled
properties and functionalities of materials requires a well-
founded metrology of nanostructure size and morphology since
the latter define in a critical manner the obtained material properties
(Gao, 2021). To achieve this aim, two challenges should first
be faced.

The first emanates from the tiny size of nanostructures in
relation to the macroscopic scale of the material structures used
in the final application. In most cases, the obtained device or system
contains billions or even trillions of nanostructures which may have
the form of peaks or grooves (surface features) in the case of surface
roughness or manifest as nanoparticles or nanofibers when we
functionalize a material with enforcing fillers in its bulk. The
obtained functionality usually depends on the specific shapes and
sizes of the embedded nanostructures as well as on their uniform
distribution on material surface or bulk. Therefore, to control both
contributions to nano-enabled functionality, the imaging and
measurement of nanostructured surfaces or materials needs to
extend from nanoscale details to the whole picture on a

macroscopic scale of hundreds of micrometers or even
millimeters to capture both small and high scale variabilities. In
order to achieve this aim in the case of surface nanostructures with a
scanning microscope, the sampling interval of measurement or pixel
size of the microscopy image should be on the nanometer scale while
the measurement range (inspection area or field of view) should
reach at least some hundreds of micrometers. This requirement
elevates the measurement points (or pixels) of the image to the level
of trillions making the measurement process very slow and
vulnerable to errors. The problem to compromise measurement
resolution with field of view in scanning microscope measurements
comprises the metrology challenge of super-resolution. The
computational methods developed to cope with this challenge
and enhance computationally the resolution of obtained
microscopy images will be the first focus point of our paper,
analysed in Section 3. A short overview of the previous works
encountered in literature will be followed by a more detailed
description of a recent proposed method based on the Fourier
spectra stitching process.

The second challenge has to do with the geometrical
morphology and spatial distribution of nanostructures created on
material surfaces or reinforced into bulk. In most fabrication
processes (especially those of bottom-up approach),
nanostructures appear to be characterized by a kind of
randomness in shape and spatial distribution although they are
apparently different from the patterns of uncorrelated noise.
Usually, the geometrical morphology of nanostructured materials
seems to be an intricate combination of local correlations of
nanostructure points with random and disordered characteristics
which can span a large gamut of appearances and morphologies. In
the case of surfaces, this combination is related to what is usually
called nano-roughness, while in discrete nanostructures the
randomness is demonstrated by the variability of their shapes,
sizes and spatial positions. The so-called challenge of
stochasticity on the nanoscale has recently attracted a lot of
interest in semiconductor research and industry since the
aggressive scaling down of nanostructure dimensions in modern
circuits brought about the issue of stochastic deviations of their
shapes and positions from the designed ones. They have been called
for the increased effects of Edge Placement Error and Line Edge
Roughness on the performance of semiconductor devices and the
concomitant enhancement of yield losses (Bristol and Krysak, 2017;
Constantoudis et al., 2018; Constantoudis et al., 2019a). Also, in
semiconductor manufacturing, the presence of stochastic deviations
from flatness is critical in Chemical Mechanical Polishing (CMP)
used for achieving wafer-level planarization and thickness
uniformity. Recent research (Deng et al., 2021) highlights the
importance of roughness measurement and prediction by using a
modified Preston equation and employing a back-propagation
neural network. This approach enables real-time optimization of
key CMP process parameters, thereby effectively bridging
theoretical process models and practical semiconductor
manufacturing. However, the presence of stochastic features in
nanomorphologies is not limited to semiconductor structures and
patterns. It penetrates the whole spectrum of nanofabrication
processes, and it can be considered the hallmark of the geometry
of derived nanostructures and patterns. Nanostochasticity ranges
from the appearance of edge roughness on nanostructures with
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well-defined geometries (lines, holes, nanopillars, . . .), goes through
the randomization of shapes and positions of nanostructures and
reaches the stochastic fluctuations of rough surfaces. In all these
cases, the development of proper mathematical concepts and
computational methods for their implementation is a prerequisite
for a well-founded metrology of nanostochasticity. Although, this
challenge has been partially elaborated in previous works, a concise
and integrated framework is still missing (Leach, 2024). The aim of
Section 4 is to fill this gap and present a mathematical toolset and
computational methods for the quantitative characterization of
nanostructured surfaces incorporating both conventional
approaches and recent alternative proposals based on modern
advances in complex systems and stochastic geometry.

Besides the above-mentioned challenges, recent studies have
shown that the role of computational preprocessing of microscopy
images is also significant in nanometrology results. For instance,
flattening AFM images via polynomial detrending effectively
removes background curvature, yet if applied too aggressively, it
can eliminate real nanoscale features, leading to an underestimation
of roughness (Nečas et al., 2020). Also, the measurement of edge
roughness in nanolithography may be strongly biased by SEM image
noise leading to overestimation of high-frequency contributions and
variance metrics (Villarrubia and Bunday, 2005). Several methods
for noise filtering have been tested and a concise comparison of their
efficiency has been reported in (Constantoudis and Pargon, 2013).
Integrating preprocessing with advanced analytical methods—such
as power spectral density (PSD) spectrum (Jacobs et al., 2017;
Constantoudis et al., 2018; Lorusso et al., 2018) — seem to yield
a more robust framework for noise reduced characterization of both
edge and surface roughness. Similarly, SEM imaging benefits from
contrast enhancement and noise filtering (Lorusso et al., 2018), but
improper calibration of these steps risks obscuring high-frequency
details essential for accurate edge detection. By calibrating
preprocessing parameters within noise-correction algorithms,
researchers can ensure the control of roughness measurement
dependencies across varying imaging conditions. This integrated
approach is key to establishing standardized protocols in
computational nanometrology, ultimately enabling more reliable
comparisons and correlations between surface topography and
material functionality. Despite the crucial significance of
computational tools for image preprocessing before analysis, the
focus of this review will be on the first two challenges of enhancing
resolution and stochasticity characterization leaving the review of
computational prepossessing effects on nanometrology results for a
future work.

3 The challenge of enhancing
resolution

Scanning Microscopies (SM), such as Atomic Force Microscopy
(AFM) and Scanning Electron Microscopy (SEM), have driven
significant advances in nanoscience and nanotechnology. SM and
nanofabrication are collaborative: SM enables precise imaging and
inspection of nanostructures fuelling further advances in
nanofabrication, while new nanofabrication techniques challenge
SM techniques pushing them to overcome their current operation
limits. However, despite their crucial importance, SM suffer from

the limitation of the finite number of measurement points due to the
very nature of the scanning process, which undermines the
acquisition of large-scale nanostructured surface measurements
with high resolution. This limitation is related to the more
general issue of enhancing resolution in images using
computational post-processing methods which is commonly
referred to as the super-resolution challenge.

In recent years, a lot of works have explored computational
methods to cope with the super-resolution issue, particularly in
camera- and microscopy-based imaging (Yue et al., 2016; Sreehari
et al., 2017). Patil M. and Khare S. provide an overview of various
techniques for enhancing image resolution in image processing
applications ranging from medical imaging and astronomy to
satellite and object recognition (Patil Mayuri and Surbhi, 2012).
The focus is on methods that improve image quality by increasing
resolution, particularly through image interpolation and complex
wavelet transforms. Traditional interpolation techniques, such as
bilinear and bicubic methods, often introduce artefacts like blurring
and blocking of edges. To address these limitations, advanced
methods are reviewed, including dual-tree complex wavelet
transform (DTCWT) and discrete wavelet transform (DWT),
which offer enhanced resolution, reduced artefacts, and improved
image clarity. Comparative results of these techniques highlight their
effectiveness in producing high-quality images for diverse
applications (Bhatt et al., 2012). In a more general context, Kaur
and Singh (2013) reviews the image enhancement computational
techniques, focusing on methods that improve image quality for
applications such as medical imaging, satellite analysis, and object
recognition. It explores both spatial and frequency domain
approaches, including contrast stretching, histogram equalization,
wavelet transforms, and advanced methods like stochastic
resonance. By examining the strengths and limitations of each
technique, this paper aims to offer insights into effective image
enhancement methods, assisting researchers in selecting or
designing techniques that best suit their specific application needs.

Machine learning methods and particularly convolutional
neural networks (CNNs) have been widely used recently to
generate high-resolution images from low-resolution inputs by
learning complex mappings within large datasets. Models such as
Super-Resolution Convolutional Neural Network (SRCNN) (Dong
et al., 2014) and GAN-based architectures effectively enhance
resolution by identifying and reconstructing intricate details
between low- and high-resolution data. The drawback of these
approaches is that they often require substantial training time,
large training data sets and computational resources.

The Combined Attention Network for Single Image Super-
Resolution (CANS) (Muhammad et al., 2024) introduces an
advanced architecture designed to address key limitations in
traditional CNN-based single image super-resolution (SISR).
CANS utilizes a multi-pathway design that integrates shallow,
deep, and dense block-based networks, enabling the extraction of
local, global, and dense features necessary for high-resolution image
reconstruction. By achieving exceptional image quality with reduced
computational demands, CANS outperforms existing SISRmethods.

Additionally, a frequency domain-based SISR approach (Seo
et al., 2024) leverages CNNs and GANs alongside a novel mutual
loss function and a two-dimensional structure consistency (TSC)
mask. This approach adapts to high- and low-frequency image
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regions, enhancing resolution adaptively by balancing perceptual
and contextual losses to produce visually realistic high-resolution
images. These innovations position this model effectively within the
machine learning-based super-resolution field. Machine learning
techniques (de Haan et al., 2019; Ooi and Ibrahim, 2021) have
enabled resolution enhancement by factors of 3–4 in most cases.
However, as noted in (Qian et al., 2020), direct application of these
methods to SM images is restricted due to the different physics
underlying SM image formation and analysis. Additionally,
traditional super-resolution methods usually ignore frequency
mapping, a process that arranges spatial scales in a sequence,
allowing for more flexible adjustments.

Amore traditional approach is frequency domainmethods, such
as Fourier and wavelet transforms, which enhance resolution by
manipulating the image’s frequency components. For example,
Fourier-based methods can increase sharpness by amplifying
high-frequency details, which correspond to edges and fine
textures. Wavelet-based methods allow multiresolution analysis,
enhancing specific scales within an image. These techniques are
powerful for detailed enhancements but often require expertise to
apply effectively.

The Fourier transform is a widely utilized tool across several
scientific (Kujdowicz et al., 2023; Lizhong et al., 2023; Pierret and
Galerne, 2023) and technological domains (Ciulla et al., 2023),
particularly in image processing, where it is commonly applied
for filtering, reconstruction (John et al., 2020), and compression
(Pandey et al., 2015).

A study by Bagawade Ramdas et al. (2012). examines the
application of wavelet transform-based techniques for enhancing
image resolution, an essential attribute in fields such as satellite
imaging, medical diagnostics, and digital photography. By
comparing methods like the Discrete Wavelet Transform (DWT),
Stationary Wavelet Transform (SWT), and Dual-Tree Complex
Wavelet Transform (DT-CWT), the paper assesses their ability to
preserve high-frequency details while minimizing artifacts.

The above computational approaches aim at increasing the
resolution of an image with a specific content which is kept fixed
during the super-resolution process. However, in the SM images of
nanorough surfaces, the motivation behind the super-resolution
challenge is somewhat different. In most cases, the obtained SM
image is a small segment from a large area of the nanorough surface
which exhibits strong stochastic features. Therefore, the super-
resolution challenge is transformed to the generation of
stochastic replicas of the initial Low-Resolution image, which
have increased resolution. The generated High-Resolution image
should have similar statistical properties with the LR image
(stochastic replicas) but it is not required that it has a pixel-by-
pixel similarity.

In order to meet the new aspects of the super-resolution
challenge in SM images of nanostructured surfaces, a method
called generative Fourier Spectra Stitching (gFSS) has been
proposed and tested in both simulated and real surfaces (Stai
et al., 2025). The gFSS method is based on the Fourier
Transform (FT) of HR and LR images exploiting the structural
simplicity of the image in the frequency domain. It is well-known
that FT decomposes an image into sinusoidal frequency
components, enabling frequency-domain representation where
each point signifies a unique frequency in the spatial domain.

Working in Fourier space simplifies many image-processing
tasks, making noise reduction, edge enhancement, and pattern
recognition more computationally efficient by converting
complex convolutional operations into simple multiplications.
This approach also allows selective frequency-based filtering: low
frequencies capture large structures, while high frequencies
represent details such as edges.

The first key idea of gFSS is to stitch together Fourier spectra
from images taken at different magnifications, delivering an
enhanced spectrum that combines the high-frequency details of
high-magnification images with the large field of view from low
magnification ones. The inverse Fourier transform of this stitched
spectrum provides an image with both high resolution and large
measurement range. However, to address the stochastic aspects of
SM images, the gFSS method introduces a second concept: phase
randomization. The Fourier transform produces both amplitude
and phase spectra, which can be manipulated separately. In rough
surface textures, the phase spectrum is typically random and
uncorrelated, meaning that altering phase values does not impact
the primary surface features, which are governed by the amplitude
spectrum. By randomly adjusting the phase spectrum, we can
generate a large gamut of morphologies of the same surface
texture, effectively simulating multiple SM measurements across
several surface regions. This generative aspect of phase
randomization is central to the proposed gFSS method, designed
to address both spatial and scale limitations of SM images of
rough surfaces.

Although there is not a systematic study comparing gFSS with
Machine Learning super resolution techniques on the same dataset
of microscopy images, Table 1 summarizes the basic characteristics
of both approaches identifying benefits and shortcomings.

For the validation and application of the gFSS method, a
combination of synthesized and experimental images provides a
comprehensive approach. Synthesized surfaces were
computationally generated with predetermined roughness
features, while experimental surfaces were obtained via AFM or
SEM. The synthesized data are used to validate the gFSS method,
while experimental data demonstrate its effectiveness in real-world
applications. By integrating both data types, the evaluation of the
gFSS method becomes more thorough considering its reliability and
applicability.

The gFSS method is implemented through a multi-step
workflow. Initially, few images of a surface are captured at
multiple magnifications and resolutions using SEM or AFM,
allowing different levels of details and measurement ranges: low
magnification images capture a larger area with lower resolution
while high magnification captures fine details at a smaller scale (high
resolution images). Assuming isotropic surface textures, the next
step is the calculation of the 1D radial average of the 2D Fourier
spectra of both low- and high-resolution images. The obtained 1D
Fourier spectra are then stitched together to construct an extended
Fourier spectrum that spans a broad range of frequencies. This
expanded spectrum is converted back into two dimensions and by
means of an inverse Fourier transform with randomized phase
values, we result in a synthesized wide-scale image that combines
the high-resolution details from the HR image and the large
measurement range from the LR image. A histogram equalization
may also be applied to the output image to match surface amplitudes
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to those of the LR image. Additionally, each application of the phase
randomization step generates different morphologies, effectively
simulating SM measurements on different spots of a rough
surface areas. In Figure 1 there is a workflow of the gFSS method
tested on synthesized surfaces. Simulated measurements at various
magnifications with similar pixel density (200 × 200 pixels), are
extracted from the high-resolution reference surface (3,200 ×
3,200 pixels with pixel size = 1 nm) playing the role of the
ground truth in our calculations. In this example, the input to

the gFSS method are three images with different magnifications
(low, middle and high) shown in Figure 1a which are processed by
stitching their Fourier spectra (see Figures 1b,c) in order to extract a
high-resolution image with large measurement area shown
in Figure 1d.

Figure 2 demonstrates the success of the gFSS method. In
Figure 2a we display a low-magnification image of the synthetic
rough surface with a measurement range of 3.2 × 3.2 μm2 and pixel
size equal to 16nm, while Figure 2b shows the image of the surface

TABLE 1 Comparison of Machine & Deep Learning methods applying to resolution enhancement vs gFSS.

Feature Machine & deep learning methods gFSS method

Achieved resolution
enhancement

Up to 8 times Up to 16 times

Data Requirements Large datasets for training are needed Only a few images at different magnifications are required

Processing Speed Computationally expensive during training. Fast during predictions Fast, requiring no model training

Application for
Microscopy images

General Machine Learning models for enhancing image resolution may
be ineffective in SEM images due to differences in the physics of image

formation

Designed for AFM/SEM/SPM images, effectively overcoming scanning
limitations

Image Generation Resolution enhancement in both feature-based and texture-based
surfaces, preserving the original content of images

Resolution enhancement in texture-based surfaces generating new
surfaces that are statistically similar to the input images with increased

resolution. Simulates measurements at different spots on surface

FIGURE 1
(a) Low, middle, and high magnification images of a synthetic rough surface used as input to the gFFS algorithm. (b) Circularly averaged Fourier
spectra obtained from the 2D Fourier Transform (FT) of each image. (c) Stitched FT combining frequency data across all magnification levels. (d)
Reconstructed gFFS image by applying randomization of phases followed by an inverse FT, achieving the measurement range of the low magnification
image (3.2 × 3.2 μm2) and the pixel-size of the high magnification image (1 nm).
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after the application of the gFSS method, retaining the measurement
range of the low magnification image (3.2 × 3.2 μm2) but reducing
significantly the pixel size to 1 nm, i.e., achieving the astonishing
enhancement of resolution by 16 times. Insets in both images show
4× magnified regions, highlighting the method’s ability to improve
significantly the resolution of an image. The capability of the gFSS
method to achieve the generation of multiple stochastic replicas of
the initial LR surface with enhanced resolution is critical, as essential
surface parameters such as roughness metrics and grain size
statistics rely on both the resolution and measurement range of
AFM/SEM images (Stai et al., 2025).

More specifically, the gFSS method has been applied in AFM
images of CoFeTa thin film surfaces to improve both resolution
(i.e., reduce pixel size) and measurement range (Stai et al., 2025).
The measured sample surface is rough with well-defined grains and
therefore, the critical feature to be measured with accuracy is the
grain size. By combining images of different magnifications, gFSS
managed to reconstruct an image of the surface with the large field
of view of the low-magnification image and the details of the high-

magnification one. This increased the resolution five times, making
it easier to see tiny surface details. The Fourier spectrum of the
reconstructed image closely follows the spectrum of the high-
magnification image at high frequencies while maintaining the
low-magnification spectrum’s coverage at low frequencies. This
confirms that gFSS successfully enhances resolution. The method
also fixed errors in grain size measurements that appear when
image pixels are too large. Grain size in AFM images was measured
at different resolutions, showing that larger pixel sizes
overestimate grain size. In low-magnification image (9.8 nm
pixel size), the mean grain size was 53.7 nm, while in high-
magnification image (1.96 nm pixel size), it was 43 nm. The
gFSS method improved accuracy in the reconstructed image of
the surface resulting in a 42.5 nm grain size, close to the high-
resolution measurement. When the gFSS image was
computationally downsampled to match the low-magnification
image, the grain size increased to 53.3nm, demonstrating that
lower resolution deteriorates accuracy in grain metrology, which
can be remedied by the application of the gFSS method.

FIGURE 2
(a) Lowmagnification image of a synthetic rough surface with a measurement range of 3.2 × 3.2 μm2 and a pixel size of 16 nm. (b) Image generated
after applying the gFFS method, maintaining the measurement range of 3.2 × 3.2 μm2 but with reduced pixel size to 1 nm increasing the resolution by
16 times. Insets show 4× magnified regions for detailed comparison.
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4 The challenge of characterizing
stochastic nanostructured surfaces

4.1 Discrete surfaces

The term “discrete surfaces” refers to individual, distinguishable
features or entities on a material’s surface, such as particles, grains,
pores, or other morphological structures that are separate from one
another. These discrete features are distinct in that they do not form
a continuous or interconnected surface, allowing for identification
and measurement of individual properties. In practice, this means
that each feature can generally be isolated and analyzed
independently to assess parameters such as size and shape
(Section 4.1.1), spatial relationships (Section 4.1.2) or an
investigation of both (uniformity analysis-Section 4.1.3).

Analyzing discrete features in microscopy images presents
multiple challenges due to the complexities of both the imaging
process and the inherent properties of the materials being studied.
One significant challenge is the resolution limit of microscopy
techniques, which may be insufficient to clearly capture features
at the nanoscale or features closely packed together, leading to
blurred or overlapping boundaries that complicate segmentation
(Hofer, 2003; Shindo and Kenji, 2012). Additionally, contrast
between features and their surroundings can be low, particularly
in heterogeneous samples, making it difficult to distinguish
individual entities or accurately define feature edges (Aspelmeier
et al., 2015). Imaging artefacts, such as noise, beam-induced damage,
or charging effects in electron microscopy, can distort the
appearance of features, causing inaccurate measurements or false
positives during analysis (Wuhrer and Moran, 2016). The complex
topographies of certain materials further add difficulty, as surface
irregularities or overlapping structures may obscure discrete
features, challenging the segmentation process and potentially
resulting in misidentification (Duval et al., 2015). Thresholding, a
common technique to separate features from the background based
on grayscale levels, can be particularly difficult to optimize in cases
of low contrast or non-uniform illumination, as global thresholding
may fail to capture subtle features or introduce noise (Lee et al.,
2020). Adaptive thresholding or advanced machine learning
algorithms may improve segmentation accuracy, yet these
methods are computationally demanding and introduce their
own challenges in terms of parameter selection and processing
time (Xing et al., 2018; Cunha et al., 2024). Consequently,
accurate analysis of discrete features often requires careful
preprocessing, meticulous adjustment of imaging parameters, and
the use of robust, sometimes hybrid computational methods to
achieve reliable results.

4.1.1 Size distribution and shape analysis
Shape and size distribution analysis of discrete features in

microscopy images is key for characterizing particles, pores, or
other morphological entities within a material. The analysis
typically begins with image preprocessing steps such as noise
filtering and contrast adjustment to enhance feature visibility
(Cardell et al., 2002). Segmentation methods, including
thresholding, edge detection, or watershed algorithms, are then
employed to isolate individual features from the background
(Gamarra et al., 2019). Once features are segmented, their

geometric properties, such as area, perimeter, and equivalent
diameter, can be calculated and used to generate the appropriate
size and shape data (Vivier et al., 1989).

The size distribution analysis of these features provides
statistical descriptors such as mean size, median, mode, and
standard deviation, which are essential for understanding the
heterogeneity of the sample (Crouzier et al., 2019). The
distribution data can be visualized through histograms or
cumulative distribution curves, offering insights into the range
and frequency of feature sizes. Studies on the size distribution of
discrete features in microscopy images have gained significant
attention with the advent of computational methods that
enhance the accuracy and efficiency of feature extraction (Hojat
et al., 2022). Computational approaches, including image processing
algorithms, machine learning models, and advanced statistical tools,
have proven essential in analyzing discrete features (Safari et al.,
2021). These methods facilitate accurate segmentation,
classification, and quantification of features, which is crucial for
applications ranging from materials science to biomedical research.
For instance, algorithms such as watershed segmentation, Gaussian
mixture models, and k-means clustering have demonstrated
effectiveness in distinguishing individual features within dense,
overlapping regions, enabling a comprehensive assessment of size
distribution in complex images. Recent advancements also
incorporate deep learning frameworks like convolutional neural
networks (CNNs) to automatically identify and measure features
with minimal human intervention. These computational methods
leverage large datasets and high-performance computing to yield
precise measurements and reduce the variability commonly
encountered in manual analysis. Studies have demonstrated that
automated approaches not only increase the reproducibility of size
distribution analyses but also allow researchers to explore larger
datasets than would be feasible manually (Kim et al., 2020;
Gumbiowski et al., 2023; Vagenknecht et al., 2023; Papia
et al., 2024b).

In Figure 3a, discrete particles are represented by
computationally generated, non-overlapping circles with random
radii. These circles serve as a mock model to examine size variability
among particles, providing a simple scenario of size distribution
analysis. The radius of each circle is recorded, and a histogram is
generated to visualize the frequency distribution of circle sizes.

Accordingly, shape analysis of discrete features in SEM images is
a crucial aspect of characterizing material microstructures, offering
valuable information on the geometry andmorphology of individual
entities. Through this approach, geometric descriptors like
circularity, elongation, and aspect ratio can be calculated to
quantify the shape properties of these features. These shape
parameters are essential for understanding how the morphology
of discrete features impacts material performance, influencing
properties like mechanical strength, surface area, and flow
characteristics (Kim et al., 2013; Tanis et al., 2021). Traditional
methods for shape analysis of discrete features in microscopy images
have been fundamental in the early development of quantitative
microscopy, providing tools to characterize shape with precision and
reproducibility (Zou and Malzbender, 2015). Classical image
processing techniques such as edge detection, contour tracing,
and morphological operations have long been employed to define
and measure shape features. For example, the Canny edge detector
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and Sobel operator are widely used to highlight boundaries, while
methods such as the Hough transform and active contours refine
these boundaries for more accurate shape definition (Cardell et al.,
2002; Mourdikoudis et al., 2018). Fourier descriptors and moment
invariants, which transform spatial information into compact,
rotationally invariant representations, are also widely used to
capture shape features quantitatively. These methods provide
robust metrics for comparing shapes and enable researchers to
distinguish subtle differences in shape that are essential for
applications in materials science or cell morphology (Bowman
et al., 2001; Su and Yan, 2020). More recently, advancements in
machine learning, particularly in deep learning, have begun to
transform shape analysis by enabling automated, high-
throughput quantification with minimal manual intervention.
Convolutional neural networks (CNNs), for example, excel in
recognizing and classifying shapes based on intricate spatial
patterns in microscopy images. Hybrid approaches that combine
classical image processing with machine learning have also emerged,
leveraging the strengths of traditional methods for initial shape
delineation and machine learning for refinement and classification

(Bals and Epple, 2023; Glaubitz et al., 2024). This integration of
traditional and new methods allows to efficiently analyze larger,
more complex datasets, achieving levels of sensitivity and
reproducibility previously unattainable in shape analysis.

In Figure 3b, a simple case of shape analysis in a test image is
provided. Particles are modelled as non-overlapping polygons with a
random number of edges, introducing diversity in shape complexity.
Circularity, defined as:

Circularity � 4π × Area

Perimeter( )2

is calculated for each polygon. This metric quantifies how close
each polygon is to a circular shape, with values near one indicating
more circular shapes and lower values indicating less circular,
irregular forms. A histogram of circularity values illustrates the
range of shapes within the dataset and aids in characterizing particle
morphology based on shape deviation from circularity. Figure 4
delves deeper, showcasing the application of size distribution
analysis in three real-world examples of materials with discrete
features, imaged with SEM [image source (Aversa et al., 2018)].

FIGURE 3
Example cases of size distribution (a) and shape (b) analysis, tested on simple simulated cases. (a) Top: Computationally generated non-overlapping
circles of random radii representing discrete particles. Bottom: Histogram for the size distribution of the circles, based on radius value. (b) Top:
Computationally generated non-overlapping polygons with random number of edges. Bottom: Histogram of the circularity values of the depicted
polygons, as an example of shape analysis.
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4.1.2 Spatial analysis
Analyzing the spatial distribution of features helps to reveal whether

they are arranged in a random, clustered, or uniform manner. Such
patterns play a critical role in understanding material behavior, as the
spatial layout directly affects properties like diffusion, permeability, and
structural resilience. For instance, clusters of features could signal
regions weakness or increased reactivity, potentially impacting
material stability, while a more periodic distribution could suggest
greater homogeneity in material performance (Hull et al., 2018).

Techniques are drawn mainly from the field of stochastic geometry
such as nearest-neighbor distance analysis, Voronoi tessellation, and
spatial autocorrelation functions which are used to quantify the feature
arrangement (Barthelemy, 2010; Chiu et al., 2013). Stochastic geometry
by definition focuses on the analysis of random spatial configurations.
Central to this approach is the investigation of random point patterns
i.e., point pattern analysis (Janine Illian, 2008), a powerful mathematical
toolbox for quantitatively characterizing the spatial distribution of
discrete features on surfaces captured by microscopes. The reasoning
is to pinpoint the locations of features like particles, pores, or grains by
mainly calculating their centroid and treating an object as a mere point
in space. Then, statistical methods are applied to examine the points’
arrangement across the surface. Frequently this is in reference to the
degree of clustering or repulsion between points and the spatial scale at
which they act.

This type of analysis provides deeper insights into the underlying
material structure, beyond simple size and shape, offering critical
information on how features interact and affect material properties
like mechanical strength, porosity, and diffusion pathways (Eichhorn
and Sampson, 2005; Sampson, 2012). Thus, analysis of a point pattern can
reveal the geometrical characteristics of the structure the pattern
represents as well as the underlying processes that led to the pattern.
Point pattern statistics can be used to classify point patterns and identify

structural changes in them as a function of time or physical parameters
(Janine Illian, 2008; Mavrogonatos et al., 2022). They can also be used to
model these structures and determine suitable model parameters. This
approach may generally do both: characterize a whole pattern using a
limited number of comprehensible integers (e.g., indices, such as the
Nearest Neighbor Index NNI) or curves (e.g., Ripley’s K-function), and
characterize the individual points using real ormade-upmarkers (marked
point pattern analysis) (Janine Illian, 2008).Marked point pattern analysis
extends the point pattern attributes by incorporating additional
information into the point data, such as size, color, or other relevant
properties, allowing for a more nuanced understanding of spatial
distributions. The advantage provided by using markers is to
investigate how specific characteristics of individual features influence
the overall pattern, providing insights into phenomena such as interaction
dynamics, or the influence of external factors on feature arrangement.

Spatial distribution analysis of discrete features in microscopy
images has become increasingly significant with computational
advancements that enable precise quantification of spatial patterns.
Point pattern analysis methods, including nearest neighbor analysis,
Ripley’s K-function, and pair correlation functions, have been applied to
understand the spatial organization of microscopic features such as cells,
nanoparticles, and tissue structures. Figure 4 presents the computation of
a well-established metric in spatial distribution analysis, the Nearest
Neighbour Index (NNI) for 3 cases of real-world SEM images.
NNI<1 indicates clustering, NNI~1 indicates randomness in object
distribution, while NNI>1 indicates tendency towards periodicity.
The results of the analysis showcase how this metric from stochastic
geometry responds to each peculiar particle formation pattern.

Studies leveraging such methods find applications in a range of
scientific fields, such as biology, where point pattern analysis can
reveal critical insights into cell organization, and in materials
science, where it is essential for understanding the arrangement

FIGURE 4
Top row: Three cases of discrete feature SEM images [image source in (Aversa et al., 2018)], and their respective Nearest Neighbour Index values.
Bottom row: Histograms showcasing the size distributions (pixels) of particles depicted in (a–c) top row.
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of particles and defects (Hu et al., 2014; Yang et al., 2017). To address
the challenges of how image processing steps (noise filtering,
binarization thresholds, and edge correction methods) impact the
measurement of spatial randomness in micro- and nanostructure
distributions, point pattern analysis has also been utilized to

optimize and ensure accurate estimations for evaluating
nanostructure randomness (Mavrogonatos et al., 2022).

Recent developments in computational approaches, including
machine and deep learning, have further expanded the potential for
spatial distribution analysis by automating pattern recognition and

FIGURE 5
Example cases for spatial distribution (a) and uniformity analysis (b), illustrated with simple simulated cases. (a) Computationally generated non-
overlapping circles of random radii which are spatially distributed randomly (left) and in a periodic manner (right). (b) Uniformity plane with schematic
representations of four basic particle arrangements, with size uniformity on the y-axis and spatial uniformity on the x-axis. Clockwise starting from top
left. Low size and spatial uniformity: Particles vary in size and are unevenly distributed across thematerial. High size uniformity, low spatial uniformity:
Particles are consistent in size but are unevenly distributed across thematerial. High size and spatial uniformity: Particles are uniform in size and are evenly
distributed across the material. Low size uniformity, high spatial uniformity: Particles vary in size but are evenly distributed across the material.
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spatial mapping. For example, convolutional neural networks
(CNNs) have been adapted to learn spatial relationships directly
from images, allowing for high-throughput, automated analysis of
spatial patterns in large microscopy datasets. Hybrid methods
combining classical point pattern analysis with machine learning
have also emerged, enhancing the detection and classification of
spatial arrangements through more nuanced computational
modeling (Zelenty et al., 2017; Ilett et al., 2020; Sipkens and
Rogak, 2021). Such integration allows for the analysis of
complex, heterogeneous samples with high precision and
minimal manual input, improving reproducibility and scalability.

In Figure 5a, illustrated with simple simulated cases, an example of
different particle arrangements in a discrete surface. Computationally
generated non-overlapping circles with random radii are shown in: a
random distribution (left) and a periodic distribution (right).

4.1.3 Uniformity analysis
Special interest should be placed on the quantification of

uniformity in materials, as it plays a critical role in determining
their overall performance and reliability across various applications.
Uniformity affects mechanical properties, such as strength and
durability, ensuring that materials behave predictably under
different conditions (Hussain et al., 2010; Miskelly, 2018). In fields
ranging from membrane science (Papia et al., 2024a) to biomedical
engineering (Choi et al., 2010), consistent microstructural
features—such as pore sizes and distributions—are essential for
optimal function and longevity. Even minor variations in these
properties can lead to significant differences in material behavior,
potentially resulting in failure or inefficiency. Therefore, a detailed
understanding of material uniformity can guide material selection,
processing techniques, and design considerations (Kam et al., 2013).

More specifically, size-spatial uniformity plays a pivotal role in
optimizing the performance of advanced materials across diverse
applications. In supercapacitors, for instance, the development of
carbon-based materials for electric double-layer capacitors (EDLCs)
hinges on the delicate balance between achieving extremely high surface
areas and maintaining good electrical conductivity (Lu et al., 2013).
Similarly, in biomedical applications (Hollister, 2005) the three-
dimensional arrangement of pores within scaffolds or implants
directly influences mechanical strength, tissue integration, and
effective permeability. Topology optimization techniques have been
employed to design microstructures that meet stringent requirements,
balancing porosity with elastic and permeability properties to ensure
both biological compatibility and structural integrity.

In other areas, such as porousmedia fluid transport (Dullien, 1992),
acoustics (Allard and Atalla, 2009), and cellular solids (Gibson, 2003),
size-spatial uniformity analysis is equally crucial. For porous rocks,
understanding the spatial distribution of permeabilities and porosities is
essential for predicting fluid flow, which has implications in both
natural and engineered systems. In acoustics, the distribution and
size of macro-pores affect the absorption characteristics, which are
critical for noise control and soundmanagement.Meanwhile, in cellular
solids like foams and honeycombs, the uniformity of cell sizes and their
spatial arrangement dictate macroscopic properties such as density and
stiffness. Moreover, in network materials (Picu, 2022), the drag forces
resulting from internal flows are intimately linked to the free volume
distribution within the network. Collectively, these examples
underscore that precise control over size-spatial uniformity is

fundamental to engineering materials that meet specific functional
requirements, from energy storage to structural performance.

A size-spatial uniformity plane (Papia et al., 2024a) provides a
framework for quantifying material uniformity by integrating both
size and spatial metrics into a comprehensive assessment. In discrete
feature analysis of microscopy images, this approach allows for the
simultaneous evaluation of particle size constancy and distribution
regularity. Together, these approaches enable a holistic assessment,
merging size and spatial metrics into a unified approach to
characterize material uniformity at the microstructural level. In
Figure 5b, illustrated with simple simulated cases, such a size-
spatial uniformity plane is plotted. The four configurations
include: Bottom left: Low size and spatial uniformity, where
particles vary in size and are unevenly distributed. Top left: High
size uniformity, low spatial uniformity, where particles are
consistent in size but unevenly spaced. Top right: High size and
spatial uniformity, where particles are uniform in both size and
distribution. Bottom right: Low size uniformity, high spatial
uniformity, where particles vary in size but are evenly distributed
across the material.

4.2 Continuous surfaces

Characterizing continuous rough surfaces (Vander Voort, 1999;
Zhao et al., 2001; Almqvist, 2006; Hameed et al., 2019; Dusséaux and
Vannier, 2022; Okuyama and Ohmori, 2023; Podulka et al., 2023;
Kondi et al., 2024; Navajas et al., 2024) necessitates a comprehensive
suite of mathematical and computational methods capable of
capturing the intricate and multiscale features inherent in these
materials. Traditional techniques like Fourier and correlation
analysis provide foundational insights into the spatial frequency
components and the degree of correlation between surface features.
Fourier analysis decomposes surface height data into frequency
spectra, revealing dominant periodic structures or random
roughness. The autocorrelation function measures the similarity
between surface heights at different spatial separations, offering
information about surface coherence and roughness characteristics.
Derived from the autocorrelation function, the correlation length
quantifies the distance over which surface features remain
correlated, bridging microscopic surface details with macroscopic
material properties.

However, these conventional methods may not fully capture the
complexity of surfaces exhibiting hierarchical and scale-dependent
roughness. To address this limitation, fractal and multifractal
methods have been introduced (Barabási and Stanley, 1995),
providing advanced tools for understanding surfaces with self-
affinity or irregularity across multiple scales. Fractal analysis
quantifies surface roughness through the fractal dimension,
indicating how surface details scale across different magnification
levels. Multifractal analysis extends this concept by offering a
spectrum of fractal dimensions, capturing the variability in
scaling behaviour across different regions or features of the surface.

Methods inspired by complexity science (Mitchell, 2009; Nicolis
and Nicolis, 2012) further expand this framework, introducing
advanced measures that capture chaotic, nonlinear, and
multiscale behaviour inherent in nanostructured surfaces.
Methods such as the chaos-based, and Multiscale Entropy based
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(MSE) complexities provide us with different insights than those
from traditional tools.

In this section, we will explore these techniques and their
significance in the quantitative characterization of continuous
surfaces. We will begin with foundational methods—Fourier
analysis, the autocorrelation function, and correlation length—before
progressing to fractal and multifractal methods. Finally, we will delve
into complexity measures that offer a more general and comprehensive
understanding of surface morphology, illustrating how these
approaches collectively contribute to advancing nanometrology.

4.2.1 Fourier analysis, autocorrelation function and
correlation length

Fourier analysis is a fundamental tool for characterizing rough
surfaces (Zhao et al., 2001), enabling the transformation of surface
height data from real space to frequency space (see also Section 3).
Based on the principle that any surface profile can be decomposed into a
sum of sinusoidal waves with varying frequencies, amplitudes, and
phases, the FT converts spatial variations in surface height into a
frequency spectrum. This spectrum reveals the contribution of
different spatial frequencies to the overall surface structure. For
nanostructured rough surfaces, Fourier analysis quantifies the spatial
frequency components that constitute the surface morphology. The
power spectral density (PSD) obtained from the FT indicates the
amplitude associated with each frequency component, facilitating the
identification of dominant features such as periodic structures or
random roughness. This is particularly useful for surfaces exhibiting
self-affine or fractal properties, where the power spectrummay follow a
power-law distribution indicative of scale invariance. Importantly,
Fourier analysis is closely related to the autocorrelation function, as
the PSD is essentially the Fourier transform of the autocorrelation
function of the surface heights. This relationship highlights how Fourier
analysis and the autocorrelation function together describe spatial
frequencies and the degree of correlation between surface features,
bridging the frequency and spatial domains in surface characterization.

The autocorrelation function (ACF) is a statistical tool used to
quantify the degree of similarity between surface height values as a
function of spatial separation. Essentially, it measures how the
surface height at one point is correlated with the height at
another point a certain distance away. For random surfaces, the
ACF typically decays to zero as the separation distance increases,
indicating that surface features become uncorrelated over larger
distances. In the context of nanostructured surfaces, the ACF
provides valuable information about the periodicity, coherence,
and roughness characteristics of the surface features. A rapidly
decaying ACF suggests that the surface roughness is dominated
by short-range features, whereas a slowly decaying ACF implies the
presence of long-range order or correlation among features.
Additionally, the shape of the ACF can be related with self-affine
or fractal properties of the surface, indicating statistical similarity
across different scales. Mathematically, for a homogeneous and
isotropic surface, the ACF depends only on the magnitude of the
separation vector and not on its direction. By analyzing the ACF,
parameters such as the correlation length can be derived, offering
further insights into the spatial scale over which surface features are
correlated. This links directly to the concept of correlation length,
which quantifies the distance over which surface heights remain
significantly correlated.

The correlation length (ξ) is a key parameter derived from the
autocorrelation function, representing the characteristic distance
over which surface features remain correlated. It is commonly
defined as the separation distance at which the ACF reduces to
one/e (approximately 37%) of its maximum value. Essentially, the
correlation length quantifies how far one must move across the
surface before the height values become effectively uncorrelated. In
nanostructured rough surfaces, the correlation length provides
critical information about the spatial scale of surface features. A
short correlation length indicates that the surface morphology is
dominated by fine, closely packed features, whereas a longer
correlation length suggests the presence of larger, more widely
spaced structures. This parameter is particularly useful when
comparing different surfaces or monitoring changes in surface
morphology during processes such as growth, erosion, or
deposition. Moreover, for self-affine surfaces, the correlation
length is related to the roughness exponent, which describes how
surface roughness scales with the size of the observation window.
This connection further bridges the autocorrelation function with
fractal analysis, which is concerned with scaling properties
of surfaces.

4.2.2 Fractal and multifractal methods
While Fourier analysis and the autocorrelation function are

powerful, they may not fully characterize surfaces exhibiting
complexity across multiple scales. To address this, fractal and
multifractal methods (Sarkar et al., 1994; Barabási and Stanley,
1995; Jin et al., 1995; Chen et al., 2003; Li et al., 2006; Florindo
et al., 2013; Risović and Pavlović, 2013; Liu et al., 2014; So et al., 2017;
Panigrahy et al., 2019; 2020; Zhou et al., 2022) provide advanced
tools for understanding the hierarchical and scale-dependent
roughness of nanostructured surfaces. These methods are
particularly suited for surfaces that display self-affinity across a
range of scales, where a single scaling exponent, such as the fractal
dimension, quantifies surface roughness, and multifractal analysis
captures the variability in scaling behavior across different regions of
the surface.

Fractal geometry allows surfaces to be characterized by their
roughness across multiple scales through the concept of the fractal
dimension (FD) assuming some kind of statistical scale invariance.
Unlike traditional geometric shapes, fractal objects exhibit self-
similarity, meaning their appearance remains consistent
regardless of the scale of observation. For nanostructured
surfaces, this property implies that roughness features persist
across different magnification levels, making FD an ideal measure
of surface morphology in these cases. Methods such as the box-
counting technique, power spectral density analysis, and Higuchi’s
method (Zhou et al., 2022) are commonly used to calculate the FD,
with higher values indicating rougher, more complex surfaces.
Typically, the FD ranges between two and three for surfaces,
with a higher FD indicating a rougher, more complex surface.

Extending beyond a single scaling exponent we reach the realm
of multifractal analysis which extends the concept of a single fractal
dimension to a spectrum of dimensions, providing a more detailed
description of surfaces with heterogeneous scale behaviours. In
many cases, a single fractal dimension does not fully capture the
complexity of nanostructured surfaces, especially when the surface
exhibits regions with varying roughness characteristics. Multifractal
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analysis provides a spectrum of dimensions, each corresponding to
different regions of surfaces with different characteristics (height,
slope, local roughness, . . .). A key component of multifractal
analysis is the singularity exponent which represents how the
surface roughness changes locally at different scales. The
distribution of singularity exponents across the surface is called
the multifractal spectrum. A wider spectrum suggests that the
surface has more diverse roughness properties, with regions that
may be smoother or rougher than others.

Similarly, the challenges associated with Line Edge Roughness
(LER) in advanced lithography have been addressed using these
sophisticated computational metrology techniques (Constantoudis
and Gogolides, 2008; Constantoudis et al., 2018a; Constantoudis
et al., 2018; Constantoudis et al., 2019b; Giannatou et al., 2019; Kizu
et al., 2023). In lithographic processes, where pattern precision and
edge definition are critical, fractal and multifractal analyses have
been employed to characterize the scaling behavior of LER
(Constantoudis et al., 2018). By calculating the fractal dimension
or deriving a detailed multifractal spectrum, researchers can
complement the more widely used power spectral density (PSD)
approaches, leading to a more comprehensive characterization of
edge irregularities.

These advanced analytical techniques have practical implications.
For instance, studies investigating the impact of LER on device
uniformity—such as in ReRAM crossbar architectures
(Constantoudis et al., 2019b)—and analyses linking fractal
dimensions to transistor performance (Constantoudis and Gogolides,
2008) highlight the importance of accurate LER metrology.
Furthermore, recent frameworks (Kizu et al., 2023) that establish SI-
traceable LER reference standards using both atomic force microscopy
(AFM) and scanning electron microscopy (SEM) have significantly
enhanced measurement reliability. Improved characterization not only
enables the optimization of lithographic processes by minimizing edge
roughness, thereby enhancing device performance and increasing
manufacturing yields, but also exemplifies how advanced
computational techniques in metrological characterization can
transform lithographic patterning for superior outcomes.

It should also be noted that attempts to utilize machine learning
techniques have also been implemented to address the challenges
posed by noise in SEM images, particularly when measuring LER in
sub-10 nm semiconductor features. Recent work (Giannatou et al.,
2019) has demonstrated the effectiveness of deep Convolutional
Neural Networks (CNNs) in this domain. The CNN-based SEM
image denoising model (SEMD) is trained on synthesized SEM
images to effectively identify and remove noise while preserving the
underlying pattern. This approach ensures the retention of critical
edge details necessary for accurate LER measurements,
outperforming traditional denoising techniques. Moreover, SEMD
can be integrated with standard state-of-the-art methods such as the
PSD-based approach to achieve a balance between noise reduction
and the preservation of fine structural details, thereby improving
measurement accuracy in low signal-to-noise environments.

4.2.3 Complexity measures in rough surface
characterization

Traditional metrics like root-mean-square roughness or
correlation lengths may not fully capture the intricacies of
surfaces exhibiting multiscale or chaotic behavior. Advanced
methods derived from complexity science are applied to gain
deeper insights into surface morphology. Two such complexity
measures in rough surface characterization are the chaos-based
and the entropy-based complexity metrics. These methods are
particularly useful for quantifying complex surface morphologies,
enabling a more thorough analysis than traditional tools.

The chaos-based metric is a method stemming from chaos
theory (Arnold, 1968; Franks, 1977; Skokos and Bountis, 2012),
providing a way to characterize the chaotic nature of surfaces using
the Arnold Cat Map (ACM) as its basis. ACM (Dyson and Falk,
1992; Bao and Yang, 2012) is a two-dimensional nonlinear
transformation that operates by stretching and folding a surface
image, scrambling the spatial organization of pixels with each
iteration. Initially, the image undergoes slight distortions, but as
the number of iterations increases, the image becomes increasingly
random-like and unrecognizable.

FIGURE 6
Schematic of the relationship of a complexitymeasurewith the transition from full randomness to periodicity. From left to right we present examples
of different surfaces ranging from randomness to order (symmetry or homogeneity) and their relation to an ideal complexity measure.
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In the context of rough surface characterization (Kondi et al.,
2023), the ACM enhances high-frequency components—features
corresponding to fine details of the surface morphology. By
observing the number of iterations needed for a surface image to
become fully chaotic, we can measure the degree of order and chaos
present in the surface. This method provides both a visually intuitive
and quantitative way to analyze the progression from ordered to
chaotic surface behavior, complementing the information obtained
from Fourier and fractal analyses by focusing on the chaotic
dynamics of surface features.

The entropy-based method (Arapis et al., 2022; Papia et al.,
2023; Veinidis et al., 2025) extends traditional entropy measures
(López-Ruiz et al., 1995; Andraud et al., 1997; Van Siclen, 1997;
Feldman and Crutchfield, 1998; Alamino, 2015; Bagrov et al., 2020;
Lakhal et al., 2020; Srenevas and Poutous, 2023; 2024; Wang et al.,
2023) by accounting for surface complexity across different spatial
scales. In surface characterization, it analyses how the predictability
or randomness of surface features changes from finer to coarser
observation levels. This is particularly useful for nanostructured
surfaces where roughness or irregularities manifest differently
depending on the scale of observation.

The method calculates the entropy at multiple resolutions of a
surface profile or image, with higher entropy values indicating more
irregular or complex surface features. It differentiates between
structured surface roughness and pure noise, providing a
powerful tool for analyzing surfaces. Surfaces with high
complexity, such as those with heterogeneous textures and rich
multiscale morphology, exhibit higher entropy values, whereas
smoother or more uniform noisy surfaces display lower
complexity values (see Figure 6).

5 Conclusion

Nanometrology—the science of measurement at the
nanoscale—is crucial for advancing nanotechnology applications,
enabling precise fabrication and characterization of nanomaterials,
nanostructures, and devices. This review explored computational
methods in nanometrology, highlighting two primary challenges
regarding the need to capture the stochastic and multiscale features
inherent in nanostructured materials.

We first discuss why sometimes existing computational methods
fall short in nanometrology, highlighting two primary challenges.
The first is the issue of super-resolution in microscopy imaging,
where the need to capture both nanoscale details and macroscopic-
scale features leads to impractical data sizes and resolution
limitations when using conventional scanning microscopes. We
review existing image enhancement techniques and discuss the
limitations they face in nanometrology applications, emphasizing
the need for methods that can enhance image resolution effectively
while maintaining a large measurement range.

The second challenge involves the characterization of
stochasticity in nanostructure morphology and surfaces. We
delve into the computational methods required for analyzing
both discrete and continuous nanostructured surfaces. For
discrete surfaces, we examine size distribution and shape analysis,
spatial distribution using stochastic geometry and point pattern
analysis, and uniformity analysis that integrates size and spatial

metrics. For continuous surfaces, we review traditional methods
such as Fourier analysis, autocorrelation functions, and correlation
length, and explore advanced techniques including fractal and
multifractal analysis, as well as complexity measures derived from
chaos theory and entropy-based metrics.

The development and adoption of these advanced methods are
crucial for enhancing measurement accuracy and reliability at the
nanoscale. Future research should focus on refining these
computational techniques, developing standardized protocols, and
creating accessible software tools to facilitate their widespread use.
By embracing these innovative computational strategies, the field of
nanometrology can overcome current limitations, ultimately driving
progress and enabling the precise control of nano-enabled
functionalities in materials and devices.

Our review underscores the critical need for developing and
adopting novel computational approaches in nanometrology. This
integration of advanced mathematical concepts and computational
techniques is essential for controlling nano-enabled functionalities
of materials and devices, thereby facilitating continued innovation
and application in the field of nanotechnology.
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