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The nonenzymatic glycation process initiates a harmful cycle that generates
various intermediate compounds, leading to carbonyl and oxidative stress, and
ultimately resulting in the formation of advanced glycation end products (AGEs).
AGEs have been implicated as key factors in the development of several diseases,
including neurodegenerative conditions like Parkinson’s and Alzheimer’s
diseases, as well as complications associated with diabetes. Given the
potential impact of AGEs on these diseases, this study explores the role of
copper ferrite nanoparticles (CuFe2O4NPs) in inhibiting the formation of these
harmful intermediates and AGEs. Magnetic CuFe2O4 nanoparticles were
synthesized using Aloe vera leaf extracts and their effects on AGE formation
were assessed. Using both biophysical and biochemical approaches, the study
demonstrates that CuFe2O4 NPs have significant anti-glycation properties, which
help reduce or prevent AGE formation while maintaining protein structure. These
findings suggest that CuFe2O4 NPs may offer therapeutic potential in addressing
AGE-related diseases, particularly those linked to diabetes and its complications.
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Introduction

Over the last three to four decades, studies have revealed the
involvement of AGEs (advanced glycation end products) in human
pathophysiology. AGEs are the products of a non-enzymatic
glycation reaction, also known as the Maillard reaction (Monnier
and Cerami, 1981). Normally, AGEs form under physiological
conditions and during natural aging. However, their formation is
accelerated in disease conditions, and high levels of AGEs have been
reported in various diseases such as diabetes (Van Eupen et al.,
2013), atherosclerosis (Hanssen et al., 2014), and obesity (Gaens
et al., 2014). AGEs have been recognized as potential contributors to
several diseases, including age-related neurodegenerative diseases
like Parkinson’s and Alzheimer’s disease (Ahmed et al., 2005; Dalfo
et al., 2005), as well as diabetic complications (Garay-Sevilla et al.,
2005). The glycation reaction is also associated with oxidative stress,
which generates species involved in the onset of several diseases,
including neurodegenerative disorders (Dalfo et al., 2005; Garay-
Sevilla et al., 2005; Leszek et al., 2016; Khan et al., 2016).

Glycation of macromolecules is not restricted to reducing
sugars; non-sugar entities such as dicarbonyls have also been
reported as potential glycating agents (Ashraf et al., 2015).
Dicarbonyl compounds, such as methylglyoxal (MG), glyoxal,
and 3-deoxyglucosone (3-DG), are naturally generated through
various pathways, including the Maillard reaction, sugar auto-
oxidation, amino acid metabolism, and lipid peroxidation
(Chetyrkin et al., 2008). These highly reactive compounds have
the ability to glycate molecules even at minimal concentrations
(Thornalley, 1998). The intracellular accumulation of MG is
particularly toxic due to its strong glycation properties (Allaman
et al., 2015).

In recent years, systematic studies have been conducted to
identify pharmacological agents that may reduce or inhibit AGE
formation. Several potential inhibitors or anti-glycating agents,
including aspirin, steroidal compounds, and aminoguanidine,
have shown promise in reducing AGEs formation in neurological
diseases (Reddy and Beyaz, 2006; Webster et al., 2005;
Jaturapatporn et al., 2012). Additionally, many phytochemical
compounds, such as phenols and flavonoids (Albarracin et al.,
2012; Sutachan et al., 2012), as well as herbal drugs, have been
identified as AGE inhibitors (Dey et al., 2017; Natarajan et al.,
2013). However, despite their anti-glycating properties, some
compounds have been discontinued due to side effects. For
example, although aminoguanidine demonstrated anti-AGE
activity, its use was prohibited after phase III clinical trials
revealed adverse effects (Ahmed et al., 1986). As a result,
finding safe and effective anti-glycating agents to counter AGE
formation has become a significant challenge for scientists.

Nanotechnology offers a potential solution to various
technological and medical challenges. Nanoparticles are small
nano-sized inorganic particles that exhibit unique physical and
chemical properties. They exhibit excellent biocompatibility,
flexible conjugation with biomolecules (Nikalje, 2015), and the
capability to interact both at the cellular surface and within cells,
owing to their small size, which is approximately 100 to 10,000 times
smaller than human cells. Nanoparticles can easily enter living cells
via endocytosis because of their resemblance to cellular components
(Leszek et al., 2017), making them useful in a wide range of physical,

biological, biomedical, and pharmaceutical fields (Loureiro et al.,
2016; Treuel et al., 2013).

Spinel ferrite nanoparticles (SFNPs) have recently garnered
attention due to their superparamagnetic properties at the nanoscale,
chemical stability, simple composition, and broad applications.
Extensive research has been conducted on SFNPs with the general
formulaMFe2O4, which typically consists of iron oxide and one ormore
transition metals (Masunga et al., 2019). SFNPs are being used in
biomedicine for cancer cell detection, magnetic hyperthermia for tumor
diagnosis and treatment, magnetic drug delivery, cellular signaling,
magnetic resonance imaging,magnetic recording, water andwastewater
treatment, magneto-optical devices, ferromagnetic fluids, energy
storage, magnetic separation, and biosensors, among other
applications (Ansari et al., 2018; Kuznetsov et al., 2013; Srinivasan
et al., 2018). Among various SFNPs, copper ferrite nanoparticles
(CuFe2O4 NPs) have attracted significant interest due to their wide
range of applications. These include their use as antibacterial agents
(Ansari et al., 2018; Liu et al., 2019), catalysts in nanomedicine for
treating breast cancer, magnetic resonance imaging materials,
photocatalysts, photoanodes for solar water oxidation, catalysts,
enzyme immobilization supports, and in water treatment and
purification (Masunga et al., 2019). Certain nanoparticles, such as
silver, gold, selenium, and ZnO NPs, have shown both anti-glycative
and antioxidative activities (Ansari et al., 2016; Ashraf et al., 2018; Kim
et al., 2012; Ashraf et al., 2014; Kim et al., 2012).

Given the hazardous role of AGEs in disease development, we
are the first to explore the anti-glycative activity of magnetic
CuFe2O4 NPs. This study presents the anti-glycation potential of
biologically synthesized copper ferrite nanoparticles (CuFe2O4

NPs). The goal is to establish a safer and more effective
therapeutic approach for AGE-related diseases.

This study presents an innovative approach by exploring the
anti-glycation potential of biologically synthesized magnetic copper
ferrite nanoparticles (CuFe2O4 NPs) for the first time. While AGEs
(advanced glycation end-products) have been identified as
contributors to various pathologies, including neurodegenerative
diseases and diabetes-related complications, current
pharmacological interventions face limitations due to side effects
and inefficacy. Unlike traditional anti-glycation compounds, the
unique physical and chemical properties of CuFe2O4 NPs—such as
their superparamagnetic behaviour and compatibility with
biological systems—could provide enhanced therapeutic effects.
Furthermore, by leveraging nanotechnology, this study aims to
overcome the challenges of safe and efficient AGE inhibition,
positioning CuFe2O4 NPs as promising candidates for
antiglycation therapy.

Material and methods

Materials

Preparation of the aqueous leaf extract of aloe vera
In this study, copper ferrite nanoparticles (CuFe2O4 NPs) were

biosynthesized using Aloe vera leaf extract (Ashraf et al., 2018).
Fresh, healthy Aloe vera leaves were collected, thoroughly washed
with tap water, and then with double-distilled water to remove any
impurities. About 25 g of the sterilized, chopped leaves were heated
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at 100°C in 100 mL of sterilized water for 10–15min. The extract was
centrifuged twice, and the supernatant was filtered through a
0.45 µm filter and stored at 4°C for further use in the synthesis
of CuFe2O4 NPs. Millipore water was used as a blank to adjust the
baseline, and the Aloe vera leaf extract was prepared as described in
the materials and methods section (Ashraf et al., 2018).

Preparation of CuFe2O4 NPs:
For the biosynthesis of CuFe2O4 NPs, Cu(NO3)2·3H2O and

Fe(NO3)3·9H2O were used as precursors. A 0.1 M solution of
Cu(NO3)2·3H2O and a 0.2 M solution of Fe(NO3)3·9H2O were
prepared by dissolving them in sterilized water to form a clear
solution. Subsequently, 25 mL of Aloe vera extract was added to
75 mL of the Cu(NO3)2·3H2O and Fe(NO3)3·9H2O solution. The
reaction mixture was stirred at 100°C for 10 h, resulting in a brown
semi-solid gel. This gel was washed three times with hot water and
twice with ethyl alcohol. The pellet was dried in an oven at 200°C for
6 h to obtain the CuFe2O4 nanoparticles.

Characterization of biosynthesized CuFe2O4 NPs
The biosynthesized CuFe2O4 NPs were characterized using UV-

Vis spectroscopy (Shimadzu UV-1800) for preliminary analysis. The
sample was placed in a quartz cuvette, and absorption spectra were
recorded in the 200–800 nm range (Ansari et al., 2023; Anandan
et al., 2019). FTIR (Shimadzu IRSpirit, Shimadzu, Kyoto, Japan) was
used to assess the functional groups of the nanoparticles in
transmittance mode with KBr pellets in the 4,000–400 cm-1 range
(Ansari et al., 2023; Anandan et al., 2019). The morphology and size
of the NPs were analyzed using SEM (TESCAN, VEG3, Berno-
Czech Republic) at an acceleration voltage of 20 kV and TEM (FEI
Morgagni 268, Czech Republic) at 200 kV (Ansari et al., 2023; Ansari
and Alomary, 2024). SEM and TEM images were captured after
applying a small amount of the NP solution to aluminum stubs and
carbon-coated copper grids, respectively. Additionally, XRD
analysis was performed using an X-ray powder diffractometer
(Shimadzu XRD-7000) with CuKα radiation (λ = 1.54056) in the
2θ range of 20°–80° at 40 keV, following the protocol described in
previous studies (Ashraf et al., 2018; Ansari and Alomary, 2024).

BSA in vitro glycation assay
Bovine serum albumin (BSA), methylglyoxal, and CuFe2O4

nanoparticles were used in this anti-glycation assay with slight
modifications from the original method (Ashraf et al., 2018). The
reaction mixture consisted of BSA (333 μg/mL), methylglyoxal
(10 mM), aminoguanidine (2 mM) and 10 mM PBS (pH 7.4)
with 1 mM sodium azide, along with varying concentrations of
CuFe2O4 NPs (50 μg/mL, 100 μg/mL). Native BSA (without
methylglyoxal or CuFe2O4 NPs) was used as the control. The
mixtures were incubated at 37°C for 6 days. After incubation, the
samples were dialyzed against sodium phosphate buffer at 4°C for
48 h to remove unbound methylglyoxal and CuFe2O4 NPs. The
dialyzed samples were diluted in the same buffer for further analysis
unless otherwise specified.

Absorbance spectroscopy:
The UV-visible absorption spectra of native, glycated, and NP-

treated BSA samples were recorded using a UV-visible
spectrophotometer (Labman) between 200 and 600 nm in a 1 cm

quartz cuvette. Absorbance was measured at 280 nm (Ashraf
et al., 2018).

Determination of amadori products
Amadori products/ketoamine moieties formed in native,

glycated, and NP-treated BSA samples were determined using the
NBT reduction assay, with slight modifications as described
previously (Johnson et al., 1982). A 20 µL protein sample was
mixed with 180 µL of 100 mM sodium carbonate-bicarbonate
buffer (pH 10.8) containing 0.2 mM nitro blue tetrazolium
(NBT) and incubated at 37°C for 25 min. Absorbance was
measured at 525 nm using the same buffer as the blank. The
ketoamine moiety concentration (nm/mL) was calculated by
multiplying the absorbance by the molar extinction coefficient of
12,640 M-1 cm-1 for monoformazon.

Spectrofluorimetric analysis
AGE-specific fluorescence of samples was measured using an

Agilent Cary Eclipse fluorescence spectrophotometer (G9550-
64000). The samples were excited at 370 nm, and emission
spectra were recorded at 450 nm with both slits set to 5 nm and
a 1 cm path length. Fluorescence emission was calculated using
the formula:

% Inhibition � Fg − Fn
Fg − Fn

× 100

where Fg, Fn, and Fh represent the fluorescence intensities of
glycated BSA, NPs-treated samples, and native BSA, respectively.

Intrinsic fluorescence measurements
Structural characteristics of the samples were studied using

intrinsic fluorescence measurement. Native, glycated, and NP-
treated samples were excited at 295 nm (specific for tryptophan
residues), and the emission spectra were recorded from 300–600 nm
(Ashraf et al., 2018).

HMF, CC, Free Lysine & Arginine, ANS, and
ThT Assays:

The hydroxymethylfurfural (HMF) content, an early-stage
glycation product, was quantified using the thiobarbituric acid
assay (Ahmad et al., 2012). Carbonyl content (CC) in native,
glycated, and NP-treated samples was measured using 2,4-
dinitrophenylhydrazine (DNPH), as described with slight
modifications (Levine et al., 1994). Free lysine modifications
were assessed using the 2,4,6-trinitrobenzenesulfonic acid
(TNBS) method (Sashidhar et al., 1994). Free arginine
content was measured using the Phenanthroquinone method
(Smith and MacQuarrie, 1978), and hydrophobicity changes
were analyzed through ANS binding, excited at 380 nm
(Hu et al., 2008). For aggregation studies, Thioflavin T (ThT)
was used as described in previous research (Khurana
et al., 2005).

Statistical analysis
All data were presented as mean ± standard deviation (SD) in

triplicates (n = 3) using the XL. STAT 7.0. One-Way ANOVA using
Dunnet’s’ post hoc test. Values were considered statistically
significant when p < 0.01.
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Results

Characterization of CuFe2O4 NPs

UV-Vis spectrum of the biosynthesized
CuFe2O4 NPs

The aqueous extract of aloe vera leaves was utilized in this
investigation for the purpose of synthesizing CuFe2O4 nanoparticles.
The UV-Vis spectrum of the biosynthesized CuFe2O4 NPs reveals a
prominent peak at 238 nm, indicating the successful formation of
ferrite nanoparticles (Figure 1A).

FT-IR spectra of the synthesized CuFe2O4 NPs
The FT-IR spectra of the synthesized CuFe2O4 NPs, shown in

Figure 1B, were measured in the range of 400–4,000 cm-1, display
two distinct absorption ranges between 400 and 600 cm-1, with peaks
at ν1 (566 cm-1) and ν2 (431 cm-1), corresponding to the spinel
structure of the ferrite nanoparticles. The ν1 peak reflects the Fe–O
stretching vibration at the tetrahedral site, while ν2 is attributed to
Cu–O stretching at the octahedral site.

Investigation of morphology of synthesized ferrite
NPs by SEM and TEM

The size and shape of the synthesized nanoparticles were further
confirmed through SEM and TEM analysis (Figures 2A–C). The
SEM image shows that the NPs have an irregular, spinel spherical
shape (Figure 2A). The TEM image reveals spherical particles, with
the size distribution analyzed using ImageJ software showing an
average particle size of 3.75 ± 2.21 nm (Figure 2B), which aligns with
the XRD results (Figure 3).

XRD analysis of synthesized ferrite NPs
Further, the crystalline size and nature of synthesized CuFe2O4

NPs was analyzed by XRD method. Figure 2D illustrates the X-ray
diffraction pattern of the CuFe2O4 nanoparticles. The XRD analysis
indicates the presence of distinct peaks at 220, 311, 222, 400, 422,
511, and 440, corresponding to the cubic phase of CuFe2O4 NPs
(JCPDS Card no. 75–1517).

UV profile of MG-Modified BSA with CuFe2O4 NPs
Pilot experiments were conducted to determine the optimal

incubation time and concentration of BSA, methylglyoxal,
aminoguanidine and Aloe vera leaf extract, with or without varying
concentrations of CuFe2O4NPs, over different time intervals (0–6 days)
at 37°C. The UV-Vis absorbance of native BSA was measured at
280 nm. The absorbance (hyperchromicity) increased significantly at
280 nm after BSA glycation with methylglyoxal, compared to native
BSA, while the NPs-treated BSA-methylglyoxal mixtures showed a
reduction in hyperchromicity compared to the native protein (Figure 3).
The hyperchromicity of glycated protein was 89% when compared to
native protein, and the hyperchromicity of glycated samples was
reduced to 8% and 17% respectively, after treatment of NPs (50 μg/
mL and 100 μg/mL). Therefore, 100 µg/mL of NPs was selected for
further studies. Aminoguanidine was taken as positive control. It
showed 10% higher hyperchromicity as compared to that of
CuFe2O4 NPs treated sample.

Determination of arginine and lysine by 2,4,6-
trinitrobenzenesulfonic acid (TNBS) and
phenanthroquinone

To assess the free amino groups of lysine and arginine residues
in the samples, 2,4,6-trinitrobenzenesulfonic acid (TNBS) and
phenanthroquinone were employed, respectively. After 6 days of
BSA glycation, a 66% decrease in the availability of free lysine amino
groups was observed compared to native BSA (Figure 4A). However,
the availability of NH2 groups increased by 11% after treating the
glycated BSA with 100 μg/mL of NPs. Similarly, glycation led to a
26% reduction in the availability of free arginine amino groups
compared to native BSA (Figure 4B). The availability of NH2 groups
increased by 6% in the NPs (100 μg/mL) treated sample.

Nitroblue tetrazolium test (NBT) for ketoamine/
early glycation products detection

NBT reduction assay is particularly for ketoamine/early
glycation products detection, not for AGEs (Alouffi et al., 2022).
Native BSA alone showed negligible amounts of ketoamine contents
(14.5 nmol/mL) as compared to glycated BSA (35.8 nmol/mL) on

FIGURE 1
UV-Vis spectroscopy (A) and (B) FTIR spectra of CuFe2O4 NPs synthesized by Aloe vera leaf extract.
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the 3rd day of incubation (Figure 5A). Whereas, glycated sample
treated with NPs (100 µg/mL) showed marked decrease in
ketoamine contents (19.1 nmol/mL) as compared to that of
other samples.

Analysis of hydroxymethylfurfural (HMF) by
thiobarbituric acid assay

Hydroxymethylfurfural (HMF) is formed during early glycation
reaction. Thiobarbituric acid assay was applied to investigate the
HMF level in samples. The HMF contents in glycated BSA was high
(1.7 ± 0.7 nmol/mL) as compared to that of control (0.77 ± 0.8 nmol/
mL) (Figure 5B). The decline in HMF contents (1.3 ± 0.6 nmol/mL)
was recorded in NPs (100 µg/mL) treated sample. CuFe2O4 NPs
treated sample showed up to 23% decrease in HMF contents when
compared to glycated BSA (Figure 7B).

Measurement of carbonyl content
The statistical significance of the results is evident from the

observed differences in carbonyl content between the various groups.
Methylglyoxal-glycated BSA showed a significant increase in carbonyl
content (90.36 ± 1.5 nmol/mg) compared to native BSA (66.33 ±
0.8 nmol/mg), indicating a marked increase in protein oxidation due to
glycation (Figure 6A). In contrast, treatment with CuFe2O4 NPs
significantly reduced the carbonyl content to 55.82 ± 1.6 nmol/mg.

Fluorescence studies of MG-Modified BSA with
CuFe2O4 NPs

In the present study, the glycated sample displayed a significant
increase in fluorescence intensity at around 450 nm, indicative of the
formation of fluorophoric AGEs, which agrees with earlier reports

(Alouffi et al., 2022; Ashraf et al., 2015). The fluorescence results
from this study are in line with previous findings, confirming that
AGEs exhibit fluorescence at specific excitation/emission
wavelengths. The 28% reduction in fluorescence intensity upon
treatment with CuFe2O4 NPs (100 μg/mL) suggests a strong
inhibitory effect on AGE formation (Figure 6B).

Thioflavin T (ThT) fluorescence studies
Thioflavin T (ThT) fluorescence is used to detect

protein aggregation. Confirmed that glycation induced

FIGURE 3
UV absorption spectra of native BSA ( ), alove vera
( ) glycated-BSA ( ), NPs treated sample with 50 μg/
mL NPs ( ) and 100 μg/mL CuFe2O4 NPs NPs ( ) conc.
And aminoguanidine + BSA ( ) at 280 nm
for 6 days.

FIGURE 2
(A) SEM, (B) TEM, (C) histogram and (D) XRD pattern of CuFe2O4 NPs synthesized by Aloe vera leaf extract.
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significant aggregation in BSA, as evidenced by a 92.72%
increase in fluorescence intensity (Figure 7A). However, the
treated sample exhibited a 40.89% reduction in
fluorescence intensity.

Analysis of structural change in samples by
ANS dye

The ANS dye is used for the study of structural alteration in the
proteins caused by damaging agents. The increase in ANS
fluorescence in the glycated sample was observed while decrease

in fluorescence intensity was recorded in the sample treated with
CuFe2O4 NPs (Figure 7B).

Structural analysis of protein by fluorescence
spectroscopy

Fluorescence spectroscopy is used to measure the intrinsic
fluorescence of tryptophan in proteins. A radical decrease in
fluorescence intensity in the glycated sample was observed
(Figure 8). In contrast to that the NPs-treated sample showed
that an 8% increase in fluorescence intensity.

FIGURE 4
(A) Free lysine estimation for native BSA ( ) glycated-BSA ( ), glycated-BSA+100 μg/mL CuFe2O4 NPs ( ) aminoguanidine + BSA sample
( ) with methylglyoxal and (B) Free arginine estimation for native BSA ( ), glycated-BSA ( ) glycate-BSA+100 μg/mL CuFe2O4 NPs
( ) and aminoguanidine + BSA ( ) sample. Exitation waavelength was 312 nm and the emission wavelength was 395 nm.

FIGURE 5
(A) NBT reduction assay of native BSA ( ), glycated-BSA ( ), glycated-BSA+100 g/mL CuFe2O4 NPs ( ) and BSA +
aminoguanidine ( ) sample. (B) HMF content in native BSA ( ), glycated-BSA ( ), 100 g/mL CuFe2O4 NPs ( ) and BSA +
aminoguanidine ( ) samples.
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Discussion

The first confirmation of the successful synthesis of CuFe2O4

NPs using green approach came via UV-Vis spectroscopy. The
production of the ferrite NPs was identified by the distinctive peak in
the range of 230–500 nm (Mushtaq et al., 2017). In their UV-vis
absorbance spectra, metal nanoparticles typically exhibit a

distinctive plasmon resonance band because of the combined
oscillation of their conducting electrons (Mushtaq et al., 2017).

FTIR analysis of ferrite nanoparticles exhibit two absorption
peaks at v1 (566 cm-1) and v2 (431 cm-1), indicating their spinel
structure. The v1 peak points to Fe–O stretching at the tetrahedral
site, while ν2 represents Cu–O stretching at the site of the octahedral
(Salavati-Niasari et al., 2012; Zekri and Fareghi-Alamdari, 2016).

FIGURE 6
(A) Showing carbonyl content (cc) in native BSA ( ), glycated-BSA ( ), glycated-BSA+100 μg/mL CuFe2O4 NPs (v)and BSA + aminoguanidine
( ) sample. (B) AGEs fluorescence for native BSA ( ), glycated-BSA ( ), glycated-BSA+100 g/mL CuFe2O4 NPs ( ) and BSA +
aminoguanidine ( ) sample.

FIGURE 7
(A) ThT emission spectra of native BSA ( ), glycated-BSA ( ), glycated-BSA+100 g/mL CuFe2O4 NPs ( ) and BSA +
aminoguanidine ( ) sample. Excitation wavelength was 440 nm, emission wavelength was 440–600 nm and path length were 1 cm. (B)
ANS estimation for native BSA ( ), glycated-BSA ( ) BSA+100 g/mL CuFe2O4 NPs ( ) and BSA + aminoguanidine
( ) sample. The excitation wavelength was 380 nm emission was recorded in the range was of 400–600 nm.
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Our findings are consistent with those of Ramazani et al. (2017),
who reported Fe–O and Cu–O bond stretching at 572 and 421 cm-1,
respectively, in CuFe2O4 nanocrystals synthesized through a green
method using tragacanth gum as a biotemplate. In contrast, another
study using a thermal treatment method reported Fe–O and Cu–O
bond stretching at 533 and 315 cm-1, respectively (Zakiyah et al.,
2015). A broad absorption at 3,358 cm-1 reflects the stretching of OH
groups, indicative of phytocompounds such as alcohols, phenols,
acids, and their derivatives (Abbasi et al., 2020). The 2,951 cm-1 peak
corresponds to symmetrical and asymmetrical C–H stretching in
aliphatic groups, while the peaks at 1,638 cm-1 and 1,500 cm-1

represent the carbonyl C=O (primary amide) and carboxylate
(-COO-) groups, respectively, in Aloe vera extract. The IR peaks
at 1,414 cm-1 and 1,233 cm-1 correspond to the CH3 group of
primary aromatic amines and C–O–C stretching of–COCH3

groups, respectively (Lim and Cheong, 2015). The 1,083 cm-1

peak is associated with C=C bonds in unsaturated five- or six-
membered ring compounds (Abbasi et al., 2020), while the peaks at
827, 750, 659, and 566 cm-1 correspond to aromatic CH out-of-plane
deformation (Benalia et al., 2022). These FTIR results suggest that
phenols, proteins, and sterol phytocompounds in Aloe vera leaf
extract may serve as reducing agents responsible for the formation of
nanoparticles.

The shape and size of the biosynthesized nanoparticles were
studied using SEM and TEM. Through TEM investigation, it was
determined that the particles were spherical in shape, with an
average particle size of 3.75 ± 2.21 nm. Zakiyah et al. (2015)
(Ramazani et al., 2017) reported a particle size of 24–34 nm for
NPs synthesized via the hydrothermal co-precipitation method. In
another study, CuFe2O4 nanoparticles produced using Nasturtium
officinale extract exhibited a particle size of 15–50 nm (Khan
et al., 2024).

According to the XRD study, there are distinctive peaks at
220, 311, 222, 400, 422, 511, and 440 that represent the cubic
phase of CuFe2O4 NPs. These reflection peaks align well with
those of CuFe2O4 NPs synthesized by the green method using
tragacanth gum (Zekri and Fareghi-Alamdari, 2016) and the
hydrothermal co-precipitation method (Ramazani et al., 2017).

The average particle size, determined using Scherrer’s formula
from the FWHM of the (311) peak, was found to be 1.16 nm.
Ramazani et al. (2017) (Zekri and Fareghi-Alamdari, 2016)
reported an average particle size of 14 nm for CuFe2O4 NPs
synthesized using tragacanth gum.

It is well known that protein glycation leads to the accumulation
of advanced glycation end-products (AGEs) and oxidative stress,
which disrupt the structure and function of proteins in various
diseases (Jasim et al., 2022; Ahmad et al., 2024). Given the
involvement of AGEs and oxidative stress in disease pathology, it
is crucial to explore novel agents capable of inhibiting the glycation
process and slowing AGE formation.

The UV analysis of the sample treated with NPs demonstrated
the reduced hyperchromicity suggests inhibitory action of NPs on
glycation reaction that corroborates with previous studies showing
the inhibitory strength of various nanoparticles (Ansari et al., 2016;
Ashraf et al., 2018; Kim et al., 2012; Ashraf et al., 2014; Kim et al.,
2012). The increase in the absorbance or hyperchromicity may be
due to exposure of aromatic amino acids resulting from unfolding of
protein upon glycation (Alouffi et al., 2022).

It is well-established that the free amino groups of lysine and
arginine are the primary sites of glycation in proteins (Allaman et al.,
2015; Kim et al., 2012; Ashraf et al., 2015). The availability of lysine
and arginine residues in presence of CuFe2O4 NPs, compared to
without of CuFe2O4 NPs indicates anti-glycation potential of
CuFe2O4 NPs. This may be caused by reduction of the
interaction between residues lysine and arginine with
methylglyoxal, thereby inhibiting the glycation reaction at an
early stage, as demonstrated in other studies (Ansari et al., 2016;
Ashraf et al., 2018; Ashraf et al., 2014).

The declined nitroblue tetrazolium (NBT) reduction is due to
formation of lesser amount of ketoamines in presence of
CuFe2O4 NPs as compared to glycated sample, indicating
disturbance of reaction between BSA and methylglyoxal/early
glycation reaction is due to interference of CuFe2O4 NPs. Since
numerous studies have suggested that the reduction of NB could
result from the formation of superoxide radicals and the
degradation byproducts of ketoamines. The presence of

FIGURE 8
Intrinsic fluorescence for native BSA ( ), glycated-BSA ( ) glycated-BSA+100 g/mL CuFe2O4 NPs ( ) and BSA +
aminoguanidine ( ) sample. Excitation at 295 nm and emission was recorded at 350 nm.
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ketoamines serves as an indicator of the early stages of the
glycation process and is considered a crucial precursor to the
formation of advanced glycation end products (AGEs)
(Alyahyawi et al., 2023; Azevedo et al., 1988).

The high contents of HMF at sixth day of incubation in glycated
sample corresponds to the NBT assay result (Ahmad et al., 2012).
The decreased ketoamine and HMF contents clearly demonstrate
CuFe2O4 NPs are capable to slow down the early glycation reaction,
consequentially reduced AGEs formation.

It is well-recognized fact that oxidative stress is generated during
glycation reaction in disease condition such as diabetes and in
neurodegenerative diseases, causing severe damage to
biomolecules (Leszek et al., 2016; Khan et al., 2016). Protein
carbonyl content is indicative of one of the most important
biomarkers of protein oxidation and AGEs formation (Albarracin
et al., 2012; Levine et al., 1994). Ketoamines, which are early
glycation products, are transformed into protein carbonyl
compounds through a protein enediol intermediate, producing
superoxide radicals that contribute to oxidative stress both in
vivo and in vitro. This oxidative stress causes irreversible damage
to proteins during the glycation process (Azevedo et al., 1988; Maarfi
et al., 2023).

The statistically significant reduction in carbonyl content in the
CuFe2O4 NPs-treated group (p < 0.01) supports the conclusion that
CuFe2O4 NPs exhibit antiglycation properties, likely by blocking
reactive groups involved in glycation. This inhibition of glycation is
further supported by the observed decrease in lysine, arginine,
ketoamines, HMF, and carbonyl content, implying that CuFe2O4

NPs may protect against glycation-induced protein damage (Ansari
et al., 2016; Ashraf et al., 2014).

The decrease of fluorescence intensity in presence of CuFe2O4

NPs points towards its anti-glycative activity. This fluorescence
study is consistent with studies demonstrating similar anti-
glycating properties of other nanoparticles like silver and ZnO
(Ansari et al., 2016; Kim et al., 2012; Kim et al., 2012). So, this
reaffirms the hypothesis that CuFe2O4 NPs could serve as effective
anti-glycating agents.

The reduction in fluorescence intensity indicates CuFe2O4 NPs
effectively inhibited protein aggregation, potentially by disrupting
the glycation process. This result complements previous work,
which highlights the role of glycation in promoting protein
aggregation and cross-linking, contributing to various metabolic
disorders (Lo et al., 1994; bayashi et al., 1996).

Similarly, the analysis using ANS dye further validated the
ability of CuFe2O4 NPs to mitigate the structural alterations in
BSA caused by glycation (Figure 7B). The increase in ANS
fluorescence in the glycated sample indicates the formation of
hydrophobic patches, while a decrease in the treated sample
suggests that the NPs prevented the exposure of these
hydrophobic regions. These findings are congruent with earlier
studies that used similar dyes to monitor protein conformational
changes upon glycation and confirmed the protective role of
nanoparticles in maintaining protein integrity (Arafat et al., 2014).

Finally, the measurement of intrinsic tryptophan fluorescence
provided key insights into the preservation of protein structure. A
severe decrease in fluorescence intensity in the glycated sample
indicates significant tryptophan residue destruction due to glycation
(Figure 8) (Ashraf et al., 2018; Shaklai et al., 1984). In contrast, the

NPs-treated sample showed increase (8%) in fluorescence,
confirming that CuFe2O4 NPs preserved the protein’s structural
integrity, echoing findings from studies with other nanoparticles like
ZnO (Bhogale et al., 2013).

One interesting and somewhat unexpected observation was the
differential behavior of nanoparticles in protecting proteins. While
CuFe2O4 NPs demonstrated strong protective effects in this study,
the literature suggests that not all nanoparticles interact with
proteins in the same way. For instance, gold NPs have been
shown to cause conformational changes in BSA (Bhogale et al.,
2013), while ZnO and carbon C60 nanoparticles reportedly do not
induce significant structural modifications (Bhogale et al., 2013; Liu
et al., 2012). This highlights the complexity of nanoparticle-protein
interactions, which seem to depend on several factors, including the
specific properties of the nanoparticles and the proteins involved.

Since, nanoparticles have received much attention due to their
toxicity. Nanoparticles can easily cross the cell membranes and
interact with intracellular metabolism (Hanley et al., 2009). In vivo
studies have reported the astrocyte swelling, blood–brain barrier
destruction, oxidative stress induced by free radicals, alteration of
gene expression and neuronal degeneration on exposure of
nanoparticles (Wang M. F. RahmanJ. et al., 2009; Sharma et al.,
2010; Tang et al., 2009). Reactive oxygen species (ROS) generation is
one of the mechanisms for nanoparticle toxicity (Wang et al., 2013;
Elsaesser and Howard, 2012). Interaction of nanoparticle with cells
instigating ROS formation, mitochondrial respiration, and
NADPH-dependent enzyme systems (Regoli and Giuliani, 2014;
Jomova et al., 2012; Chen et al., 2011). While, phagocytosis leads the
generation of ROS upon internalization of nanoparticles (Regoli and
Giuliani, 2014; Jomova et al., 2012; Soenen et al., 2011).
Disproportionate production of free radical is considered the
basis of apoptosis and DNA damage (Ryter et al., 2007; Li and
Osborne, 2008).

Undeniably, as existing in vitro and in vivo toxicity testing
methods are chiefly employed to evaluate the acute and subacute
toxicity of NPs, while nanotoxicity testing methods for chronic long-
term NPs exposure, which are critical for predicting chronic toxicity
in humans, are still deficient. Therefore, there is an imperative
necessity to develop new powerful tools to evaluate and
understand the mechanisms of NP toxicity as well as addressing
the knowledge gap.

While CuFe2O4 NPs demonstrated anti-glycating effects in vitro,
their behavior in vivo may differ due to interactions with various
biomolecules, such as proteins, nucleic acids, and lipids. Factors
such as solvation forces, hydrogen bonding, and Van der Waals
interactions at the nano-bio interface may affect their reactivity in
biological environments. Moreover, it is important to account for
external factors such as pH, temperature, and the type of reducing
sugars or inhibitors present in glycation reactions, all of which could
influence the efficacy of nanoparticles (Wangoo et al., 2008; Turci
et al., 2010). For instance, the glycation reaction has been shown to
be highly pH-dependent, with an increase in glycation under
alkaline conditions. Understanding how CuFe2O4 NPs behave
under varying conditions will be essential for optimizing their
use as anti-glycating agents.

Further research should focus on elucidating the exact
mechanisms of action of CuFe2O4 NPs, particularly their
interaction with protein structures and free amino groups.

Frontiers in Nanotechnology frontiersin.org09

Ahmad et al. 10.3389/fnano.2025.1564954

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2025.1564954


Additionally, in vivo studies are needed to assess their safety,
bioavailability, and efficacy in more complex biological systems.
Nanomedicine continues to offer immense potential for treating
diseases associated with AGEs, but a thorough evaluation of the
physicochemical properties of nanoparticles and their impact on
human health is critical for advancing this field (Wong et al., 2008;
El-Ghorab et al., 2010).

Another limitation involves the potential toxicity of
nanoparticles. Although CuFe2O4 NPs showed beneficial effects
in this study, the literature on nanoparticle toxicity is
inconsistent. For example, ZnO nanoparticles have been reported
to exhibit both acute and subacute toxicity depending on the mode
of administration and dosage (Tian et al., 2015; Sruthi et al., 2017;
Wang et al., 2006; Hackenberg et al., 2011). Furthermore, some
studies have highlighted the ability of nanoparticles to generate
reactive oxygen species (ROS), which could lead to oxidative stress
and associated pathological conditions like inflammation and
fibrosis (Long et al., 2006). These findings emphasize the need
for a more detailed investigation into the toxicity, bioavailability,
and tissue distribution of CuFe2O4 NPs before they can be
considered for clinical applications.

Additionally, the inhibition of AGE formation by CuFe2O4 NPs
raises questions about the precise mechanism by which these
nanoparticles exert their effects.

Since mechanism of AGEs formation involved various steps,
hence, different compounds have been identified which can prevent
this process at different steps (Khalifah et al., 1999; Rahbar and
Figarola, 2002; Wang J. et al., 2009). Several classes of glycation
inhibitors have been developed, including those that compete with
carbohydrates for amino groups, react with aldoses and ketoses,
interfere with side reactions, trap RCS, or act as AGE breakers.
Examples of such inhibitors include aminoguanidine,
pyridoxamine, carnosine, benfotiamine, aspirin and ALT-711,
each demonstrating different mechanisms of action. Similarly,
several studies have shown various nanoparticles may also act as
antiglycating agents like that of naturals agents (Yu et al., 2015),
acting at different stages of AGEs formation and on different
reacting groups. As previous studies have suggested that several
nanoparticles like SeNPs, GNPs, AuNPs, ZnONPs, etc. may inhibit
the glycation process by competing with -NH2 groups of lysine and
Arginine as well as arresting the reactive group of glycating agents
(Kim et al., 2012; Rafia et al., 2023; Du et al., 2020; Hu et al., 2005).
Therefore, mechanisms of inhibition of AGEs of CuFe2O4 NPs may
be involved in the trapping of reactive amino groups, making them
unable to react with MG and sequestration of reacting groups.
Though, the exact mechanism of action of CuFe2O4 NPs is still
ambiguous. Therefore, further investigation is needed to clarify these
inhibitory pathways and their molecular details.

CuFe2O4 NPs offer several advantages over other oxide NPs
due to their superior redox properties, protein binding,
biocompatibility, and anti-glycation efficacy. This makes them
particularly promising for therapeutic applications targeting
AGE-related diseases, where stability, reduced toxicity, and
potent anti-glycative actions are essential. Their performance
surpasses that of commonly studied NPs like ZnO, TiO2 (Alenazi
et al., 2022), Ag, Fe3O4, and others, positioning CuFe2O4 as a
potent agent with multi-functional capabilities in glycation
inhibition and disease prevention.

Conclusion

In conclusion, while CuFe2O4 NPs show great promise as anti-
glycating agents with potential applications in treating AGE-related
diseases, careful consideration of their biological interactions and
toxicological profiles will be necessary for their successful
integration into clinical practice.

The findings from this study highlight the potential of
magnetically biosynthesized copper ferrite nanoparticles
(CuFe2O4 NPs) as promising agents in the fight against advanced
glycation end products (AGEs). AGEs are key contributors to the
onset and progression of serious health conditions such as diabetic
complications and neurodegenerative diseases, including
Alzheimer’s and Parkinson’s. The demonstrated ability of
CuFe2O4 NPs to inhibit AGE formation and protect protein
integrity presents a new avenue in the development of therapies
aimed at mitigating the harmful effects of AGEs, offering hope for
improving patient outcomes.

This study offers the potential to develop nanoparticle-based
therapeutics for managing diabetes and associated complications,
which continue to rise globally. Additionally, the implications
extend to neurodegenerative diseases, where AGE accumulation
has been associated with neuronal damage and cognitive decline.
Effective management of AGEs could contribute to delaying disease
progression, improving quality of life, and reducing the burden on
healthcare systems.

AGEs play a critical role in the pathophysiology of diabetic
complications and neurodegenerative conditions. In diabetes, AGEs
contribute to complications such as retinopathy, nephropathy,
neuropathy, and cardiovascular disease by damaging proteins,
lipids, and nucleic acids. Similarly, in neurodegenerative diseases,
AGEs are implicated in promoting oxidative damage and neuronal
cell death, thereby accelerating cognitive decline.

Mitigating the formation of AGEs is vital because it interrupts
this destructive cycle, offering protection against oxidative stress and
preserving the structural integrity of essential biomolecules.
Effective antiglycation strategies could slow the progression of
these diseases, prevent complications, and improve patient
survival and quality of life.

While this study demonstrates the potential of CuFe2O4 NPs as
antiglycation agents, future research is needed to fully explore their
clinical applicability. The detailed mechanistic studies should be
conducted to understand the precise molecular mechanisms by
which CuFe2O4 NPs inhibit AGE formation and protect against
protein damage. Before clinical application, the biocompatibility and
potential toxicity of CuFe2O4 NPs must be rigorously evaluated to
ensure safety for human use.

This research adds to the growing body of knowledge on the use
of nanoparticles as therapeutic agents for AGE inhibition. While
several studies have explored the potential of antioxidants and
natural extracts in combating AGEs, the use of copper ferrite
nanoparticles synthesized through a green, biosynthetic approach
(using Aloe vera leaf extract) represents a novel and environmentally
friendly method of producing potent antiglycation agents.

In comparison with other studies that focus on AGE inhibitors
such as aminoguanidine and natural polyphenols, CuFe2O4 NPs
offer distinct advantages, including their magnetic properties, which
could be harnessed for targeted drug delivery. Moreover, the
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antioxidative capabilities of these nanoparticles offer an additional
layer of protection against oxidative stress, a significant factor in
both diabetic and neurodegenerative diseases.

Overall, this research lays the foundation for the development of
nanoparticle-based therapeutics for AGE-related pathologies,
expanding the horizon of potential treatments for complex
chronic diseases.

Future direction

Despite promising findings regarding the use of nanoparticles in
various in vitro and in vivo studies, several limitations are needed to
be addressed for future studies. One key limitation is the incomplete
understanding of nanoparticles’ biocompatibility and bioactivity in
complex biological systems leading to its toxicity.

Finally, a comprehensive understanding of NP toxicity from in
vivo studies is essential before reaching a definitive consensus on the
overall toxicity of nanoparticles (NPs), about safety and potential
risks. In a while, we believe that the convergence of related
disciplines like medicine, material science, chemistry, and
artificial intelligence holds huge potential to revolutionize
nanotoxicity research and warrant the safer application of
nanoparticles (NPs) in humans.
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