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Propolis, a natural resinous substance produced by honeybees (Apis mellifera L.),
is a complex mixture of over 300 bioactive compounds with significant
pharmaceutical potential. In light of the escalating global antimicrobial
resistance crisis, there is an urgent need for novel antimicrobial agents. This
study aimed to synthesize and characterize silver nanoparticles (AgNPs) using
Ethiopian propolis and evaluate their antimicrobial and antioxidant properties.
The synthesis of propolis-mediated silver nanoparticles (Pro-AgNPs) was
optimized and characterized using UV-visible spectrophotometry, scanning
electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR),
and X-ray diffraction (XRD). The UV-Vis spectra revealed a maximum
absorbance at 424 nm, confirming the successful synthesis of AgNPs. FT-IR
analysis identified functional groups involved in nanoparticle stabilization, while
XRD confirmed the crystalline nature of the nanoparticles. SEM images revealed
spherical-shaped nanoparticles with uniform size distribution. The antimicrobial
activity of Pro-AgNPs was evaluated against Gram-negative Pseudomonas
aeruginosa (ATCC 27853) and Gram-positive Enterococcus faecalis (ATCC
29212) bacteria, demonstrating significant growth inhibition zones of 15.67 ±
0.57 mm and 17.33 ± 1.15 mm, respectively, at a concentration of 50 μg/mL. The
antioxidant activity of Pro-AgNPs and propolis extract was evaluated using the
2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, revealing concentration-dependent
radical scavenging activity. Pro-AgNPs exhibited potent antioxidant activity, with
an IC50 value of 45.54 ± 0.57 μg/mL. These findings underscore the potential of
Pro-AgNPs as natural antimicrobials and antioxidants, with promising
applications in pharmaceuticals, cosmetics, and the food industry.
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1 Introduction

Propolis is a resinous substance collected from plants by
honeybees (Apis mellifera L.). It is a complex mixture containing
over 300 compounds, including flavonoids, alkaloids, phenols,
terpenoids, and steroids (Rushdi et al., 2014). Its composition and
properties vary depending on geographical location and climate
(Sangboonruang et al., 2022; Wieczorek et al., 2022). Despite its
potential medicinal applications, propolis is limited due to poor
water solubility and formulation challenges (Kustiawan et al.,
2024). Bees utilize propolis to protect the hive by combating
pathogens, sealing gaps, and sanitizing comb cells. Propolis is
widely used in pharmaceuticals and is a cornerstone of apitherapy
(Afata et al., 2022). Themedicinal value of propolis stems from its rich
chemical profile, shaped by plant sources, bee metabolism, and
additional materials incorporated during production.

Nanotechnology offers a promising avenue to enhance the
therapeutic potential of propolis by improving its solubility and
bioavailability (Patra et al., 2018). In light of the escalating global
antimicrobial resistance crisis, there is an urgent need for novel
antimicrobial agents (Tagliabue and Rappuoli, 2018). Utilizing
Ethiopian propolis to synthesize silver nanoparticles (AgNPs)
could provide a novel approach to addressing this challenge.
Reactive oxygen and nitrogen species can harm biological
systems, leading to various chronic diseases in humans. Silver
nanoparticles are particularly promising due to their potent
antibacterial properties and potential as antioxidants. The
efficiency of these nanoparticles is influenced by their size, shape,
and surface characteristics (Canaparo et al., 2020; Horie and Tabei,
2020; Yuan et al., 2021).

Metals such as silver and gold have been used as antimicrobial
agents for millennia. For example, copper salts were documented as
astringents as early as 1,500 BC (Gold et al., 2018). Among the noble
metals, silver and gold stand out due to their low toxicity and
widespread use in nanotechnology (Barsola and Kumari, 2022).
Silver nanoparticles, in particular, have gained considerable
attention and are more widely utilized than other nanoparticles
because of their distinctive characteristics (Zhang et al., 2016). Silver
nanoparticles demonstrate broad-spectrum antimicrobial
effectiveness, targeting various bacteria, fungi, and viruses. Their
ability to disrupt microbial cell membranes and inhibit vital cellular
processes, such as DNA replication and protein synthesis, further
enhances their antimicrobial potential (Dakal et al., 2016). This
versatility makes them particularly valuable in the medical field,
where they are used in applications such as wound dressings,
antimicrobial coatings, and medical devices. Additionally, their
biocompatibility and ability to be functionalized with other
compounds allow for tailored applications in drug delivery and
diagnostic tools, expanding their utility in modern medicine (Jangid
et al., 2024). These nanoparticles can be synthesized using various
techniques, including biological, chemical, and physical methods.
Biological methods, however, are favored for their environmental
friendliness and potential for enhanced morphological control
(Ahmed et al., 2021).

Honeybee products like propolis are rich in bioactive
compounds and have been extensively investigated for AgNP
synthesis. Propolis extracts facilitate the reduction of Ag+ ions to
Ag0 nanoparticles, with their properties influenced by factors such as

temperature, pH, reaction kinetics, and capping agents (Patil and
Chougale, 2021). Ethiopia, the world’s fourth-largest propolis
producer with over six million beehives (Teferi, 2018), boasts a
unique propolis composition due to its diverse flora and varied
environmental conditions (Rushdi et al., 2014). While research on
AgNP synthesis from propolis has primarily focused on Latin
America, Europe, and North Africa (Dărăban, 2019; Raheem et
al., 2020; Khalil et al., 2021; Kustiawan et al., 2024; Barsola and
Kumari, 2022), the potential of Ethiopian propolis remains
underexplored (Jobir and Shume, 2020). Ethiopian propolis is
renowned for its wound-healing, antioxidant, and antibacterial
properties, offering potential medicinal applications (Afata et al.,
2022). However, its use is hindered by poor water solubility and
formulation challenges. Given Ethiopia’s rich biodiversity,
investigating the prospect of its propolis for AgNP synthesis and
related antimicrobial and antioxidant properties represents a
promising research avenue. Propolis has been successfully used to
synthesize AgNPs, comprehensive studies that optimize the
production process and evaluate both antimicrobial and
antioxidant activities are surprisingly rare. To date, there are no
published studies that detail the optimized synthesis of AgNPs from
Ethiopian propolis extract and subsequently evaluate their
antimicrobial and antioxidant efficacy.

Therefore, this study aimed to synthesize, optimize, and characterize
AgNPs using Ethiopian propolis. Beyond biosynthesis and
characterization, the present study evaluates the antimicrobial efficacy
of the AgNPs against selected gram-negative and gram-positive bacteria
and assesses their antioxidant effects. By leveraging the unique attributes
of Ethiopian propolis, this research seeks to address global challenges
posed by antimicrobial resistance and oxidative stress-related diseases.
Furthermore, it highlights the potential of synergizing natural products
with nanotechnology to develop effective antimicrobial and antioxidant
therapies, paving the way for innovative solutions in healthcare,
cosmetics, and the food industry.

2 Materials and methods

All chemicals and reagents used in this investigation were of
analytical grade, and double distilled water was employed throughout
the experimental procedures. Silver nitrate (AgNO3, purity: 99.8%),
sodium hydroxide (NaOH, purity: 98%), and ascorbic acid (C6H8O6,
purity: 99.9%) were purchased from LobaChemie Pvt. Ltd. (Mumbai,
India), Muller-Hinton Agar (MHA), DPPH (C18H12N5O6, purity:
99%), methanol (CH3OH), and ethanol (CH3CH2OH) were from
Sigma-Aldrich Pvt Ltd., Germany.

2.1 Description of study site and sample
collection

Honeybee propolis samples were collected from the Dambi
Dollo University Integrated agricultural research center apiary
site in Ethiopia 645 km from Addis Ababa. The collection area,
located between 8°32′N latitudes and 34°48′E longitude at altitudes
of 1701–1827 m above sea level. The area is dominated by plants
such asCoffee arabica,Crotonmacrostachyus,Vernonia amygdalina,
Ficus vasta,Olea africana, Cordia africana,Acacia species, and crops
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like Zea mays. Figure 1 illustrates the geographical scope of
the study.

2.2 Preparation of propolis extract

Propolis was collected using a stainless-steel spatula, following a
method adapted from (Rezk et al., 2022). After collection, it was
carefully cleaned by hand to remove debris and insect remnants,
then frozen at −20°C for 24 h to preserve its integrity. After freezing,
the propolis was ground into a fine powder. Precisely 20 g of the
powdered propolis were measured and mixed with 200 mL of a 70%
ethanol solution. This mixture was heated for 2 hours at 60°C,
followed by an additional 2-h incubation at a higher temperature of
80°C. After the extraction, the solution was centrifuged at
5,000 revolutions per minute for 20 min to remove excess
alcohol. The resulting liquid, known as the supernatant, was then
filtered through Whatman No. 1 filter paper and stored in a
refrigerator at 4°C for future use.

2.3 Optimization of synthesis parameters

Key synthesis parameters were meticulously examined,
including reaction times of 30, 60, 90, 120, and 150 min; varying

volume ratios of silver nitrate (AgNO3) to propolis extract at ratios
of 1:1, 1:5, and 1:10; reaction temperatures set at 25°C, 50°C, 70°C,
80°C, and 90°C; and pH levels adjusted to 5, 7, 9, 11, and 13. The
formation and growth of AgNPs were monitored throughout the
optimization process using UV-visible spectroscopy, which enabled
real-time tracking of surface plasmon resonance (SPR) peaks
characteristic of silver nanoparticles.

2.4 Synthesis of propolis AgNPs

Propolis-derived AgNPs were synthesized using a 1:1 volume
ratio of AgNO3 to propolis extract, which served as both a
capping and reducing agent, while AgNO3 acted as the
precursor. In the synthesis procedure, 50 mL of propolis
extract was gradually added to a solution containing 50 mL of
5 mM AgNO3, with the pH adjusted to 11 using 1 M NaOH. The
mixture was stirred at 80°C for 2 hours and covered with
aluminum foil to protect it from light exposure. Continuous
stirring with a magnetic stirrer ensured thorough mixing. A color
change from dark yellow to dark brown signaled the completion
of the reaction and the successful formation of AgNPs. The
synthesized nanoparticles were then separated through high-
speed centrifugation, followed by sequential washing with
distilled water and ethanol, and were subsequently dried in an

FIGURE 1
Map of the study area (ArcGIS Pro).
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oven. Finally, these AgNPs were characterized and evaluated for
their biological activity.

2.5 Characterization of propolis AgNPs

2.5.1 UV-spectrophotometer of Pro-AgNPs
The UV-Vis absorption spectra of the synthesized Pro-AgNPs

were recorded using a UV-visible spectrophotometer to confirm
nanoparticle biosynthesis and assess the activation of surface
plasmon resonance. The absorbance spectra were collected by
scanning across the wavelength range of 200–800 nm. A
characteristic absorption peak observed in the range of
400–450 nm serves as an indication of the presence of AgNPs
(Ratan et al., 2021).

2.5.2 X-ray diffraction pattern analysis
The crystalline properties, particle sizes, and structural

characteristics of the synthesized AgNPs were analyzed using
an X-ray diffractometer (XRD-7000, Shimadzu Corporation,
Japan). X-ray diffraction measurements were conducted over
a 2θ range of 20–90° to evaluate the crystallinity and phase of the
nanoparticles. The average crystallite size was estimated using
the Debye-Scherrer (Equation 1), as detailed by (Gevorgyan
et al., 2022). The XRD spectra were recorded using a CuKα
filter (λ = 0.15418 nm) in the 2θ/θ scanning mode, spanning
from 10° to 90°.

D � Kλ

β cos θ
(1)

Where, (D) represents the average crystallite size, λ is the wavelength
of the incident beam (1.5406 Å), β denotes the full width at half-
maximum (FWHM) in radians, and θ is the scattering angle
in degrees.

2.5.3 Fourier transform infrared spectroscopy
(FTIR) analysis

Fourier transform infrared spectroscopy (FTIR) was used
to identify the functional groups in the AgNPs, providing
insights into their formation and stabilization. This
analysis utilized a Nicolet iS10 spectrometer from Thermo
Fisher, United States, covering a spectral range of
400–4,000 cm−1. Before the analysis, the Pro-AgNPs were
purified, while the ethanolic propolis extract was examined
directly in its liquid form using the Attenuated Total
Reflectance (ATR) method. The FTIR spectra revealed key
functional groups that contribute to the reduction and
stabilization of AgNPs, confirming their successful synthesis
(Narayanan et al., 2021).

2.5.4 Scanning electron microscopy (SEM)
The shape, structure, and distribution of the synthesized Pro-

AgNPs were investigated using Scanning Electron Microscopy
(SEM). Pro-AgNPs were prepared for imaging by deposition
onto conductive carbon tape on an aluminum stub, followed by a
3-min gold sputter coating. The resulting SEM images provided
valuable insights into the physical characteristics of the
nanoparticles (Balamurugun et al., 2024).

2.6 Antibacterial activity of silver
nanoparticles

Antibacterial activity, evaluated at the Institute of
Pharmaceutical Science, Adama Science, and Technology
University, demonstrated the effectiveness of both Propolis
Extract (Pro-E) and silver nanoparticles synthesized from
propolis (Pro-AgNPs) against several bacterial pathogens. These
included Staphylococcus aureus (ATCC 25923), Enterococcus
faecalis (ATCC 29212), Escherichia coli (ATCC 25922), and
Pseudomonas aeruginosa (ATCC 27853). Bacterial suspensions,
standardized to 0.5 McFarland, were spread on Mueller-Hinton
agar plates for disc diffusion testing. Filter paper discs, impregnated
with Pro-E and Pro-AgNPs at concentrations of 12.5, 25, 50, and
100 μg/mL, were placed on the agar. Dimethyl sulfoxide (DMSO)
was the negative control, and ciprofloxacin was the positive control.
After 24 h of incubation, the inhibition zones were measured to
evaluate antimicrobial activity, emphasizing the effectiveness of both
Pro-E and Pro-AgNPs as promising antibacterial agents (Gevorgyan
et al., 2022).

2.7 In-vitro antioxidant activity of
propolis AgNPs

The antioxidant activity of propolis and Pro-AgNPs was analyzed
using the DPPH assay. A 0.1 mM DPPH solution prepared in
methanol was combined with different concentrations of propolis
extract, Pro-AgNPs, and ascorbic acid (used as the standard), along
with a negative control. After incubating the mixture for 30 min, the
absorbance was recorded at 517 nm. The percentage of inhibition was
calculated to determine antioxidant activity, following the procedure
described by (Essghaier et al., 2022). The percentage of inhibition was
calculated using Equation 2:

SA %( ) � Acontrol − Asample

Acontrol
× 100 (2)

Where A control is the absorbance of the control reaction and A sample

is the absorbance of the tested sample.

3 Results and discussion

3.1 UV-visible spectroscopy analysis

In the synthesis of Pro-AgNPs, the propolis extract serves as
both a reducing and capping agent, which is essential for the
synthesis and stabilization of AgNPs. The formation of a dark
brown color in the solution signals that the reduction process has
occurred, during which Ag+ ions are converted into elemental silver
(Melkamu and Bitew, 2021). The formation of AgNPs is further
confirmed by the appearance of an SPR peak at 424 nm (Figure 2a),
as observed in the UV-Vis spectrophotometric analysis. This SPR
peak is a characteristic feature of AgNPs, resulting from the
collective oscillation of conduction electrons on the NP surface
when exposed to light. The observed SPR peak at 424 nm aligns with
previous studies on AgNPs synthesized from various propolis
extracts (Barbosa et al., 2019; Al-Saggaf, 2021; Tiri et al., 2021).
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A peak in the 320–330 nm range in propolis extract suggests the
presence of flavonoids, particularly certain types like flavones and
flavonols. This finding is consistent with other research on the
chemical makeup of propolis extracts (Alanazi and Alenzi, 2024;
Ferreira et al., 2024). The consistency across these studies suggests
that the SPR peak at 424 nm is a reliable indicator of successful
AgNP synthesis using propolis. This reinforces the effectiveness of
the synthesis method and underscores propolis’ potential as a
sustainable and natural source for producing AgNPs. The
observed results are comparable to those obtained using
established protocols, further validating the efficacy of the
proposed approach.

3.1.1 The effects of precursor concentration ratio
on AgNPs

The successful synthesis of nanoparticles is highly dependent on
the precise control of the relative proportions of the extract and the

precursor metal (Soni et al., 2021). In this study, the synthesis of Pro-
AgNPs was explored using three different volume ratios of AgNO3

to propolis extract: 1:1, 1:5, and 1:10. While all three ratios resulted
in the formation of nanoparticles, as evidenced by the presence of
SPR absorption peaks (Figure 2b), the 1:1 ratio demonstrated the
most intense absorption peak, indicating the highest nanoparticle
yield. This enhanced intensity at the 1:1 ratio can be attributed to the
higher concentration of bioactive molecules in the propolis extract,
which promotes the efficient reduction of Ag+ ions and stabilizes the
resulting nanoparticles (Liu et al., 2023).

A sharper and more defined SPR peak was observed at the 1:
5 ratio compared to the 1:10 ratio, suggesting improved nanoparticle
formation. However, the peak intensity at the 1:5 ratio was lower
than that of the 1:1 ratio, likely due to a reduced concentration of
reducing agents in the propolis extract. When the precursor
concentration is excessively high relative to the reducing agents,
self-quenching can occur, leading to a decrease in SPR peak

FIGURE 2
UV-Vis absorption spectra of Pro-AgNPs synthesized under various conditions: (a) Pro-AgNPs synthesized under optimal conditions alongside their
corresponding propolis extract. (b) Effect of varying AgNO3 to propolis volume ratios on Pro-AgNP synthesis, with a fixed AgNO3 concentration. (c)
Influence of temperature on the synthesis of Pro-AgNPs. (d) pH optimization in the bio-synthesis of Pro-AgNPs. (e)Optimization of reaction time for Pro-
AgNP synthesis. (f) SEM images of Propolis mediated AgNPs.
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intensity, as observed in both the 1:1 and 1:5 ratios (Zulfajri et al.,
2024). Consequently, the 1:1 ratio of silver nitrate to propolis extract
was identified as the optimal condition for Pro-AgNP synthesis,
offering a robust foundation for further optimization and ensuring
efficient nanoparticle production. This finding underscores the
importance of balancing precursor and reducing agent
concentrations to achieve high-quality nanoparticles with
desirable properties.

3.1.2 The effects of reaction temperature on the
synthesis of AgNPs

Temperature critically influences nanoparticle size, morphology,
and stability during synthesis. Pro-AgNP synthesis was optimized
over a 2-h period at temperatures from room temperature to 90°C.
UV-Vis spectroscopy identified 80°C as optimal, yielding the highest
nanoparticle stability and concentration (Figure 2c). While
temperatures above 80°C offered minimal improvement, precise
temperature control remains crucial. Higher temperatures
accelerate reaction kinetics, influencing AgNP size and
distribution (Rashidi et al., 2024), while lower temperatures
produce larger nanoparticles (Sonawane et al., 2023). Maintaining
80°C ensures stable, well-dispersed Pro-AgNPs with minimal
aggregation, suitable for various applications. Higher
temperatures during synthesis reduce AgNP size due to
accelerated nucleation and kinetic energy, enhancing antibacterial
efficacy by increasing surface-area-to-volume ratio (Smiechowicz
et al., 2021). Similarly, temperature variations can impact the
antioxidant capacity of AgNPs by altering their surface reactivity
and ability to scavenge free radicals (Yiyit Doğan et al., 2024).
Therefore, optimizing temperature conditions is essential to
maximize both the antibacterial and antioxidant performance
of AgNPs.

3.1.3 The effects of reaction pH on the synthesis of
Pro-AgNPs

The properties of synthesized Pro-AgNPs are significantly
influenced by the pH of the reaction environment, which plays a
pivotal role in determining their size, shape, stability, and other
critical characteristics. A thorough understanding of pH effects is
essential for controlling the properties of AgNPs during synthesis. In
this study, the pH was meticulously adjusted between 5 and 13 using
1 M NaOH to optimize the synthesis process and achieve
nanoparticles with desired properties. The absorbance of the
solutions was measured using UV-Vis spectrophotometry across
a wavelength range of 200–800 nm.

Notably, at pH 11, distinct absorption spectra were observed,
confirming the successful formation and stability of Pro-AgNPs
under alkaline conditions, as shown in Figure 2d. The intensity of
the surface plasmon resonance (SPR) peak is highly pH-dependent,
with higher pH values generally leading to increased intensity, while
lower (acidic) pH values result in decreased intensity (Ali et al., 2023;
Li et al., 2023). This trend indicates that alkaline conditions enhance
nanoparticle stability and uniformity, producing stronger SPR
signals. In contrast, acidic conditions may reduce intensity due to
nanoparticle aggregation or incomplete reduction of silver ions.

Furthermore, nanoparticles synthesized at higher pH levels
displayed more uniform shapes and sizes, contributing to
improved suspension stability. The pH of the reaction

environment plays a critical role in the synthesis of AgNPs,
significantly influencing their size, shape, and overall
functionality. Variations in pH can alter these physical
properties, which directly affect the nanoparticles’ antimicrobial
efficacy by influencing their ability to penetrate microbial cell walls
(Miranda et al., 2022). For instance, AgNPs synthesized under
alkaline conditions exhibit superior antibacterial activity due to
their smaller particle size and reduced aggregation, which
enhances their ability to infiltrate bacterial cell walls (Chitra and
Annadurai, 2014). Additionally, alkaline conditions stabilize
capping agents, improving their capacity to donate electrons and
neutralize free radicals. Smaller nanoparticles produced at
pH 9 demonstrate higher surface reactivity, resulting in enhanced
radical scavenging efficiency (Shahzadi et al., 2022). Therefore,
precise control of pH is essential to optimize the size,
morphology, and functional performance of AgNPs, ensuring
their maximum antimicrobial and antioxidant potential. These
findings highlight the critical role of pH control in fine-tuning
the properties of AgNPs for specific applications, emphasizing its
importance in the synthesis process. Alkaline conditions facilitate
the efficient reduction of silver ions and stabilize the nanoparticles
through interactions with bioactive compounds in propolis, such as
flavonoids and phenolic acids (Kurek-Górecka et al., 2022).

3.1.4 The influences of reaction time on Pro-
AgNP synthesis

The optimal reaction time for Pro-AgNP synthesis was
determined by monitoring nanoparticle formation using UV-Vis
spectroscopy every 30 min over a period of 30–150 min (Figure 2e).
A reaction time of 120 min yielded the highest nanoparticle
production, as evidenced by peak absorbance. Shorter reaction
times (30, 60, and 90 min) resulted in lower yields and reduced
stability due to incomplete nanoparticle formation. Longer reaction
times initially increased nanoparticle production but excessively
long durations led to aggregation and less uniform structures.
Conversely, shorter times yielded unevenly shaped nanoparticles.

An optimal reaction time is crucial for producing well-defined,
uniform nanoparticles (Waktole et al., 2025). Therefore, 120 min
was identified as the ideal reaction time for Pro-AgNP synthesis.
This duration ensures complete reduction of silver ions and
stabilization of nanoparticles, preventing issues such as
aggregation or irregular morphology. The results align with
previous studies indicating that prolonged reaction times can
lead to excessive growth or clustering of nanoparticles, while
insufficient time limits their formation (Sonawane et al., 2023).
By optimizing the reaction time, this study ensures the production of
high-quality Pro-AgNPs with desirable properties for various
applications, including antimicrobial and antioxidant therapies.
The consistency in size and shape achieved at 120 min
underscores the importance of precise temporal control in the
synthesis process.

3.2 Scanning electron microscopy analysis

Figure 2f presents the SEM micrograph of Pro-AgNPs,
showcasing their surface characteristics. SEM, adept at detailing
particle sizes and morphologies, revealed that the Pro-AgNPs
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primarily possess a spherical shape, mirroring findings from studies
on V. amygdalina (Aisida et al., 2020) and Tagetes erecta (Katta and
Dubey, 2020). The nanoparticles displayed uniformity in size,
confined to the nanoscale, and a narrow size distribution,
indicative of high dispersity. This uniformity is beneficial for
various applications due to predictable properties and behavior.
The biosynthesis method used for Pro-AgNPs effectively minimizes
aggregation, as evidenced by the lack of significant nanoparticle
clusters. The SEM images confirm that Pro-AgNPs are spherical,
uniformly sized on the nanoscale, monodisperse, and largely non-
aggregated.

3.3 FTIR analysis of Pro-E and Pro-AgNPs

Figure 3b presents the FTIR spectral profiles of the propolis
extract and the synthesized Pro-AgNPs. FTIR analysis was
employed to identify the functional groups involved in the
reduction, stabilization, and capping of AgNPs. The propolis
extract spectrum displayed peaks indicative of biomolecules
such as O-H stretching (3,361 cm−1), C-H stretching
(2,976 cm−1), and C=O stretching (1,646.65 cm−1) (Badiazaman
et al., 2023; Ferreira et al., 2023; Peng et al., 2023). In Pro-AgNPs,
slight shifts in these peaks were observed, particularly in the C=O
stretching region (1737.11 cm−1), suggesting changes in the
molecular environment during nanoparticle formation
(Figure 3b black). Additionally, peaks at 1,367 cm−1 in Pro-
AgNPs indicated the presence of phenol biomolecules, essential
for nanoparticle synthesis processes. Peaks around 1,085, 1,045,
and 877 cm−1 suggested the presence of carbohydrates (Wang et al.,
2021). The synthesis and stability of Pro-AgNPs are influenced by
lipids, flavonoids, phenols, and carbohydrates, as supported by
previous research (Kulkarni et al., 2023; Asefian and Ghavam,
2024). Table 1 provides a detailed interpretation of the FTIR data,
outlining the specific wave number frequencies and corresponding

functional groups identified in both the propolis extract and the
synthesized Pro-AgNPs.

3.4 X-ray diffraction analysis

The XRD pattern (Figure 3a) confirmed the crystalline nature of
the synthesized Pro-AgNPs, exhibiting characteristic peaks at 2θ
values of 38.1°, 44.3°, 64.5°, and 77.4°, corresponding to the (111),
(200), (220), and (311) planes of a face-centered cubic (FCC) silver
structure (JCPDS reference No. 04-0783). The absence of extraneous
peaks indicated the high purity of the synthesized nanoparticles. The
observed Miller indices (hkl) values further confirmed the presence
of an FCC silver structure, aligning with previous findings (Ali et al.,
2023). The sharp, well-defined peaks in the XRD pattern suggested a
highly crystalline nature of the Pro-AgNPs, indicating a uniform
distribution of crystallite sizes. The absence of peak broadening or
peak shifting reveals that the nanoparticles have minimal lattice
strain or defects. This uniformity is crucial as it directly influences
the nanoparticles’ physical and chemical properties, particularly
their high surface area-to-volume ratio, which enhances reactivity.

The consistent crystal size observed in Pro-AgNPs is attributed
to the bioactive compounds in propolis extract, which facilitate the
reduction of metal ions and the formation of nanoparticles with a
narrow size distribution (Huo et al., 2022). These bioactive
compounds, including flavonoids, phenolic acids, and terpenes,
stabilize the nanoparticles, preventing excessive growth and
ensuring a uniform size distribution. The size uniformity of Pro-
AgNPs contributes to their stability and performance in various
applications, such as antimicrobial treatments where consistent
interaction with microbial cells is essential for optimal efficacy
(Acharya et al., 2021). The distinctive properties and biological
effects of Pro-AgNPs make them highly valuable in a wide range of
fields. The size of the Pro-AgNP crystals, as measured by XRD
analysis, is a critical factor in their effectiveness in different

FIGURE 3
(a) XRD analysis of Propolis mediated AgNPs. (b) FTIR spectra of Propolis extract and Propolis-mediated AgNPs.
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applications. The specific average crystal size of the Pro-AgNPs, as
calculated from these XRD spectra, is detailed in Table 2,
underscoring its critical role in determining their effectiveness in
different applications.

3.5 Antibacterial activity of propolis extract
and propolis AgNPs

Figure 4 illustrates the antimicrobial efficacy of propolis extract
and silver nanoparticles against selected bacterial pathogens,
determined through the disc diffusion method. Pro-AgNPs at
higher concentrations (100 μg/mL) exhibited significant
antibacterial activity, with a maximum zone of inhibition (ZOI)
of 17.33 ± 1.15 mm against E. faecalis, propolis extract showed a ZOI
of 13.67 ± 1.15 mm against P. aeruginosa ATCC 27852. Among the
tested bacterial pathogens, E. faecalis exhibited the highest
susceptibility to Pro-AgNPs, demonstrating a zone of inhibition
of 17.33 ± 1.15 mm at 100 μg/mL. This significant antibacterial effect
suggests that E. faecalis is particularly sensitive to Pro-AgNP-
induced membrane disruption and oxidative stress, highlighting
the potential of Pro-AgNPs as an effective antimicrobial agent,
especially against Gram-positive bacteria (Halkai et al., 2018).
These findings align with previous studies on green-synthesized

AgNPs from Elaeocarpus serratus fruit extract (Balamurugan
et al., 2024).

At 50 μg/mL, Pro-AgNPs effectively inhibited all tested bacteria
(Figure 4), indicating broad-spectrum antibacterial properties.
AgNPs exert antimicrobial effects by disrupting bacterial cell
membranes, inhibiting enzyme activity, and inducing oxidative
stress (Adeyemi et al., 2020; Khina and Krutyakov, 2021; Xu
et al., 2021; Zhao et al., 2022). Silver ions (Ag+) bind to essential
bacterial components, disrupting energy production and DNA
replication (Kurek-Górecka et al., 2022). The study underscores
the potential of propolis extract and Pro-AgNPs as antimicrobial
agents at higher doses, suggesting further investigation to optimize
their clinical efficacy. Figure 5 illustrates the comparative
antibacterial activity of Pro-E, Pro-AgNPs, and ciprofloxacin
against the tested bacterial strains.

3.6 Antioxidant activity of silver NPs

3.6.1 2, 2-diphenyl-1-Picrylhydrazyl assay
Table 3 shows the DPPH radical scavenging activity, indicating a

positive correlation between concentration and antioxidant efficacy
for Pro-E, Pro-AgNPs, and ascorbic acid (AA). Initially, Pro-E and
Pro-AgNPs had lower scavenging activity than AA at 25 and 50 μg/
mL concentrations. Interestingly, the antioxidant capacity of
propolis extract and Pro-AgNPs enhanced with increasing
concentration, eventually approaching that of AA. Pro-AgNPs
exhibited notably good antioxidant activity across all tested
concentrations, especially within the 100–400 μg/mL range,
underscoring their potent antioxidant potential in agreement
with the results (Kurek-Górecka et al., 2022). Our results suggest
propolis extracts and their derived AgNPs can serve as valuable
natural antioxidants with diverse industrial applications for
mitigating oxidative stress, aligning with previous studies (Al-
Yousef et al., 2020; Javed et al., 2022).

TABLE 1 Interpretations of FTIR Data for Propolis Extracts with their respective AgNPs.

Wave H Frequency Numbers (cm−1) Functional groups

Pro-E Pro-AgNP

3,361.3 3,390.29 OH- stretching vibrations in phenols

N-H stretch (Amines)

2,976.72 2,929.51 C-H stretching vibrations

1737.11 C=O stretch (Ester Fatty acid groups)

1,646.65 1,573.65 C=C stretch (Alkenes, Aromatic Compounds)

1,383.75 Vibrations related to C-N stretching in amines or amides, or CH aliphatic groups

1,272.8 1,216.5 Vibrations associated with C-O stretching in alcohols, ethers, or carbohydrates

1,085.29 Bending vibrations of C-H bonds in aromatic compounds

1,045.22 1,026.52 Bending vibrations of C-H bonds in alkenes

877.87 885.18 Bending vibrations of C-H bonds in alkanes or methyl groups

585.15 522.87 Vibrations related to C-N stretching in amines or amides, or CH aliphatic groups

TABLE 2 Average crystal size of the Pro-AgNPs as calculated from XRD
spectra.

Lattice Plane 2θ FWHM Size Average

Pro-AgNPs (111) 38.14 0.25 33.62 33.76

(200) 44.31 0.2841 30.16

(220) 64.45 0.2653 35.37

(311) 77.38 0.2836 35.92
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The study examined the antioxidant capacity of Pro-E, Pro-
AgNPs, and ascorbic acid using IC50 values to measure their DPPH
radical scavenging ability. Propolis extract showed moderate to high
antioxidant activity with an IC50 of 61.56 ± 0.47 μg/mL. Pro-AgNPs
had enhanced antioxidant potency (IC50: 45.54 ± 0.57 μg/mL)
compared to Pro-E, while AA was the most potent antioxidant
with an IC50 of 5.49 ± 0.31 μg/mL. Both Pro-E and Pro-AgNPs
exhibited antioxidant properties with increasing efficiency at higher
concentrations. Compounds like flavonoids and phenolic acids
likely contribute to these properties (Oluwole et al., 2022). These
findings suggest the potential of natural extracts and synthesized
nanoparticles as antioxidants, warranting further exploration of
their practical applications (Chandraker et al., 2021).

4 Conclusion

The biogenic synthesis of Pro-AgNPs using Ethiopian propolis
extract confirms its role as a stabilizer and a reducer. The

characterization of AgNPs synthesized from propolis extract was
performed and confirmed through different analytical methods,
incorporating spectroscopic and microscopic techniques. Our
study also demonstrated the antimicrobial effectiveness of Pro-
AgNPs against gram-negative and gram-positive bacteria.
Furthermore, we compared the free radical scavenging efficiency
of Pro-AgNPs with propolis extract and ascorbic acid, highlighting
their potential as natural antioxidants. These findings represent a
promising nanobiotechnological compound obtained from a
natural source for various antimicrobial applications, such as
protecting medical devices and wound dressings. By integrating
the unique properties of Ethiopian propolis with nanotechnology,
our work addresses pressing global health challenges and
advocates for further research to develop innovative
antimicrobial and antioxidant agents and explore diverse
applications of natural products and synthesized nanoparticles.
However, to ensure the safe and effective translation of Pro-
AgNPs, future investigations should prioritize comprehensive
cytotoxicity assessments using both in vitro and in vivo

FIGURE 4
Antibacterial effects of Pro-AgNPs against E. faecalis (a), Pseudomonas aeruginosa (b), E. coli (c), and S. aureus (d). The Pro-AgNPs treatment
concentrations were 100, 50, 25, and 12.5 μg/mL. Key: DMSO, dimethyl sulfoxide, Pro-AgNP = Propolis silver nanoparticles.
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models, optimize dosage regimens, and evaluate long-
term stability.
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FIGURE 5
Comparative Antibacterial Activity of Pro-E, Pro-AgNP, and Ciprofloxacin against tested Bacterial Strains.

TABLE 3 DPPH radical scavenging activity of Pro-E, Pro-AgNPs, and the standard ascorbic acid.

Concentration (μg/mL) % Inhibition (DPPH radical scavenging activity)

Pro-E Pro-AgNPs AA

25 25.43 ± 0.59 29.80 ± 0.86 81.76 ± 0.40

50 31.44 ± 0.41 40.15 ± 0.77 83.81 ± 0.30

100 41.75 ± 0.52 49.63 ± 0.58 86.91 ± 0.29

200 51.82 ± 0.63 60.98 ± 0.26 96.03 ± 0.39

400 64.81 ± 0.40 71.33 ± 0.49 98.08 ± 0.22

Key: Pro-E, Propolis extract; Pro-AgNPs, Propolis silver nanoparticles; AA, ascorbic acid.
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