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Artificial neural networks (ANNs) have become ubiquitous in high-performance
information processing. However, conventional electronic hardware, based on
the sequential Von Neumann architecture, struggles to efficiently support ANN
computations due to their inherently massive parallelism. Additionally, electrical
parasitics further limit energy efficiency and processing speed, pushing traditional
architectures toward their fundamental constraints. To overcome these
limitations, researchers are exploring integrated photonics, leveraging the
inherent parallelism of optical devices for more efficient computation. Despite
these efforts, most existing optical computing schemes encounter scalability
challenges, given that the number of optical elements typically grows
quadratically with the computational matrix size. In this work, a compact
programmable multimode interference (MMI) coupler on an indium phosphide
membrane platform is proposed for realizing a photonic feedforward neural
network. MMIs present a unique opportunity to accelerate matrix multiplication
processes by exploiting the interference properties of light modes, promising
advancements in both speed and energy efficiency. The programmable MMI
coupler, comprising four input and three output (4 × 3 MMI) InP waveguides,
makes use of hybrid integration of liquid crystals as cladding material, which
offers reconfigurability to the MMI structure. Three electrically tunable sections
are made to perform parallel multiplication operations. A novel modeling
technique is introduced to facilitate effective training and inference
operations. Finite-Difference Time-Domain (FDTD) simulations are employed
for calculating the optical mode propagation process within the programmable
MMI structure. Based on the FDTD results, a compact optical neural network is
implemented and assessed on the Iris flower dataset, demonstrating a testing
accuracy of 86.67%. This novel MMI device concept offers a promising pathway
toward energy-efficient, scalable optical computing systems, contributing to the
advancement of next-generation artificial intelligence hardware.
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1 Introduction

In the dynamic landscape of artificial neural network (ANN)
applications, the demand for efficient and high-speed computational
frameworks is growing rapidly (Sze et al., 2017). While traditional
electronic computing continues to advance, it faces fundamental
bottlenecks—such as high power consumption and limited
speed—particularly when scaling to large matrix operations
required by ANN algorithms (Jouppi et al., 2017). Optical neural
networks (ONNs) have emerged as a promising alternative by
leveraging light’s unique properties to overcome these challenges
(Liao et al., 2023; Shastri et al., 2021). Unlike electronic neural
networks, ONNs exploit light’s inherent parallelism, enabling
simultaneous execution of multiple operations, thereby
significantly improving computational throughput and energy
efficiency. However, contemporary photonic hardware still faces
scalability and integration challenges, as optical computing
approaches often suffer from quadratic growth in optical
elements with increasing matrix size (Bai et al., 2023). Integrated
photonics plays a crucial role in overcoming these limitations by
enabling compact, high-density optical circuits that facilitate
interconnectivity and large-scale integration. ONNs harness
various properties of light—such as phase, amplitude, wavelength,
modes, and polarization—to achieve a high degree of parallelism in
computation (Feldmann et al., 2021). Additionally, photonic
systems benefit from large bandwidth, low propagation losses,
and efficient light-matter interactions, leading to energy-efficient
operations (<pJ per multiply operation) and ultrafast processing
speeds (>1012 operations per second) (Bai et al., 2023; Feldmann
et al., 2021; Guo et al., 2021; Shen et al., 2017; Nahmias et al., 2018;
Xu et al., 2021; Dabos et al., 2022; Giamougiannis et al., 2021). These
advantages position ONNs as a compelling alternative to electronic
counterparts, paving the way for next-generation artificial
intelligence (AI) accelerators that meet the growing
computational demands of modern AI applications. Active
research is underway in the domain of photonic matrix
multiplication devices, with many relying on free space optics
incorporating dynamic mirror devices (DMDs) (Zhou et al.,
2022), spatial light modulators (SLMs) (Zhou et al., 2021), or
principles of Fourier optics (Von Bieren, 1971). However, scaling
these systems to meet impeding computational demands proves
challenging due to their substantial size (Zhou et al., 2022). Several
innovative concepts propose the use of networks featuring optical
interferometers (Shen et al., 2017; Zhang et al., 2021), ring
resonators (Tait et al., 2017; Miscuglio and Sorger, 2020),
amplifiers (Shi et al., 2019; Ferreira de Lima et al., 2017), or
phase change materials (Feldmann et al., 2021; Cheng et al.,
2017), which are conducive to miniaturization and integration
onto a photonic chip. The field of integrated neuromorphic
photonics is dynamic, and there is a strong need for pioneering
concepts that can provide future energy-efficient and high-speed
computational hardware. In this work, we propose leveraging multi-
mode interference (MMI) between waveguide modes to perform
matrix multiplication within a programmable MMI coupler. MMI
couplers are typically constructed from wide optical waveguides that
provide transverse light confinement, supporting multiple
propagating modes beyond the fundamental mode (Soldano and
Pennings, 1995). Based on the self-imaging or Talbot effect, MMIs

have been extensively used in photonic integrated circuits (PICs) for
couplers, splitters, combiners, and other passive optical functions
(Bachmann et al., 1995; Samoi et al., 2020; Peruzzo et al., 2011).
However, their potential for neuromorphic computation remains
largely unexplored, with only a few studies investigating their
suitability. Most existing works utilize MMIs for reconfigurable
photonic routing between input and output waveguides or as
passive interference elements in conjunction with optical phase
shifters for weighting matrix operations (Soures et al., 2018; Wu
et al., 2023; Meng et al., 2023; Shixin et al., 2025). Here, we have
demonstrated matrix-vector multiplication using a single electrically
reconfigurable MMI coupler. Any input field to the MMI is
projected onto the system modes, which then evolve according to
their respective propagation constants within the multi-mode
region. At any position along the MMI, the total field is a
superposition of all system modes. The presence of numerous
system modes in MMIs makes them well-suited for parallel
computation, as these modes interact and interfere with each
other. This interaction produces intricate interference patterns,
enabling precise manipulation and control of the output optical
field distribution. The optical mode in each input waveguide
represents an individual input signal, while the full set of input
waveguide modes forms an input vector. The propagation of these
modes through the MMI corresponds to the computational
operation. In conventional MMIs, the coupling from the input
field to the system modes and the propagation constants are
determined by the geometry and are usually fixed after
fabrication. The MMI needs to be pre-designed to fulfill a certain
function (splitter, switch, etc.). If there is a means to selectively alter
the refractive index at some specific positions along the propagation
and transverse directions of the MMI device, we are able to
reconfigure the MMI device. In contrast to inverse design
methods (Tahersima et al., 2019), we want to be able to perform
this after fabrication in a reconfigurable manner. We propose a
reconfigurable MMI coupler wherein some sections of the MMI
device need to be segmented into ‘pads’with accurate local refractive
index control. The homogeneous multi-mode area can be
reconfigured to be inhomogeneous, and hence the mode
propagation expression is altered. In particular, the mode
coupling coefficients, together with the propagation term can act
as a weight that is applied to the transverse modes, performing
matrix multiplication. In this work, we focus on the implementation
of the reconfigurability of the MMI coupler by introducing
electrically tunable liquid crystals (LC) integrated as a top
cladding to the MMI device. Liquid crystals are molecularly
ordered materials with well-controlled molecular positioning into
all three dimensions (Liu and Broer, 2014; Fukuhara et al., 2014;
Xing et al., 2015). Those different types of alignments can be
established by surface orientation techniques and chiral additives.
LCs exhibit unique, highly adjustable, and addressable optical,
electrical, and mechanical properties. Their dielectric anisotropy
makes them electro-responsive and enables precise control over
light transmission. These electro-optic properties have been widely
explored, most notably in liquid crystal display LCD technology.
Figure 1 illustrates the conceptual design and operational principle
of a programmable multimode interference (MMI) coupler
integrated with electrically controlled liquid crystal (LC)
molecules. The MMI coupler receives an input optical signal,
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represented as [X], which is projected onto a set of system modes
that propagate through the multimode region with distinct
propagation constants. The total optical field within the MMI is
a superposition of these modes, allowing for complex interference
patterns to emerge. A key feature of this system is the integration of
an LC cell, which enables dynamic phase modulation. The refractive
index of the LCmolecules changes in response to an applied voltage,
leading to controlled phase shifts that alter the optical field
distribution (Lee et al., 2023). The figure highlights this process
by depicting the initial alignment of LC molecules in their default
state and their reorientation under an applied electric field, which
modifies the optical transmission properties of the MMI region. As
the optical modes propagate, their interference patterns are
influenced by these voltage-induced phase shifts, enabling precise
control over the output optical signals, denoted as [Y]. This
interaction effectively performs matrix-vector multiplication,
where the weight matrix Wij(V) is governed by the LC-induced
phase modulation. This programmable optical platform offers an
efficient approach for reconfigurable photonic computing, making it
well-suited for applications in neuromorphic computing,
programmable photonics, and high-speed signal processing. We
propose a novel device and integration concept for LC on InP
membrane photonics for neuromorphic computing. It is well known
that the refractive index of LCs can be modulated by altering their
molecular alignment, characterized by the director, under an applied
electric field (Lee et al., 2023). In this study, we introduce a novel
approach involving a compact, reconfigurable, and programmable
4 × 3 Multimode Interference (MMI) cell implemented on an InP
membrane platform (Jiao et al., 2020a), designed to execute optical
neural network operations in a fully parallel manner. The
integration of liquid crystal atop the waveguide, serving as an
electro-optic cladding material, facilitates significant tuning in the
output waveguides. By leveraging wavelength division multiplexing
(WDM) technology and multimode interference coupling, the MMI
cell—equipped with multiple control pads—processes multiple
wavelength- and amplitude-encoded input signals, enabling
simultaneous linear matrix multiplication operations in a fully
parallel manner. To the best of our knowledge, the integration of
LC tuning within a MMI coupler on an Indium Phosphide

membrane platform for neuromorphic applications is a novel
concept that has not been reported in any previous literature.
This study represents the first-time modeling of an optical neural
network with such a device and includes benchmarking on the Iris
flower dataset.

2 Device architecture and design

The proposed device is a programmable multimode interference
(MMI) coupler specifically designed for the Iris flower classification
task. A 4 × 3 MMI coupler configuration is selected to align with the
dataset structure, accommodating the four input features and three
classification categories of the Iris flower dataset. The programmable
MMI coupler consists of three primary components: the input
tapered waveguides, a wider MMI core with hybrid integration of
liquid crystal (LC) within the cladding sections for dynamic
reconfigurability, and the output tapered waveguides. The input
waveguides are tapered from 0.4 µm to 2 μm, facilitating efficient
coupling of the fundamental optical mode into higher-order modes
within the MMI core. The core itself is a wide waveguide with a
width of 11.5 µm and a length of 285 μm, acting as the primary
region for optical interference. The output tapered waveguides
enable effective coupling of the optical modes, with a taper width
that varies from 3 μm to 0.4 µm. The overall thickness of the MMI
structure is 0.3 µm, ensuring a compact design suitable for photonic
integration. A schematic view and cross-sectional view of the LC-
filled MMI core are shown in Figures 2a, b, with detailed dimensions
of the passive MMI section provided in Figure 2c. The device
operates in the transverse magnetic (TM) mode, which enhances
the interaction between the optical field and the LC cladding,
providing stronger tuning capability compared to the transverse
electric (TE) mode. The propagation lengths of the optical modes
within the MMI core are designed to ensure sufficient space for
interaction with metal pads and interference of optical modes. These
metal pads function as electrodes that apply an electric field to the
LC cladding, modulating the refractive index and enabling dynamic
control over the output optical power distribution. While a higher
number of metal pads would increase the granularity of control, it

FIGURE 1
Conceptual illustration and operational principle of the programmable MMI coupler, where electrically controlled LC molecules modify light
propagation. The optical field evolution is defined by several parameters: M denotes the number of supported optical modes, ci represents the amplitude
coefficients, and Ψi is the transverse mode profiles. The propagation constants are given by β0, βi and z represents the propagation distance. The number
of tuning pads is Npads, with αik(Vk) denoting the phase shift induced by the applied voltage Vk. The synaptic weight matrix formulation involves the
mode coupling coefficients Cim and Cjm, where βm is the propagation constant of mode m, L is the length of the MMI region, and ϕij(V) represents the
voltage-controlled phase shift. Descriptions of all variables are provided in Supplementary Table S2 in Supplementary Note 3.
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would also result in greater simulation complexity, longer
simulation times, and a higher computational load. Therefore,
the proposed design incorporates three metal pads, offering a
balanced trade-off between controllability and practicality.
However, increasing the number of control pads could enhance
the device’s performance, but it would also introduce greater
complexity in the electrical contacting scheme. The proposed
fabrication process allows for such scalability; however, for the
proof-of-concept simulation, the number of pads was reduced to
three to minimize computational complexity and simulation time.
This design ensures that the proposed MMI coupler remains
compact, efficient, and suitable for photonic feedforward neural
network implementations, particularly in the context of
classification tasks such as the Iris dataset.

Figure 3a illustrates the normalized transmission spectra for
the three output waveguides when the source is positioned at the
first input waveguide, highlighting the broadband nature of the
MMI coupler. To evaluate the transmission response, four sources
with distinct wavelengths (1,548 nm, 1,550 nm, 1,552 nm, and
1,554 nm) were considered, as shown in Figure 3b. The results
indicate that the optical modes propagating through the MMI
coupler experience very low insertion losses (<0.5 dB), due to the
efficient coupling between the input and output waveguides via the
MMI core. This suggests a favorable initial state for the MMI.
Figures 3c–f show the optical field distribution for all four source
positions. Transmission calculations are presented for the first and
second positions, as the symmetry of the remaining positions is
evident in Figure 3b and the corresponding field profiles. Note that
the optical modes at the tapered output waveguide are not

fundamental modes. In this study, total optical power is
calculated regardless of the optical modes at the output tapered
waveguides.

3 Liquid crystal tuning

The tunability of the proposed multimode interference (MMI)
coupler is achieved by modifying the material properties around
specific regions where dominant optical fields are concentrated.
Optical field patterns within an MMI are typically most pronounced
near the midpoint along the propagation direction (Leuthold and
Joyner, 2001). In our 4 × 3 MMI coupler, this effect is particularly
evident for all four input source positions at the midpoint. To enable
compact and efficient phase modulation, we propose an integration
scheme that combines tunable liquid crystal (LC) with the indium
phosphide (InP) membrane waveguide. Figure 4a provides a cross-
sectional view of this scheme, showing three gold (Au) pads used as
electrodes. When external voltages are applied to these pads, an
electric field is established in the LC region between the glass plate
and the InP waveguide, separated by a spacer (see the inset of
Figure 4a). The electrostatic field distribution in the liquid crystal
(LC) region is calculated using Nextnano simulation software. This
electric field reorients the director of the LC molecules, allowing
dynamic modulation of the refractive index. An alignment layer sets
the initial orientation of the LC director within the xy-plane. When
an electric field is applied in the vertical direction, the director
rotates into the z-direction from its initial position, as illustrated in
Figure 4c. The initial director position is selected along the y-axis

FIGURE 2
(a) Schematic of the proposed programmable multimode interference (MMI) coupler. (b) Cross-sectional view of the MMI coupler, showing liquid
crystal filled between the waveguide and a glass plate. (c) Detailed dimensions of the passive MMI coupler structure.
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because this orientation offers a more significant change in the
effective refractive index than the x-axis, a finding supported by
Finite-Difference Time-Domain (FDTD) simulations. The
transverse magnetic (TM) mode, chosen for this design, features
a strong normal (Z) component that extends deep into the cladding,
as depicted in Figure 4d. This deep penetration enhances interaction
with the nematic E7 LC, which is chosen for its well-known optical
anisotropy and efficient electro-optic response. Without an electric
field, the director aligns in the y-direction, providing the LC with
both ordinary and extraordinary dielectric constants. The effective
dielectric constant of the LC layer is a function of the angle between
the electric field and the LC director, offering continuous tuning of
the dielectric property. When no field is applied, the Z component of
the TM mode encounters a low dielectric constant (the ordinary
dielectric constant) in the cladding, resulting in a lower effective
refractive index (neff) for the mode. Applying an electric field
reorients the director, increasing the dielectric constant. When
the director is fully aligned in the vertical direction, the Z

component experiences the high extraordinary dielectric constant
of the LC, leading to a higher neff for the TM mode. This behavior
contrasts with the transverse electric (TE) mode, which remains
more confined to the waveguide and is less influenced by the LC
cladding. To achieve targeted tuning across different sections of the
MMI, Au contact pads are strategically placed to allow independent
biasing of each section. By applying voltage to specific pads, the LC
director reorientation can be precisely controlled, enabling localized
phase modulation within the MMI core (as shown in Figure 4b). The
voltages needed to achieve significant phase modulations depend on
the distance between the electrodes. A shorter distance between the
two integrated electrodes enhances the electric field strength at a
given voltage, thereby improving the tuning efficiency of the LC
phase shifter, as illustrated by the electrostatic field profiles in
Figure 4. Specifically, for E7 nematic LC, an electric field of more
than 0.6 V/μm is necessary to attain efficient phase modulation
(Basu and Shalov, 2017; Alloat et al., 2012). Based on electrostatic
field simulations and the electrode spacing, a voltage of

FIGURE 3
(a) The transmission spectra of the MMI coupler for three different output waveguides when the source is positioned at the first waveguide. (b)
Separate wavelength sources are placed at input waveguides of the 4 × 3MMI coupler. (c–f) The optical field distribution of the 4 × 3MMI coupler for the
4 input waveguides with separate wavelength sources.
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approximately 6 V is required to fully reorient the LC director into
the vertical direction. The metal pads are designed with a length of
30 µm and a width of 3 μm, ensuring sufficient phase modulation to
dynamically adjust the optical transmission between the output
waveguides. The tunable MMI coupler demonstrates a
measurable change in optical transmission based on the refractive
index variations. Figure 4e displays the normalized transmission
characteristics of all three output waveguides with refractive index
changes in LC pad1 section only, while the refractive index kept
constant value at the other two pads. In this analysis, the
transmission calculations are specifically presented for source
positions at the first and second input waveguides, because of the
symmetry of the other two positions. The field profiles of the optical
mode propagation at two different refractive indices of pad1 can be
observed in Figures 4f,g, revealing a significant change in the field
pattern leading to alterations in transmission characteristics.

4Optical neural networkmodelling and
simulation

Artificial neural networks (ANNs) process input data through
interconnected layers of neurons or nodes. During training with a
specific dataset, the network learns to execute designated tasks
effectively by optimizing its parameters. Once trained, the ANN
generalizes its learning to new datasets, achieving high-accuracy
results. The model can then be used for inference, making
predictions on unseen data based on the acquired knowledge.
Figure 5a visually depicts the overall architecture of an ANN,
highlighting the flow of input data through layers of neurons,
including intermediary (hidden) layers, with the final
classification outcome appearing at the output layer. Each neuron
generates an output by applying a non-linear activation function to
the weighted sum of its inputs, as shown in Figure 5a. In this study,

FIGURE 4
(a) Schematic cross-sectional view of the E7 LC-filled cell with voltage sources connected to the Au pads. The inset shows the corresponding
electrostatic field profile. (b) The proposed programmable 4 × 3 MMI coupler showing the three pads in the tuning section. (c) Illustration of the LC
director reorientation under an applied voltage. (d) Transverse magnetic mode profiles of the input waveguide. (e) Calculated normalized transmission
variations for the three output waveguides as the refractive index of LC pad1 changes. Solid and dotted lines correspond to the source positions at
the first and second input waveguides, respectively. (f,g)Optical field distribution in the 4 × 3 MMI coupler for two different refractive indices of the LC in
the pad1 section.
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we present a novel end-to-end integrated photonic neural network
designed for rapid, sub-nanosecond classification tasks using
computation by propagation. The architecture of the
implemented integrated photonic neural network and the system
configuration with the proposed programmable MMI coupler are
illustrated in Figures 5b,c, respectively.

The dataset is encoded into the amplitude of distinct optical
sources using a variable optical attenuator (VOA). These optical
signals are then fed into the input waveguides of the programmable
MMI, where they are processed as light propagates through the
neurons (pads) within the MMI structure. By adjusting the local
refractive index within the MMI, we can program the transmission
matrix of the MMI for custom operation. To evaluate the proposed
programmable MMI’s performance in classification tasks, we
developed a neural network simulator in a co-simulation
environment using both Lumerical and Python. This simulator
supports neural network training for a defined number of epochs
and performs inference operations. Two approaches were used for
data processing at each epoch within the simulator:

1. Dynamic Refractive Index Update: In this method, the
refractive index values of the LC regions are dynamically
updated in Lumerical’s varFDTD solver for each epoch.
This approach provides precise optical transmission data
controlled by a PyTorch-based neural network model (co-
simulation).

2. Discrete Refractive Index Levels: This method involves pre-
defining discrete refractive index levels for each tuning pad.

During training and inference, optical transmission is
interpolated from a pre-simulated transmission dataset,
created using a parameter sweep in Lumerical varFDTD.
While the first method requires simulating the MMI
structure at every epoch—resulting in longer training
times—the second method, once the dataset is prepared,
eliminates the need for repeated simulations. Although the
interpolation method introduces minor errors, it offers faster
training and inference times, making it the preferred approach
for validating the device concept.

The simulator’s workflow for training and optimization is
depicted in Figure 6. Initially, the refractive index values of each
pad are set by applying voltages to the pads. Next, the optical
transmission data is interpolated from the pre-generated dataset.
The input dataset of the Iris image is encoded into the amplitude of
optical sources at each input waveguide. The optical transmission at
each output waveguide is then computed based on the input data
and the refractive index values of the MMI coupler LC pads. From
the resulting optical transmission, the loss and accuracy are
evaluated. This process is iteratively performed over a specified
number of epochs to train the neural network. To minimize loss at
each epoch, the refractive index of the pads is optimized through
gradient-based methods. The gradient is computed using finite
differences by comparing the original loss with the loss obtained
by incrementally adjusting the refractive index at each LC pad
sequentially. Overall, the second approach enables efficient and
rapid training of the neural network while maintaining a balance

FIGURE 5
(a) A schematic illustration of a deep neural network, featuring the input layer, followed by multiple hidden layers, and an output layer that provides
classification outputs. (b) The optical neural network architecture involves forming the input parameters of Iris flowers into a 120 × 4 dataset. This dataset
is then directed to the first layer, where the input and output neurons is interconnected through a weighting system. (c) Schematic of a system
architecture using programmable 4 × 3 MMI coupler, where the transmission matrix [T] is reconfigurable by modifying the refractive index of the
tuning pads [n].
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between accuracy and computational speed, demonstrating the
potential of the proposed programmable MMI coupler in
photonic neural network applications.

5 Results and analysis

To evaluate the performance of the proposed optical neural
network (ONN) using a programmable MMI as a non-linear
neuron, we conducted classification tasks using the Iris flower
dataset. This dataset contains 150 samples, each with four input
attributes and three output classes: “Virginia,” “Versicolor,” and
“Setosa.”We divided the dataset into a training set and a test set with
a 4:1 ratio. The classification process begins by encoding input values
into optical signals and feeding them into the corresponding input
waveguides of the MMI. During training, the optical transmission
are optimized by changing the refractive indices of the LC tuning
pads using an algorithm. Figures 7a,b show the evolution of the loss
value and test accuracy over epochs. The confusion matrix for the
test set is presented in Figure 7c, and Figure 7d shows the evolution
of the transmission matrix parameters over training epochs,
highlighting the dynamic optimization of optical synaptic weights
in the MMI coupler. The gradual adjustments in transmission
coefficients reflect the learning process, where the device adapts
to achieve the desired computational functionality. The inset shows
the variation of the refractive index during training, demonstrating
the voltage-controlled tuning of LC elements to optimize light
propagation and synaptic weighting. The proposed ONN
achieves an accuracy of 86.67%, demonstrating its classification
capability with just three pads and a single-layer system. The

training process’s success depends on the initialization of pad
indices and the learning rate, which influences optimization
stability and speed. Figure 8a illustrates how different learning
rates (0.01, 0.001, and 0.0001) affect loss and accuracy. Higher
learning rates allow faster convergence, with fewer epochs needed to
achieve maximum accuracy. We validated the interpolation method
by comparing the simulator’s results with the co-simulation using
FDTD data. Figure 8b demonstrates a strong correlation between the
two approaches for a learning rate of 0.01, and with both methods
achieving a consistent maximum accuracy of 86.67%. In
comparison, a software-based neural network with the same
architecture, implemented in PyTorch, achieved a higher
accuracy of 93.3%. The maximum deviation in loss between the
two methods was less than 0.8% (see inset of Figure 8b), and the
average error was approximately 0.29%. This demonstrates that the
interpolation method introduces only minimal error while
significantly reducing the computational time required for
training. The current ONN model has limitations due to its
simple architecture, including a single layer and only three
neurons (pads). Increasing the number of neurons, layers, or the
discretization level of each pad could enhance accuracy. However,
this would exponentially increase number of simulations, simulation
time and training duration. This limitation can be mitigated when
MMI devices are fabricated, allowing experimental data to
streamline the training process. A unique characteristic of our
ONN is how weights are updated collectively, with the 12-
element weight matrix (transmission matrix) configured using
only three refractive index parameters. Changes in any one pad
affect all weight matrix elements, introducing complexity but also
potentially reducing the parameter space by coupling weights.

FIGURE 6
Flow diagram illustrating the training and optimization process of the proposed optical neural network, highlighting key steps such as refractive
index initialization, optical transmission interpolation, loss calculation, and gradient-based optimization.
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Although the weight matrix currently supports only non-negative
values, this could be addressed using a balanced photodetector
scheme or a second MMI to introduce negative weights.
Additionally, coherent operations could enable complex matrix
multiplications. These implementation options are further
elaborated in the Supplementary Material (see Supplementary
Note 1). The proposed ONN also benefits from its low power
consumption. The LC-based optical phase shifter used in the
MMI operates at nanowatt (~nW) power levels (Xing et al., 2015;
Alloat et al., 2012), which is significantly lower than conventional
thermal phase shifters that typically consume power in the milliwatt
(mW) range. For our MMI coupler with three pads, the power
needed for a single multiply-accumulate (MAC) operation is
estimated to be in the hundreds of nW. The overall energy
consumption for the inference operation is in the femtojoule-per-
operation range, highlighting the efficiency of the proposed design.
Latency in the ONN is minimal, primarily governed by the
propagation time of optical modes through the compact MMI
structure, input loading time, and the response time of the
photodetector. Consequently, the total latency is in the
tens of picoseconds, making the ONN suitable for high-speed
operations.

Table 1 provides a performance comparison of the proposed
reconfigurable MMI coupler with previously reported
reconfigurable and MMI-like structures. The comparison
considers key parameters, including the device type, substrate
material, reconfigurability, electro-optic (EO) mechanism, device
footprint, and power consumption. The proposed 4 × 3 MMI
coupler employs an indium phosphide (InP) membrane on a
silicon (Si) substrate with an active electro-optic mechanism
using E7 liquid crystal. It features a compact footprint of
285 μm × 11.5 μm and demonstrates extremely low power
consumption in the nanowatt (nW) range. In comparison,
previous devices exhibit varying performance characteristics. For
instance, the unpatterned 4 × 4 MMI coupler on an InGaAsP
substrate utilizes an active reconfiguration approach with a
patterned pumping light mechanism, consuming an average
pumping power of 1.5 mW (Wu et al., 2023). Another approach,
utilizing two 4 × 4 MMI cells and microheater phase shifters on a
SiN substrate, demonstrates a smaller footprint (275 μm × 15 μm)
but higher energy consumption (4.84 pJ/MAC) (Meng et al., 2023).
A particularly compact design, the 4 × 4 MMI coupler with a passive
inverse design on a silicon substrate, achieves a footprint of only
4 μm × 4 μm but lacks reconfigurability. Similarly, several other

FIGURE 7
(a) The loss curve on the training set, (b) test accuracy curves and (c) the confusion matrix of the Iris image classification task using the proposed
neural network. (d) Evolution of the transmissionmatrix parameters over training epochs, illustrating the dynamic adjustment of optical responses during
optimization. The inset shows the variation of the refractive index throughout the training process, highlighting the adaptive tuning of the LC elements to
achieve optimal performance.
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FIGURE 8
(a) The impact of different learning rate (lr) values on the accuracy curve. (b) Comparison of loss and test accuracy using both FDTD simulation and
interpolation methods at a learning rate (lr) of 0.01. Inset: Error bars show the loss deviation between the FDTD simulation and interpolation methods at
each epoch.

TABLE 1 Performance comparison of the proposed reconfigurable MMI coupler with previously reported reconfigurable MMI and MMI-like structures.

Device used Device
platform

MMI passive/
active

EO mechanism MMI
footprint

Power
consumption

Tunable
elements per
mm2 †

Unpatterned 4 × 4 MMI
coupler (Wu et al., 2023)

InGaAsP Active (patterned
pumping light
modulates the imaginary
index)

multiple-quantum-wells 300 μm ×
240 µm

average pumping power
of 1.5 mW

~222 synapses/mm2

Two 4 × 4 MMI cells and
four phase shifters (Meng
et al., 2023)

SiN on Si Passive Phase shifters with
microheaters

950 μm ×
15 µm

4.84 pJ/MAC ~280 synapses/mm2

4 × 4 MMI coupler
(Shixin et al., 2025)

Silicon on
insulator (SOI)

Active (Non volatile) Phase change material
Sb2Se3 using laser direct
writing

100 μm ×
20 µm

30 mW to reconfigure
the MMI

~8,000 synapses/mm2

14 × 10 MMI with EO
ring modulator (Soures
et al., 2018)

SOI Passive electro-optic modulators 350 μm ×
24 µm

NA 14 tunable elements

10 × 10 MMI coupler
(Nikkhah et al., 2024)

SOI Passive Passive inverse design 35.4 μm ×
29.4 μm

Non reconfigurable No tunability

4 × 4 MMI coupler (Qu
et al., 2020)

SOI Passive Passive inverse design 4 μm × 4 μm Non reconfigurable No tunability

4 × 3 MMI coupler (Fu
et al., 2023)

SOI Passive Diffractive optics 0.3 mm2 Non reconfigurable No tunability

3 × 3 MMI coupler (Tong
et al., 2024)

SOI Active Hydrogen-doped indium
oxide (IHO) microheater

800 μm ×
210 μm

9.6 mW ~178 synapses/mm2

4 × 3 MMI coupler (This
work)

InP Membrane
on Si

Active E7 liquid Crystal 285 μm ×
11.5 μm

~ nW ~915 synapses/mm2

†Synapse density calculated based on the footprint of the MMI, core region only.
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passive designs, including the 10 × 10 and 14 × 10 MMI structures,
do not offer reconfigurability, limiting their adaptability in dynamic
applications. The proposed device’s key advantages lie in its
reconfigurable nature, small footprint, and minimal power
consumption. The use of a LC-based electro-optic mechanism
enables dynamic control with low energy requirements,
positioning this device as a promising candidate for scalable and
power-efficient optical neural networks and other photonic
computing applications.

The current accuracy of 86.67% on the Iris dataset reflects a
trade-off between simplicity of the hardware (i.e., a single-layer
network with three tuning pads) and learning capacity. Increasing
the number of control pads per MMI unit or cascading multiple
MMI units to form deeper, multi-layer networks could significantly
enhance classification performance. The scalability and potential
extensions of the network are further discussed in Section 7.

To contextualize the novelty of our LC-MMI-based
reconfigurable photonic neural network, we compare our
approach with several state-of-the-art programmable photonic

platforms used for neural inference. Supplementary Table S1 in
the supplementary note 2 summarizes key metrics including
inference accuracy, energy consumption, switching speed, and
endurance. This helps situate our architecture within the field
and demonstrates its advantages—such as ultra-low energy
consumption, electrical tunability, and high
reconfigurability—while also acknowledging areas for future
development, particularly in improving tuning speed.

The LC reconfiguration time dictates the update rate of synaptic
weights. The nematic E7 liquid crystal used in this study typically
exhibits switching times on the order of milliseconds. Although this
response is slower than other tuning mechanisms, such as thermo-
optic or electro-optic effects, it remains suitable for applications
where weight updates are infrequent or where inference operations
dominate. To enable faster reconfiguration in future
implementations, alternative materials—such as ferroelectric
liquid crystals or polymer-stabilized LCs—could be considered, as
they offer significantly faster response times, often in the
microsecond or sub-microsecond range.

FIGURE 9
Schematic diagram illustrating the step-by-step fabrication process of the proposed LC-based reconfigurable optical device. (a) Clean the initial
InP-based wafer stack, (b) deposit the PI cladding layer and form Ti/Au metal pads, (c) perform wafer-to-wafer adhesive bonding with a silicon substrate
using BCB, (d) define the waveguide structure and pattern the cladding layers, (e) bond a glass substrate with epoxy over the cladding, and (f) fill the cavity
with liquid crystal (LC) material.
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6 Device fabrication

This section outlines a potential fabrication process for the
proposed LC-based reconfigurable optical device, which features
a programmable multimode interference (MMI) coupler on an
indium phosphide (InP) membrane. The InP membrane platform
is selected due to its high refractive index contrast, which allows for
the miniaturization of photonic components, as well as its
compatibility with active photonic devices. These characteristics
make it particularly suitable for reconfigurable optical neural
network applications (Jiao et al., 2020b). The detailed process
flow is illustrated in Figure 9. The initial InP epi-wafer is grown
using metalorganic vapor phase epitaxy (MOVPE) and consists of a
layer stack of 50 nm i-InP, 50 nm i-InGaAs, 300 nm i-InP, 300 nm
i-InGaAs, and an InP substrate. As the first step of the fabrication
process, the 50 nm i-InP and 50 nm i-InGaAs cap layers are removed
by wet etching, as illustrated in Figure 9a. Following this, a polyimide
(PI) layer is spin-coated onto the InP wafer, followed by curing to
form a uniform cladding layer. Next, Ti/Au metal electrodes are
deposited and patterned to create metal pads, as shown in Figure 9b.
To improve adhesion, thin SiO2 layers are deposited via plasma-
enhanced chemical vapor deposition (PECVD) on both the InP and
Si wafers (not shown in Figure 9). A benzocyclobutene (BCB) layer is
then spin-coated onto the InP wafer, serving as the adhesive bonding
layer, as depicted in Figure 9c. The wafer bonding process is
performed in a vacuum environment to ensure high-quality
adhesion and minimize void formation. Following bonding, the
InP substrate and the InGaAs etch-stop layer are selectively removed
using wet etching. The photonic structures on the InPmembrane are
then defined through electron beam lithography (EBL) and reactive
ion etching (RIE), as illustrated in Figure 9d. An additional PI layer
is spin-coated, patterned via UV exposure with a mask, developed,
and cured to create the separation layer for the LC cell. A glass wafer
with pre-patterned Au/Ti electrodes (pre-coated with an LC
alignment layer to facilitate uniform molecular orientation, not
shown in Figure 9) is then bonded to the patterned PI top
cladding using a UV-curable adhesive, forming empty cells for
LC alignment (Figure 9e). The final step involves filling the
empty cells with E7 LC through capillary action (Figure 9f).

7 Scalability, multi-layer integration,
and associated challenges

The current implementation of the programmable MMI-based
synaptic weighting engine, utilizing three independently tunable LC
pads, serves as a proof-of-concept for demonstrating the feasibility
of reconfigurable, low-power photonic neural elements. However,
practical neuromorphic systems will require scalability in both
functional complexity and physical design.

The number of control pads can be increased along the MMI
region to allow more fine-grained control over the interference
pattern and thereby enable higher-resolution synaptic weighting.
However, careful design is required to avoid cross-talk between
electrodes and to maintain uniform LC alignment. From a
fabrication standpoint, photolithographic definition of additional
electrodes is feasible. Modeling complexity indeed increases as the
number of control pads grows. Specifically, the total number of

required simulations to fully characterize the system scales as NM,
where N is the number of discrete voltage levels per pad andM is the
number of control pads. For instance, with 3 pads and 9 discrete
voltage levels, the system provides 729 possible synaptic states.
Increasing the number of pads to 5, while maintaining the same
voltage resolution, would yield 32,768 states, significantly enhancing
the granularity of optical weighting. This exponential growth poses
computational challenges. However, this can be managed through
efficient interpolation schemes, surrogate modeling, or by leveraging
parallelized optimization and simulation pipelines. In our current
implementation, we have already employed an interpolation-based
method to significantly reduce simulation overhead, and we
envision similar strategies being applied to larger-scale systems.
Nonetheless, higher pad counts introduce additional considerations,
such as inter-electrode crosstalk, increased design complexity, and
expanded control parameter spaces during training.

For extending to multilayer neural networks, multiple MMI
units can be cascaded or interconnected using integrated waveguide
routing. Each stage could represent a linear matrix operation
followed by a nonlinear activation, mimicking the structure of
traditional deep learning architectures. This modular design
enables flexible and scalable implementations of deeper photonic
neural networks. One of the key challenges in such multi-layer
systems is optical loss accumulation. Here, our choice of the InP
platform offers a distinct advantage—active components such as
semiconductor optical amplifiers (SOAs) or integrated laser sources
can be co-fabricated to provide on-chip gain, mitigating
interconnect losses and enabling signal regeneration between
layers. Additional considerations such as signal synchronization,
phase stability, and thermal effects are being actively explored in our
ongoing work.

By increasing the number of input/output ports and integrating
additional tuning pads, the MMI can accommodate larger matrix-
vector multiplications, allowing the system to process more features
per layer (Bolk et al., 2018). This enhancement allows the system to
process higher-dimensional inputs, such as those in datasets like
MNIST, and expands the network’s capacity per layer.

While the proposed LC-MMI architecture demonstrates
effective reconfigurability for optical neural network
applications, practical integration challenges must also be
addressed to ensure robust and scalable operation. Maintaining
uniform LC alignment across the MMI region is essential for
consistent refractive index modulation. In our current design,
alignment is achieved using standard surface treatment
techniques, such as rubbed polyimide layers or photoalignment
using polarized UV light. These methods have been widely adopted
in display and LC-integrated optical systems and provide
repeatable and scalable alignment across planar photonic
platforms. The long-term operational stability of the LC layer is
influenced by factors such as encapsulation quality and potential
material degradation under optical and thermal stress. To address
this, we encapsulate the LC using inert top cladding materials, such
as glass or polymeric layers, that prevent contamination and
evaporation. Moreover, LCs used in our study (e.g., E7-type
nematic LCs) are known to exhibit stable electro-optic
properties over extended durations under moderate voltage and
temperature conditions (Woods et al., 2018; Brugioni et al., 2003).
The thermo-optic response of LCs introduces a dependence of the
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refractive index on ambient temperature (Li et al., 2005). While
this could potentially affect the consistency of weight tuning, the
temperature-induced index change for nematic LCs is relatively
small within a standard operating window (20°C–40°C). In our
architecture, such variations can be compensated through voltage
adjustments to the control pads. For high-precision or thermally
variable environments, future implementations could include
temperature feedback loops or explore more thermally stable
LC formulations. Additionally, based on prior experience, the
nematic phase range can be broadened by formulating custom
LC blends, enabling more stable operation across wider
temperature ranges. As the number of control pads increases,
minimizing electrical and optical crosstalk becomes essential. This
can be managed through careful electrode layout, shielding
strategies, and appropriate spacing of LC regions to ensure field
confinement. Beyond physical mitigation, training-aware methods
can help compensate for residual interference. Since weights do not
need to be fully uncorrelated, the network can learn robust
configurations that tolerate moderate crosstalk during training.
MMI devices are inherently robust to small dimensional
variations, which is a key advantage over more sensitive
interferometric meshes. Nonetheless, consistent LC layer
thickness and uniform alignment are critical. Our fabrication
process uses standard lithographic and alignment techniques,
which are scalable and reproducible.

8 Conclusion

This paper presents a novel reconfigurable feedforward neural
network architecture implemented on an InP membrane platform,
leveraging the electro-optic properties of LC to dynamically
program the transmission matrix of a MMI coupler. The
proposed design enables compact, programmable optical
weighting and demonstrates effective classification performance
on the Iris dataset using a hybrid co-simulation framework.
While the architecture offers a reduced footprint and fewer
control pads compared to other photonic neural networks, it is
currently limited to a single-layer configuration, which restricts its
ability to model more complex learning tasks. Additionally,
although inference latency is extremely low due to passive optical
propagation, the LC tuning speed remains relatively slow, which
may limit the frequency of reconfiguration in dynamic applications.
Future work will explore multi-layer implementations using
cascaded MMI networks, as well as the integration of faster
electro-optic materials such as ferroelectric liquid crystals. The
approach also holds promise for scaling to more complex
datasets and larger neural network models, paving the way
toward practical, high-speed, and reconfigurable photonic
computing systems.
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