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Efficient electrode materials for energy storage device fabrication are in demand
to address global energy needs. In this study, novel binder-free electrodes were
based on NiCo2S4 (NCS) and an Ni-Co metal–organic framework (MOF).
Electrodes were engineered using a convenient dual-step solvothermal
method employing nickel (Ni) foam as a current collector. The electrode
material was characterized for crystallinity and crystal phase purity (pXRD),
morphology (FESEM), and surface elemental profiling (XPS). Cyclic
voltammetry (CV) for redox behavior analysis, galvanostatic charge–discharge
(GCD) for capacitance evaluation, and electrochemical impedance spectroscopy
(EIS) for charge transfer resistance were employed to investigate electrochemical
performance. The composite active electrodematerials NCS/NCM@NF exhibited
high specific capacitance (2,150.3 F g−1) at a scan rate of 2 mV s-1, with KOH (6M)
as an electrolyte. The fabricated electrode was highly reusable—approximately
89% of capacitance was retained, even after 10,000 cycles of usage
(charge–discharge). The composite material has high energy density, Ed
(199.6 W h kg−1), and power density, Pd (1,500.2 W kg−1). The charge transfer
resistance (Rct, 790 mΩ) and solution resistance (Rs, 1.52 Ω), computed through
EIS, being low, show a quick charge transfer at the interface, making the
composite material suitable for supercapacitor application.
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1 Introduction

The use of fossil fuels negatively impacts the environment and, in turn, impacts human
health. Consequently, progress in sustainable energy storage devices that offer low costs
together with superior energy and power density has become an emerging area of research.
Batteries and supercapacitors are primarily employed for energy storage. The sluggish
movement of electrons and ions at fast rates makes batteries capable of producing lower
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power densities. Furthermore, batteries require long charging times
in contrast to supercapacitors (Gao et al., 2023). Supercapacitors
exhibit improved power density, suitable charge–discharge
functioning, long life span, enhanced effectiveness under adverse
circumstances, and eco-benign behavior (Pershaanaa et al., 2022;
Khan et al., 2024). They have lower energy density than batteries,
making them preferable over the latter for short-term energy storage
(Yaseen et al., 2021). Supercapacitors, having a wide operating
temperature range, are ideal for transport systems, hybrid electric
vehicles, braking systems (regenerative), actuator systems,
renewable energy systems, backup power supplies, sensing
devices, grid stabilization, flexible screens, portable electronic
devices, power quality enhancers, high-efficiency converters, and
surge absorbers (Abdel Maksoud et al., 2021; Andrew et al., 2023;
Ariyarathna et al., 2023; Bharathi Sankar Ammaiyappan et al., 2023;
Bhat et al., 2023; Biswas et al., 2023). Supercapacitors are classified
into pseudocapacitors and electrochemical double-layer capacitors
(EDLCs) based on their energy storage mechanisms.
Pseudocapacitors provide more improved energy density and
longer life cycle than batteries and work via reversible reduction
and reactions (case I: charge store via faradaic processes at or close to
the electrode material’s surface with adsorption or intercalation of
ions is the repercussion of electrons being transferred across the
electrode and electrolyte in the set up) (Mahala et al., 2023;
Seenivasan et al., 2023). EDLCs function only through
electrostatic processes (case II: there are no chemical processes
supported in the charging process; instead, ions associated with
the electrolyte are electrostatically adsorbed onto the large surface
area of an active electrode) (Pal et al., 2022; Kim et al., 2019).

The electrode material directly affects the working efficiency
of a supercapacitor and hence plays a decisive role in energy
storage device fabrication. There are three major categories of
electrode materials: (a) carbonaceous materials (graphene, rGO,
GO etc.) (Pathak et al., 2022), (b) metal oxides (ZnO, Fe2O3,
MnO2 etc.) (Shah et al., 2024), and (c) conducting polymers
(PANI, PPy, PTh etc.) (Shah et al., 2024; Xu et al., 2024). Each of
these materials has inherent issues such as low capacitance
(carbonaceous materials), lack of conductivity (metal oxides),
and mechanical disintegration (conductive polymers) (Zou et al.,
2013; Wu et al., 2015; Pan et al., 2019). The theoretical specific
capacitance and electrochemical performance of metal oxides
(transition metal oxides particularly) is relatively higher. Metal
oxides, including single and transition double metal oxides, have
multiple oxidation states, high conductivity, and low toxicity, and
are thus cost-effective (Kumar et al., 2020; Kumar et al., 2024; Ni
et al., 2022; Priya M et al., 2023; Shaheen et al., 2023; Mathivanan
et al., 2024; Raskar et al., 2024). Spinel-type metal oxides/sulfides
(AB2X4; A-divalent metal-and B-trivalent metal, O-oxygen,
sulfur), especially Ni- and Co-based binary transition metal
oxides (MCo2O4; M = Ni, Cu, Zn, Mg, Fe, Mn etc.), are
potential active electrode materials owing to their variable
oxidation states, high redox activity, environmentally benign
nature, and improved capacitance (Jose et al., 2022;
Zulqarnain et al., 2024). Nickel cobalt oxide nanostructures
exhibit specific capacitance 2000 F g−1 with energy density
(Ed) of approximately 280 Wh kg−1 and power density (Pd) of
55 kW kg−1 (Abdolahi, 2021). Nickel-oxide-anchored CoOx
nanoparticles on modified commercial nickel foam (NF)

exhibits specific capacitance of 475 Fg−1 at 1 mAcm−2 with an
energy density of 2.43 Whkg−1 and power density of 0.18 kWkg−1

(Chen et al., 2020). NiCo binary oxide has a specific capacitance
of 1607 F/g, having Ed (28 Wh kg-1) and Pd (3064 W kg−1) (Long
et al., 2015). Metal–organic frameworks (MOFs) in combination
with metal sulfides enhance stability, performance, and electron-
transport capability due to tunable porosity, large specific surface
area, and diverse surface chemistry. MOFs, known for their
robust framework (Kumar et al., 2020), high porosity (Qian
et al., 2020), large surface area (Xiao and Jiang, 2019), and
adjustable pore size, are porous materials suitable for electrode
preparation (Yang et al., 2020; Li et al., 2023). They have been
used in several applications, including gas separation (Lawson
et al., 2021), photocatalysis (Kreno et al., 2012), drug delivery
(Xie et al., 2020), sensing (Jayaramulu et al., 2022), and energy
storage. Nevertheless, the practical application of MOFs in
electrochemical energy storage is hindered by their inherently
low electrical conductivity and inadequate ion transport to the
current collector (Chen et al., 2019; Le et al., 2022). Furthermore,
derivatives of MOFs with oxides, sulfides, hydroxides, and
selenides offer operative electrochemical sites, extensive
electrode–electrolyte interfacial areas, and higher conductivity,
making them suitable materials for energy storage. However, the
electrochemical properties of MOF derivatives of single metals do
not meet the expectation of an active electrode material. The
electrochemical properties of MOF derivatives can be enhanced
by incorporating metal ions into their frameworks, leading to
multi-metal MOFs. This approach exploits the synergistic effects
of metal ions to improve the overall electrochemical performance
of MOFs. Moreover, the introduction of different metal ions can
tailor the electronic structure and optimize the redox sites of
materials to improve capacity, stability, and rate capability, fine-
tune pore size and distribution, and enhance ion transport and
diffusion within the electrode material. Multi-metal MOFs are,
therefore, a popular material for fabricating high performance
and durable energy storage devices (batteries and
supercapacitors).

A number of combinations of metal ions, including bimetallic
transition sulfides (BMTS) (Radhika et al., 2020), have been used to
identify the most effective combination for intended energy storage
requirement. NiCo2S4 hollow spheres grown over nickel foam (NF)
were used to fabricate supercapacitor electrodes (specific
capacitance: 1036 F g−1; at 1.0 A g−1, energy density:
42.3 W h kg−1, power density: 476 W kg−1 (Gao et al., 2023). The
specific capacitance (738 F g−1, at current density of 4 A g−1) was
reported to be retained up to 93.4% (after 4000 cycles of usage).
However, composites of NiCo2S4 and MOFs deposited over porous
texture like Ni foam have rarely been explored for electrochemical
energy storage application.

In this research, NiCo2S4 and Ni-Co bimetallic MOF were
prepared and deposited over highly porous Ni foam via a facile in
situ solvothermal method. The resulting 3D flower-like structure
with multiple redox active sites and high surface area improved
the charged storage capacity of the as-prepared composite. The
novel composite showed high specific capacitance with cyclic
stability. Overall, the composite material could be a promising
candidate in the scenario of the escalating demand for clean
energy alternatives.
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2 Materials and methods

Analytical-grade reagents were used directly without any
additional purification. Nickel foam featuring a porosity of
96.5%, pore size ranging from 0.2 to 0.8 mm, and a thickness of
1.6 mm was obtained from Hefei Kejing Materials Technology,
Hefei, China. Cobalt nitrate hexahydrate (Co(NO3)2·6H2O) (CDH,
99.9%), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) (CDH, 99.9%),
trimesic acid (98.0%), potassium hydroxide (KOH) (98.0%), and
ethanol (98.0%) were sourced from Central Drug House (P) Ltd.
(CDH, New Delhi, India). Thiourea (NH2CSNH2) (98.0%),
dimethyl formamide (DMF) (99.8%), and hydrochloric acid
(HCl) (0.01M) were purchased from Sisco Research Laboratories
Pvt. Ltd. (Mumbai, India). Data processing and presentation were
carried out using OriginLab 9.0 (2018) software.

2.1 Fabrication of NiCo2S4-loaded Ni-
foam (NF)

A piece of Ni-foam (1 × 1.5 cm2) was cleaned using HCl (37 wt%
in H2O) and then ultra-sonicated (25 min) to eliminate the surface
oxide layer. The resulting NF surface was dipped into double-
distilled water (DDW) and ethanol (four times) to remove acid
traces, followed by drying (60°C, 10 h) in a hot-air oven. The
NiCo2S4 (NCS) was synthesized hydrothermally. Briefly, nickel
nitrate hexahydrate (Ni (NO3)2 .6H2O, 1 mmol) including cobalt
nitrate hexahydrate Co (NO3)2.6H2O (2 mmol) was mixed in DDW
(70 mL) by 30 min stirring, followed by the addition of thiourea
(20 mmol) and magnetic stirring (120 min) until a clear transparent
pink solution was obtained. An NF was transferred into 100 mL of
hydrothermal autoclave (Teflon-lined stainless steel, Technistro
(Autoclave-PTFE-0100)), and the reaction mixture was allowed
to proceed (5 h, 150°C) in an oven (Equitron, # 7051-250),
followed by cooling to room temperature [40]. NCS-loaded NF
(NCS@NF) was separated from the solution and cleaned (with
ethanol and DDW) and dried (70°C, 10 h). The loaded NF
(NCS@NF) was annealed in a tube furnace (3 h, 350°C, 2°C min−1).

2.2 Fabrication of NiCo-MOF@NF and
NiCo2S4@NiCo-MOF @NF electrode

Nickel cobalt MOF-loaded NF (NCM@NF) was also synthesized
hydrothermally. Briefly, nickel (II) nitrate hexahydrate (Ni
(NO3)2·6H2O, 1.5 mmol) and cobalt (II) nitrate hexahydrate (Co
(NO3)2·6H2O, 1.5 mmol) were dissolved in DMF (40 mL) at 26°C
(room temperature), followed by the addition of trimesic acid
(organic linker) to maintain a pre-decided molar ratio (1:6)
relative to the combined moles of Ni2+ and Co2+ ions (Radhika
et al., 2020). The vivid purple solution was further stirred (90 min)
and poured into a Teflon-lined stainless steel autoclave (100 mL).
Nickel foam (NF) was then introduced, and the suspension was
subjected to hydrothermal treatment (160°C, 18 h), followed by
cooling to an ambient temperature. The loaded NF (NCM@NF) was
recovered and rinsed (with ethanol, DMF, and deionized water) to
remove traces of solvents. Finally, the material was dried (80°C, 24 h)
in a hot-air oven. NiCo2S4@NiCo MOF/NF (NCS/NCM @NF)

electrodes were fabricated by following the process used for NCS
@NF electrodes (refer to Section 2.2 for fabrication process) instead
of bare NF in the above synthesis method (Section 2.3), as shown
in Figure 1.

2.3 Characterizations

The electrodes fabricated in Sections 2.2 and 2.3 were further
investigated for material characterizations such as XRD, FESEM
(EDS), and XPS. The crystalline and amorphous characteristics of
the materials were analyzed using a powder X-ray diffractometer
(XRD, Rigaku Smart Lab 3 kW) equipped with a Cu–Kα radiation
source (λ = 1.540�A). The electrodes were directly mounted onto the
sample holder of the instrument as fabricated. The instrument
operated at a constant filament intensity of 25 mA and a power
of 45 kV. Data collection was performed over a 2θ range of 5° to 80°,
employing a slow scan rate of 2°/min with a step size of 0.02°. The
surface morphology and topography of the prepared electrodes were
examined using FESEM (FE-SEM, Zeiss Gemini SEM 500 Thermal
field emission type). Prior to analysis, the electrode samples were
attached over the carbon tape and gently air-blown to remove dust
particles. Micrographs were captured at various magnifications with
an accelerating voltage of 10 kV. The quantitative elemental
composition of the materials was then determined through
energy-dispersive X-ray spectroscopy (SEM-EDS). The elemental
distribution and oxidation states were further investigated using
X-ray photoelectron spectroscopy (XPS, SPECS System). The
samples were vacuum-dried, mounted onto conductive sample
holders using double-sided carbon tape, and then subjected to
data acquistion.

2.4 Electrochemical studies

The electrochemical studies were performed on prepared
electrodes (NCS/NF, NCM/NF, NCS/NCM@NF) in Sections 2.2
and 2.3 as working electrodes. The electrodes of the control material
had a mass loading of 1.070 mg (≈1.0 mg). The clean NF was first
weighed to obtain the initial mass of the active mass of NF. After the
material’s deposition and drying, the coated NF was weighed again
to record the final mass. The difference between initial and material-
loaded NF was considered as mass loading and normalized to the
coated surface area. The electrodes were electrochemically analyzed
at room temperature (26°C) in a three-electrode assembly in a basic
medium (2M, 4M, and 6M KOH) with platinum foil (as a counter-
electrode) and Ag/AgCl electrode (as a reference electrode). CV,
GCD, and EIS studies were performed using an electrochemical
workstation (Auto lab PGSTAT 302N).

3 Results and discussion

3.1 Powder X-ray diffraction (PXRD) studies

The structural information of all the synthesized samples was
investigated using pXRD analysis. The three diffractogram
intense peaks at 44.5°, 51.9°, and 76.4°, respectively
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corresponding to the planes (111), (200), and (220), were of Ni
foam (shown by * in Figure 2) having space group (Fm3 m)
(JCPDS card no. 00-004-0850) (Yolanda et al., 2020). The X-ray

diffraction pattern of the NiCo2S4 material was consistent with
JCPDS card No. 20-0782. The characteristic at 31.6°, 38.3°, 50.5°,
and 55.3° corresponded to the (311), (400), (511), and (440)
planes, respectively, with the Fd-3mspace group and a primitive
unit cell a = 9.4177 �A (MadhusudanaRao et al., 2021). The XRD
pattern of NiCo-MOF exhibits diffraction peaks which probably
have a layered topology crystal structure as a result of connection
between central metal ions and BDC ligands to form a 2D layered
structure (Radhika et al., 2020). The two sharp peaks (2θ) at 12.9°
and 25.8°, corresponding to planes (112) and (134), are due to the
presence of Ni/Co-MOF and ZIF-67 (CCDC 671073). In the case
of NCM@Ni, small peak splitting was observed in the XRD
pattern at 44.5° due to the presence of multiple phases or the
influence of strain or preferred orientation within the Ni
foam structure.

Peaks at 31.6° (311), 38.3° (400), 50.5° (511), 55.3° (440), 12.9°

(112), and 25.8° (134) are attributed to the composite sample (NCS/
NCM). The above results confirm the preservation of the layered
structures of both MOF and bimetal sulfide in the
composite material.

3.2 Surface morphology

The surface morphology of Ni foam is porous, with an
average pore size of 60 ±5 µm (Figure 3a), taking into

FIGURE 1
Fabrication of binder electrodes of NCS@NF (I), NCM@NF(II), and NCS/NCM@NF(III).

FIGURE 2
Diffractogram of NCS/NF, NCM/NF, and NCS/NCM@NF (* shows
peaks of Ni foam).
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account the standard deviation value calculated by ImageJ
software. NCS has a 3D flower-like morphology with petals
(sheet like structure) radiating outward from a central core
grown on Ni foam (Jiang et al., 2022) (Figure 3b). The overall
morphology of NCS is a cluster of 2D layers (size: 200–400 nm)
(Figure 3b). Ni-Co MOF has a nano-layered sheet-like
morphology (Figure 3c). The composite material has a mixed
morphology (Figure 3d) possibly contributed by NiCo2S4 and
NiCo-MOF, where MOF particles cover NCS layers to obtain
support for their framework.

The flower-like nanoarrays of NiCo2S4 remained structurally
intact beneath the NiCo-MOF layer, suggesting that the
distinctive surface morphologies of both materials were well
preserved. This indicates successful interfacial integration and
structural robustness of the resulting hybrid architecture.
Energy-dispersive X-ray spectroscopy (EDX) analysis
confirmed the presence of elements in the composite, with the
following weight percentages: C (23.42%), O (46.37%), Ni
(15.34%), Co (11.27%), and S (3.60%); the corresponding
atomic percentages were C (36.02%), O (53.54%), Ni (4.83%),
Co (3.53%), and S (2.07%) (Figure 3e). Figure 3f represents the
particle size distribution curve for NCS/NCM@ NF and the

average size of the particles lie between (140-280 nm)
Figures 3g,h represents the field of view and elemental
mapping of NCS/NCM@NF for composite material.

3.3 X-ray photoelectron spectroscopy (XPS)

The elemental profiling and oxidation states of NCS/NCM@NF
were studied by X-ray photoelectron spectroscopy (XPS). The
identical peaks corresponded to Ni2p, Co2p, and S2p, respectively,
in the XPS spectrum (Figure 4) with additional contributions fromO
(from water) and C (CO2 or organic substances). The distinct peaks
at 856.1 eV and 873.3 eV correspond to Ni2+ (Ni 2p3/2 and Ni 2p1/2)
in the Ni 2p spectrum (Figure 4b). These peaks, complemented by
shakeup satellites, confirm the presence of Ni2+. Shake-up satellite
peaks are due to the excitation of electrons (valence band to a higher
energy state) resulting from interaction between an outgoing
electron and a valence electron. The presence of Co2+ and
Co3+(in Co 2p spectrum (Figure 4c) may be confirmed by peaks
at 778.5 eV, 793.8 eV, 780.9 eV, and 796.5 eV, respectively (Gong
et al., 2021). The relatively sharp peaks at 161.2 eV and 162.2 eV in
the S2p spectrum (Figure 4d) reveal the presence of S2p3/2 and

FIGURE 3
Morphology of (a)Ni Foam, (b)NCS@NF, (c)NCM@NF, (d)NCS/NCM@NF, (e) EDS of NCS/NCM@NF, (f) particle distribution curve of NCS/NCM@NF,
(g) field of view for elemental mapping of NCS/NCM@NF, and (h) elemental mapping of NCS/NCM@NF.
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S2p1/2, respectively (Samba, 2013). Overall, the XPS study provides a
detailed picture of the chemical environment of NCS/NCM@NF
and confirmed the presence of Ni2+, Co2+, Co3+, and partially
oxidized sulfur.

4 Electrochemical studies

The electrochemical performance of NCS@NF, NCM@NF, and
NCS/NCM@NF electrodes was studied with the changing molarity
of KOH (2M, 4M, and 6M) as the electrolyte. The basic (KOH)
electrolyte was used as it enhances the conductivity and ensures ion
transfer for specific electrochemical reactions.

Peaks in the CV research of NCS material in composite may be
attributed to redox reactions. NCS/NCM@NF exhibits larger peak
value current and higher enclosed surface area compared to its
counterparts, possibly due to high electrochemical activity and
specific capacity. The electrochemical property of active materials
was evaluated on a three-electrode assembly system at different scan

rates (2, 5, 10, 20, 50, and 100 mVs−1). On the other hand, redox
peaks in CV research are attributed to faradic redox reactions (Wang
et al., 2019). The anodic and cathodic peaks shift toward higher and
lower voltages, respectively, with an increase in the scan rate
(Keithley et al., 2011) due to the insufficient insertion of
hydroxyl ions (OH−) in the basic electrolyte into the center of
the NCS material. A higher specific capacitance Cs was achieved
with 6M KOH because the concentration number of ions increased
due to the high ionic mobility of K+ and OH− ion in aqueous media
(Zhang et al., 2012). The molarity beyond 6M was avoided to avert
the negative impact of corrosiveness, electrode degradation, and the
hindrance of ion transfer due to higher viscosity. Highmolarity leads
to the crystallization of base (KOH), which blocks ion pathways and
impacts the electrode structure. The high molarity (6M) of KOH
maintains a balance between efficient ion transfer and compatibility
with materials to meet the requirements of electrochemical studies
(Zhang et al., 2012). The capacitance of NCS/NCM@NF was
relatively higher due to the synergistic effect of NiCO2S4 and Ni
Co MOF in which NiCO2S4 nano sheets facilitate efficient electron

FIGURE 4
(a) Survey spectra of X-ray photoelectron spectroscopy (XPS) showing all main elements of NCS/NCM@NF, (b)Ni 2p, (c)Co 2p, and (d) S 2p spectra.
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FIGURE 5
(a) Cyclic voltammetry curves of NCM@NF, (c) NCS@NF, and (e) NCM@NF at varying base (KOH) concentrations (2M, 4M, and 6M) at 2 mV/S; (b)
cyclic voltammetry curves of NCM@NF, (d) NCS@NF, and (f) NCS/NCM@NF at different scan rates at 6M KOH; (g) cyclic stability of composite NCS/
NCM@NF over 10,000 cycles.
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transport and Ni Co MOF offers pathways for rapid ion diffusion,
reducing resistance and enhancing overall conductivity.

4.1 Cyclic voltammetry studies (CV)

The specific capacitance (CS) of materials was determined using
the formula of Wang et al. (2013) as given in Equation 1:

Cs �
∫Idv

ms ×ΔV
. (1)

We used the data from the third cycle (n = 3) to calculate the
specific capacitance because the first cycle often shows some initial
changes such as surface activation or electrolyte wetting. The
second cycle starts to stabilize and, by the third cycle, the
current response becomes steady and more reliable. This
approach is widely used to avoid early-stage variations (Han
et al., 2017). The electrochemical stability of an electrolyte
solution is intrinsically related to its potential window. In
supercapacitors, the high potential window defines the
maximum safe operating voltage range within which the device
can undergo charge and discharge cycles without substantial
degradation or failure (Shrestha, 2022). This upper voltage limit
is critical as it determines the capacity of the device to maintain
structural and functional integrity over prolonged use. The
potential windows of NCM@NF, NCS@NF, and NCS/NCM@NF
are 0.45 V, 0.95 V, and 1.0 V, respectively. Higher potential
windows of the composite indicate that the material effectively

facilitates redox reactions and ionic transport within the electrolyte,
leading to overall advancement in energy storage applications.

The specific capacitance of composite at 6M KOH (at
2 mV s−1) was relatively higher (2,150.3 F/g) than NCM@NF
(393.1 F g−1) and NCS@NF (1,542.2 F g−1) (Figures 5a,c,e
(Table 1). The increase in the closed area of the CV curve
with rising scan rates, while maintaining its shape, indicates
that the as-synthesized electrode material undergoes highly
reversible redox reactions (Figure 5b,d,f; Table 2). Moreover,
at high scan rates, the limited contact time between the electrode
and electrolyte hinders ion diffusion into the deeper active sites of
the electrode. This restricted interaction reduces the effective
utilization of these sites, ultimately leading to a decrease in the
charge storage capacity.

The durability of the electrode material plays a crucial role in
ensuring its suitability for practical applications. The capacitance of
the as-synthesized composite electrode material (NCS/NCM@NF)
retained 89%, even after 10,000 cycles of usage; the same
demonstrates the electrode material’s excellent stability and
suitability for extended use (Figure 5g). These results highlight
the effectiveness of the core-shell structure, which provides a
robust and stable framework for energy storage. The enhanced
capacitance of NiCo2S4 and NiCo MOF composite may be
attributed to the unique structural properties of NiCo2S4, which
facilitate rapid ion diffusion pathways and electron transport, thus
leading to increased charge storage capacity. Furthermore, the
presence of Ni-Co MOF contributes additional active sites for
electrochemical reactions and enhanced capacitance. There is also
the satellite reduction peak in the CV curve of the NCS/NCM@Ni
composite, which is absent in the bare NCM and NCS electrodes.
This is due to the synergistic effect between NiCo2S4 and MOF, not
only improving energy density but also enhancing the cyclic
performance, rendering the composite ideal for energy storage
applications.

4.2 Galvanostatic charge/discharge
analysis (GCD)

Galvanostatic charge–discharge (GCD) is a widely used approach
in electrochemistry for charge and discharge characteristic assessment
of energy storage devices (such as batteries and supercapacitors). This
approach involves the application of a constant current to charge and
discharge amaterial followed by themeasurement of parameters like Cs,
Ed, and Pd.

The GCD curves of NCM@NF, NCS@NF, and NCS/NCM@
NF electrodes, with reference electrode (Ag/AgCl) at constant
current densities (0.5 A/g, 1 A/g, 2 A/g, and 3 A/g), are depicted
in Figures 6a–f. The performance of the composite material
electrode was better than that of the precursor material
electrode, possibly due to ionic transport capabilities in the
former. The results underscore the composite material’s
potential as a favorable candidate for advanced energy storage
applications.

The CS, Ed, and Pd of the electrode materials were calculated (Pal
et al., 2021) using Equations 2–4 to provide a comprehensive
understanding of the performance of electrode materials.

TABLE 1 Specific capacitance of NCM@NF, NCS@NF, and NCS/NCM@NF at
different molarities of KOH (2M, 4M, and 6M) as electrolyte at 2 mV/s scan
rate.

Specific capacitance (F/g) @ 2 mV/s

Molarity (KOH) NCM@
NF

NCS@
NF

NCS/
NCM@NF

2 361.1 1,311.5 1,400.2

4 373.3 1,465.7 1,480.5

6 393.1 1,542.1 2,150.3

TABLE 2 Specific capacitance of NCM@NF, NCS@NF, and NCS/NCM@NF at
different scan rates with a fixed molarity of electrolyte KOH (6M).

Specific capacitance (F/g)

Scan rate (mV/s) NCM@
NF

NCS@
NF

NCS/
NCM@NF

2 393.1 1,542.1 2,150.3

5 317.2 1,459.7 1926.2

10 224.4 1,205.6 1,694.4

20 122.2 1,015.7 1,472.6

50 66.4 524.2 600.4

100 54.2 515.5 551.3
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CS � I XΔt
mXΔV,

(2)

Ed � CsΔV2

2X 3.6
, (3)

Pd � 3600X E
Δt , (4)

where I is current density (A g−1), Δt is discharging time (s) as
calculated from the GCD curve, m is mass (mg) deposited on the
electrode, and ΔV is potential window (V).

The noticeable nonlinear behavior seen in the GCD patterns can be
linked to quasi-reversible Faradaic reactions occurring within the
system. These reactions cause fluctuations in the charge–voltage
ratio, leading to dynamic variations throughout the discharge
process. As a result, calculating the specific capacitance under such
conditions requires an integration method that considers the changing
charge–voltage relationship influenced by these Faradaic processes. The
specific capacitance at differentmolarities (2M,4M and 6MKOH) at 0.5
A g-1 is shown in Table 3. and higher capacitance is acheived in case of
6M KOH. The specific capacitance (F g-1), at a current density of
0.5 A g−1, were 340.2 F g−1 (NCM@NF), 1,607.4 F g−1 (NCS@NF), and
1970.2 F g−1 (NCS/NCM @NF) at 6M KOH shown in Table 4. The
significant rise in the capacitance of the composite (particularly at
elevated current densities) offers the composite as a potential material
for energy storage applications under diverse operational conditions.
The increased current density restricts ion diffusion and reduces
exposure to the electrode surface, thereby restricting efficient charge
storage. Higher current densities can lead to polarization effects, non-
uniform ion distribution, and increased internal resistance that impedes
the efficient movement of ions and decrease overall capacitance.

Furthermore, elevated current may instigate undesirable Faradaic
reactions, altering the structural and electrochemical properties of
electrode material and diminishing their capacitance. This
phenomenon accounts for the reduction in CS with increasing
current densities. The hiked Ed (199.6 W h kg−1) and Pd
(1,500.2 W kg−1) at 6M KOH shows the composite to be viable for
high-performance energy storage applications, particularly in meeting
rapid charge and discharge requirements. The NCS/NCM@NF
composite exhibits exceptional electrochemical performance,
attributable to several key factors.

The active material was directly grown on nickel foam to
eliminate the need for binders and conductive additives, which
shortens the diffusion path of ions and relatively decreased
internal and diffusion resistance. Moreover, the core-shell
structure enhances the electrode–electrolyte interface, improves
contact, increases active sites, and initiates accelerated electron
transfer. The Ni-Co MOF serves as a core layer, providing
abundant Faradaic redox reaction sites, while NiCo2S4 as a shell

FIGURE 6
GCD curves of NCM@NF (a), NCS@NF (b), and NCS/NCM@NF (c)with varying KOHmolarities (2M, 4M, and 6M) at 0.5 A/g and GCD curves of NCM@
NF (d), NCS@NF (e), and NCS/NCM@NF (f) with changing current densities and 6M electrolyte.

TABLE 3 Specific capacitance of NCM@NF, NCS@NF, and NCS/NCM@NF at
2M, 4M, and 6M concentration.

Specific capacitance (F g-1) @ 0.5 A g-1

Molarity (KOH) NCM@
NF

NCS@
NF

NCS/
NCM@NF

2 296.4 1,281.3 1,553.5

4 328.3 1,439.7 1774.3

6 340.2 1,607.4 1970.2
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material enhances electron conductivity and contributes additional
pseudo capacitance. The synergistic effect of these three materials
further improved the capacitance of the electrode. This combination
provides structural advantages and improved material properties as
composite (NCS/NCM@NF), making it a suitable candidate for
advanced energy storage applications. The comparison of different
electrode materials with NCS/NCM @NF over Specific capacitance
and capacitive retention is shown in Table 5.

4.3 Electrochemical impedance
spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) is a powerful
technique that evaluates a system’s electrical response by applying
an alternating current (AC) signal across a wide frequency range,
typically from 0.01 Hz to 106 Hz. Through detailed analysis of the
resulting impedance spectrum, crucial electrochemical parameters
such as the solution resistance (Rs), charge transfer resistance (Rct),

and interfacial properties can be extracted. This method provides
valuable insights into ion transport kinetics, electrode–electrolyte
interfaces, and overall electrochemical performance (Wu et al.,
2010). The data obtained were fitted using an equivalent circuit
model in NOVA 2.1 software. The Nyquist plot, which represents
the imaginary (Zʺ) versus the real impedance (Z′), illustrates the
system’s overall electrochemical behavior. Typically, Nyquist plots
initiate at high frequencies due to restricted sample diffusion,
influencing the impedance characteristics. The fitted circuit
included several components such as Rs, Rp, a constant phase
element (CPE), and a Warburg element (W) shown in
(Figure 7b). The composite material NCS/NCM@NF exhibited a
solution resistance of 1.52 Ω, indicating minimal resistance
contribution from the electrolyte to the current flow. The Rp

reflects the resistance at the electrode–electrolyte interface, which
was found to be 790 mΩ, suggesting efficient charge
transfer kinetics.

The presence of a constant phase element (CPE) highlights the
system’s non-ideal capacitive behavior. CPE is frequency-dependent

TABLE 4 Specific capacitance of NCM@NF, NCS@NF, and NCS/NCM@NF with varying molarity of electrolytes (2, 4, and 6M).

Specific capacitance (F g-1)

Current density (A/g) NCM@NF NCS@NF NCS/NCM@NF

0.5 340.2 1,607.5 1970.2

1 256.4 1,494.7 1782.3

2 230.3 1,042.3 1,464.4

3 188.5 651.4 1,437.2

TABLE 5 Comparison of capacitance of materials reported herein with materials reported in the literature.

Electrode material Substrate Electrolyte Scan rate/current
density

Specific
capacitance

Capacitance
retention

Ref.

NiCo2S4 hollow spheres Ni foam 6.0 M KOH 1 A g−1 1,036 F g−1 87% after 2000 cycles Shen et al.
(2015)

NiCo2S4 nanotubes Ni foam 6.0 M KOH 4 A g−1 738 F g−1 93.4% after 4,000 cycles Pu et al. (2014)

NiCo2S4 nanorods Ni foam 1.0 M KOH 12 mAcm-2 800 F g−1 57.1% after 1,000 cycles Xiao et al.
(2018)

Ni-Co-S nanosheets Ni foam 1.0 M KOH 0.5 A g−1 1,406.9 F g−1 88.6% after 1,000 cycles Tao et al.
(2018)

Ni-Co-S@Ni-W-O
nanosheets

Ni foam 6.0 M KOH 2 A g-1 1988 F g-1 91.7% after 6000 cycles He et al.
(2018)

NCS/rGO/CNT hierarchical
layers

Ni foam PVA/KOH gel 1 A g−1 1,102 F g−1 72% after 1,600 cycles Chiu and
Chen (2018)

Ni-Co-S Hollow nanocolloids Ni foam 2.0 M KOH 4 A g−1 852 F g−1 96% after 3000 cycles Chen et al.
(2016)

NiCo2S4 sponge-like sheets Ni foam 2.0 M KOH 15 mA cm−2 11.97 Fcm−2 80.1% after 5000 cycles Ren et al.
(2021)

ZnS/NiCo2S4 nanostructure Ni foam 1 mA cm−2 2,604 mf cm−2 90% after 6000 laps at
8 mA cm−2

Chen et al.
(2021)

NCS/NCM@NF Ni foam 6.0 M KOH 0.5 A g−1 1970 F g−1 89% after 10,000 cycles This work

Bold is done because work is done in this paper highlighting the maximum capacitance.
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and provides insights into factors such as surface roughness,
porosity, and material heterogeneity on the electrode surface. The
Warburg element (W) is a crucial component in EIS analysis that
characterizes ion diffusion behavior within the electrochemical
system, exhibiting a frequency-dependent response proportional
to √ω, where ω denotes the angular frequency of the applied AC
voltage. In the Nyquist plot (Figure 7a), which represents the real
(Z′) versus the imaginary (Zʺ) impedance, this diffusion behavior is
typically observed as a linear region at low frequencies. The Nyquist
plot is widely employed to extract key electrochemical parameters
such as solution resistance (Rs), charge transfer resistance (Rct), and
diffusion-related characteristics, providing comprehensive insights
into the system’s ionic transport and interfacial properties. The
accuracy of the fit has been evaluated using the chi-squared (χ2)
value, which was found to be 0.848, as provided by software. This
value reflects a reasonable agreement between the experimental and
the fitted data.

5 Conclusion

Double-metal NiCo-MOF, NiCo2S4 spinel material, and their
composite (namely: NCS/NF, NCM/NF, and NCS/NCM@NF)
were successfully synthesized using a simple method and
immobilized onto nickel foam to eliminate binder-related
issues. The NCS/NF composite serves as an effective and
uniform base platform, facilitating the predominant surface
formation of the NCS/NCM@NF composite material. The
overall electrochemical performance of the active materials
was tuned by varying the KOH molarity (2M, 4M, and 6M).
The binder-free NCS/NCM@NF composite electrode, which
incorporates both Ni and Co, exhibited enhanced
electrochemical performance in a 6M KOH electrolyte. The

composite material achieved a remarkable CS of 2,150.3 F g−1

at a scan rate of 2 mV s−1, demonstrating its exceptional energy
storage capability. The electrode’s durability was confirmed
through cyclic stability tests, retaining approximately 89% of
its capacitance even after 10,000 cycles. Furthermore, the
composite delivered a high Ed of 199.6 Wh kg−1 and a Pd of
1,500.2 W kg−1, demonstrating its capability for practical energy
storage device applications. EIS studies revealed efficient ionic
and electronic transport within the electrodes, attributed to
minimal charge transfer and solution resistance. Consequently,
the Ni-Co MOF- and NiCo2S4-based electrodes hold significant
promise for advanced energy storage systems.
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