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High atomic number (high-Z) metal nanoparticles (NPs) have emerged as
transformative radiosensitizers in cancer radiotherapy, offering the potential to
amplify tumor-specific radiation effects while sparing healthy tissues. However,
the clinical translation of these NPs is hindered by inconsistentmethodologies for
quantifying dose enhancement and a limited understanding of how biological
complexity influences therapeutic outcomes. This review systematically
evaluates current metrics for assessing high-Z NP-mediated radiosensitization,
including physical dose enhancement factors (DEF), sensitizer enhancement
ratios (SER), survival fraction (SF), and DNA damage biomarkers. We critically
analyze the interplay between NP properties, radiation parameters, and tumor
microenvironment (TME) dynamics, emphasizing how hypoxia, immune
suppression, and stromal barriers modulate therapeutic efficacy. A key
innovation is the proposal of a multidimensional Radiosensitization Index (RSI),
integrating physical dose deposition, reactive oxygen species (ROS) kinetics, DNA
repair inhibition, immune reprogramming, and clinical endpoints. We further
highlight translational challenges such as NP toxicity, batch-to-batch variability,
and the discordance between in vitro and in vivo models, underscoring the need
for standardized protocols and advanced 3D/organoid platforms. By bridging
radiobiology, nanotechnology, and clinical practice, this work provides a
roadmap for optimizing NP-enhanced radiotherapy and accelerating its
integration into precision oncology.
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1 Introduction

Cancer remains a global health crisis, with 20% of individuals diagnosed during their
lifetime (Bray et al., 2024). As the second leading cause of mortality worldwide, cancer
resulted in over 9.7 million deaths in 2022, with projections suggesting a rise to 13 million
deaths by 2030 (Bray et al., 2024). While cancer treatments like surgery, chemotherapy,
targeted therapy, and immunotherapy have advanced significantly, radiation therapy (RT)
continues to play a central role (Schaue andMcBride, 2015; Chen et al., 2021). Clinically, RT
is used in 60%–70% of cancer cases (Baumann et al., 2016). Technological advancements in
external beam radiation therapy (EBRT), particularly intensity-modulated radiation
therapy (IMRT) and volumetric modulated arc therapy (VMAT), have enhanced
treatment precision while minimizing damage to the healthy tissues (Pan et al., 2024;
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Chun et al., 2024). However, RT faces two major limitations. Firstly,
collateral damage to healthy tissues restricts maximum tumor dose
delivery (Verginadis et al., 2025). Secondly, radioresistant tumors
require doses exceeding normal tissue tolerance (Zhang et al., 2025).
These challenges drive the development of radiosensitizers to
amplify tumor-specific radiation effects while sparing
healthy tissues.

Since the landmark study on gold nanoparticles as
radiosensitizers in 2004 (Kreipl et al., 2009), high atomic number
(high-Z) nanoparticles (NPs), such as gold (Au), gadolinium (Gd),
and bismuth (Bi), have emerged as promising radiosensitizers (Chen
et al., 2020; Schuemann et al., 2020). These NPs work through three
key mechanisms: 1) Physical enhancement: high-Z NPs increase
localized energy deposition via photoelectric and Auger effects (Zhu
et al., 2025a; Liu et al., 2024). 2) Chemical enhancement: NPs
catalyze reactive oxygen species (ROS) generation, exacerbating
radiation-induced DNA damage (Tan et al., 2025; Wang et al.,
2024b). 3) Biological enhancement: NPs disrupt DNA repair
pathways, prolong cell cycle arrest, and amplify bystander effects
(Fan et al., 2025; Morris et al., 2025; Wang et al., 2024a). Despite
preclinical success, the clinical translation remains limited. Major
translation barriers include difficulties in mass-producing precisely
engineered nanoparticles and critical knowledge gaps in the
understanding of nanoparticle design, biological interactions, and
quantification methodologies. Specifically, the inadequate
comprehension of radiotherapy enhancement mechanisms and
the quantification of dose enhancement hampers the
development of optimal candidate materials (Babaye Abdollahi
et al., 2021; Tan et al., 2025; Gerken et al., 2024). This review
systematically examines current knowledge on high-Z NP-mediated
radioenhancement mechanisms and critically evaluates metrics for
quantifying their effects, aiming to bridge gaps between
radiobiology, nanotechnology, and clinical practice.

2 Challenges in modern radiotherapy:
Progress and critical perspective

Modern radiotherapy has evolved significantly with
technological advancements, yet fundamental challenges persist.
Below, we analyze these challenges through both clinical
limitations and research opportunities, integrating critical
perspectives to highlight unresolved problems.

2.1 Physical limitations of conventional RT
techniques: beyond dose conformity

Radiotherapy traces its origins back to the late 19th century with
the discovery of X-rays (Pfeiffer et al., 2020). Early two-dimensional
(2D) planning progressed to three-dimensional (3D) conformal
techniques that better protected healthy tissues. Today, IMRT is
the standard for EBRT, using adjustable beam intensities to precisely
target tumors. Other advances like VMAT, Image-Guided Radiation
Therapy (IGRT), and Stereotactic Body Radiation Therapy (SBRT)
further improve the precision of photon beam therapy (Mancuso
et al., 2012; Franzone et al., 2016; Teoh et al., 2011). Proton therapy
adds another dimension through the Bragg peak effect, which

concentrates radiation at tumor sites while sparing deeper
healthy tissues (Yan et al., 2023; Huff, 2007). While IMRT and
proton therapy have improved dose conformity, their limitations are
multifaceted. Photon therapy with low-energy beams (6–20 MeV)
risks damaging tissues beyond the tumor due to exit doses (Galloway
et al., 2012). High-energy photons (>20 MeV) reduce skin exposure
but introduce neutron contamination (0.1–0.5 Sv/Gy for 18 MeV
linear accelerators), complicating long-term risk assessments
(Paganetti et al., 2021). Proton therapy minimize exit doses but
faces variable biological effectiveness (RBE range, 1.05–1.7), leading
to unpredictable tumor coverage (Traneus and Oden, 2019).
Moreover, proton facilities cost over $100 million, making them
accessible to <1% of patients globally (Yan et al., 2023).

2.2 Tumor heterogeneity and
radioresistance: molecular complexity and
NP-driven solutions

The efficacy of radiotherapy is often limited by the phenomenon
of radioresistance, which refers to a tumor’s ability to withstand
radiation exposure. Extensive research has been conducted to
uncover the mechanisms underlying cancer radioresistance.
Generally, tumor radioresistance stems from hypoxia, cancer
stem cells (CSCs), the tumor microenvironment, enhanced DNA
repair, and various signaling pathways (Busato et al., 2022; Deng
et al., 2023). Hypoxic regions (pO2 < 10 mmHg) exhibit 3-fold
higher radioresistance, prompting the use of catalytic NPs like
MnO2 to convert tumor H2O2into O2, boosting oxygenation
significantly in preclinical models (Pi et al., 2023). However,
current NP designs predominantly target bulk tumor cells,
neglecting CSC niches that cause recurrence. For example,
glioblastoma CSCs (CD44+/CD133+) show 2-fold higher post-RT
survival (Tsai et al., 2021), but AuNPs conjugated with DNA
fragments reduce their survival significantly, highlighting the
potential of CSCs-targeting strategies (Kunoh et al., 2019). Future
NPs should incorporate hypoxia-responsive drug release and CSC-
specific ligands to address these layered resistance mechanisms.
Additionally, precisionmedicine based on the individual genetic and
molecular characteristics is being explored as a potential approach to
combat radioresistance.

2.3 Normal tissue toxicity: balancing efficacy
and safety

Theoretically, tumors and normal tissues exhibit differential
sensitivity to radiation. The radiosensitivity of highly metabolic
or functionally active tumor cells usually surpasses that of
adjacent normal tissues (Liu et al., 2025; Alkotub et al., 2025).
The objective of radiotherapy is to maximize the irradiation dose
to the tumor while minimizing exposure to surrounding healthy
tissues. Therefore, balancing efficacy and safety remains critical, as
healthy tissue toxicity constrains dose escalation. Experiments
demonstrate that tumor-specific accumulation of NPs can achieve
favorable tumor-to-normal tissue concentration ratios to minimize
collateral damage (Reda et al., 2020). The size, shape, and surface
functionalization of NPs critically influence biodistribution and
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clearance. As reported, smaller AuNPs with diameter of 1.9 nm
exhibit efficient renal clearance and low systemic toxicity in murine
models (Reda et al., 2020). Additionally, localized intratumoral
injection of NPs further reduces systemic exposure and
associated normal tissue risks (Bai et al., 2020). While high-Z
NPs enhance radiation-induced DNA damage and ROS
production in tumors, their catalytic activity and prolonged
retention in healthy tissues could exacerbate normal cell toxicity
(Gerken et al., 2023). Promising strategies include combining NPs
with tumor-specific drugs to suppress DNA repair pathways, or
designing biodegradable NPs to boost radiation effects while
ensuring rapid metabolic clearance. Future research should
prioritize NP design innovations, such as size-tunable
architectures, tumor microenvironment-responsive coatings, and
hybrid systems, which could maximize tumor-selective
radiosensitization while mitigating collateral damage to normal
tissues. For instance, hyaluronidase/ROS cascade-responsive
systems demonstrate size/charge switching from ~150 nm to sub-
50 nm particles upon entering acidic tumor regions, enabling deep
tissue penetration while maintaining circulatory stability (Shi et al.,
2024b), while gelatin-based platforms achieve tumor-selective size
transitions through pH/enzyme dual-responsive mechanisms
(Khandal et al., 2025). Hybrid designs integrating metal cores
with stimuli-responsive polymer coatings liked HA-modified
systems may optimize both radiation dose enhancement and
biological targeting precision, as demonstrated in tumor-
penetrating nanocomplexes that leverage size modulation to
overcome stromal barriers (Khandal et al., 2025; Shi et al.,
2024b). These innovations align with emerging strategies that
couple physical radiosensitization with microenvironmental
adaptation (Mansouri et al., 2023; Fu et al., 2025).

2.4 Technological and biological synergies: a
call for integration

Emerging technologies like FLASH-RT and MRI-guided RT
offer synergistic potential. FLASH-RT’s ultra-high dose rates
(40 Gy/s) protect normal tissues but require NPs stable under
extreme conditions (Shen et al., 2024). Preliminary data show
TaNPs enhance FLASH efficacy without compromising tissue
protection (Meng et al., 2023). MRI-guided RT with GdNPs for
real-time tumor tracking demonstrates superior antitumor
performance without systemic toxicity or long-term side effects
(Sun et al., 2020). However, progress is slowed by insufficient
collaboration between radiation oncologists, nanotechnologists,
and biologists. Joint efforts should focus on developing NP-RT
platforms validated in both preclinical and clinical settings.
Future NPs need smart features like pH/ROS-activated drug
release and designs meeting safety regulations for immune
impacts and long-term toxicity. For instance, pH-responsive
hybrid micelles combining inorganic NPs with pH-sensitive
amphiphiles enable tumor-acidic-triggered drug release,
minimizing off-target toxicity while leveraging high-Z elements
(Au, Bi) for localized radiation dose amplification (Moloudi
et al., 2023; Gimeno-Ferrero et al., 2024). Recent advancements
in pH-stabilized Prussian blue-based nanocomposites further
illustrate how acid-triggered structural transformations

synchronize drug release with radiosensitization, addressing
dynamic TME challenges (Shi et al., 2024a). Additionally, lipid
NPs functionalized with pH-responsive bicontinuous cubic
phases achieve tumor-selective drug delivery, exemplifying
translational designs that align with safety regulations for
immune compatibility (Rajesh et al., 2022). These innovations
highlight the dual utility of pH-activated mechanisms in
optimizing high-Z nanodrugs for precision radiotherapy.

3 Mechanism of High-Z NP-mediated
radioenhancement

3.1 Physical dose enhancement: from
simulations to biological impact

High-Z NPs enhance radiotherapy through physical, chemical,
and biological mechanisms, each contributing uniquely to dose
enhancement (Figure 1). Under X-ray irradiation, high-Z NPs
can trigger a series of physical process, including the
Photoelectric effect, Auger effect, and Compton scattering (Chen
et al., 2019). These interactions lead to the generation of secondary
electrons, X-rays, and fluorescent light, increasing energy deposition
in tumors. Both simulations and experimental studies confirm that
the dose enhanced factor (DEF) depends on radiation energy. The
strongest effects occur at kilovoltage (KeV) X-ray energies
(50–300 KeV), where the photoelectric effect dominates
(Schuemann et al., 2016; Her et al., 2017). For example, 15 nm
AuNPs combined with 100 KeV X-rays achieved DEF values
exceeding 2.0 in breast cancer cells, whereas megavoltage (MeV)
beams yielded significantly lower DEF (1.2–1.5) due to reduced
photoelectric interactions (Tudda et al., 2022). Additionally, the size
and concentration of AuNPs further modulate DEF, with smaller
particles and intratumoral accumulation showing superior
sensitization in preclinical models (Zhang et al., 2012). However,
physical effects alone cannot fully explain in vivo therapeutic gains,
requiring integration with chemical and biological mechanisms.

3.2 Chemical ROS amplification:
mechanisms and quantification

High-Z NPs enhance radiation by catalytically increasing ROS
generation. High-Z NPs amplify water radiolysis to produce
hydroxyl radicals (·OH), superoxide anions (O2

−), and hydrogen
peroxide (H2O2) (Gerken et al., 2023). AuNPs, for example, produce
low but biologically significant ROS levels detected by FLIM-ROX, a
sensitive imaging method capable of tracking ROS in living systems
(Balke et al., 2018). This ROS amplification disrupts redox
homeostasis, exacerbating DNA damage, mitochondrial
dysfunction, and apoptosis, thereby sensitizing cancer cells to
radiation (Yadav et al., 2024; Yang et al., 2025). However, ROS
quantification remains challenging due to methodological
limitations. Common probes like H2DCF-DA suffer from artifacts
such as auto-oxidation, photo-bleaching, and poor specificity,
leading to overestimated ROS levels (Balke et al., 2018). Electron
spin resonance (ESR) detects radicals specifically but lacks sensitivity
in biological systems and requires complex sample preparation,
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limiting its applicability in dynamic cellular environments (Yang
et al., 2025). Advanced tools like multiphoton FLIM-ROX enable
high-resolution, real-time ROS mapping with minimal interference
(Balke et al., 2018). However, standardized protocols for ROS
quantification are still needed, with emerging techniques like
surface-enhanced Raman spectroscopy (SERS) improving
accuracy and reproducibility (Chen et al., 2025). SERS offers
distinct advantages for ROS quantification, including ultrahigh
sensitivity for detecting transient ROS at low concentrations in
real time (Yang et al., 2025), and the ability to achieve spatially
resolved monitoring of ROS dynamics within subcellular
compartments through localized plasmonic enhancement (Ding
et al., 2025b; Chen et al., 2022). Unlike conventional methods,
SERS minimizes interference from complex biological matrices by
leveraging molecular fingerprint specificity and enzyme-mimicking
signal amplification strategies (Wu et al., 2024), while recent
advances in substrate engineering have significantly improved
reproducibility for quantitative analysis (Kao et al., 2025; Cai
et al., 2023). These features position SERS as a transformative
tool for standardizing ROS measurements in radiobiological studies.

3.3 Biological sensitization: beyond physical
interactions

The biological mechanisms underpinning high-Z NPs-mediated
radiosensitization extend far beyond physical and chemical effects.
Emerging evidence highlights their ability to disrupt DNA repair
pathways, modulate cell cycle progression, induce bystander effects,
and reprogram the tumor immune microenvironment (Yuan et al.,
2024; Das, 2025; Xu et al., 2024). For example, platinum-based NPs
(PtNPs) have been shown to inhibit BRCA1-mediated DNA repair,
worsening radiation-induced DNA damage (Hullo et al., 2021).
Gadolinium-carbon dots (Gd@Cdots) trap cells in the radiation-
sensitive G2/M phase, amplifying chromosomal fragmentation and
mitotic catastrophe (Lee et al., 2021). Intriguingly, AuNPs can
trigger bystander effects through the release of mitochondrial
ROS and pro-apoptotic factors, sensitizing neighboring cells
without direct NP uptake (Choi et al., 2018). Emerging evidence
also implicates significance of immune modulation. Iridium (Ir)-
based nanoplatforms polarize tumor-associated macrophages
toward the pro-inflammatory M1 phenotype and promote

FIGURE 1
Scheme of the mechanism of high-Z NP-mediated radioenhancement.
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dendritic cell maturation, fostering systemic antitumor immunity
alongside localized radiosensitization (Zou et al., 2023). Moreover,
combinatorial strategies utilizing high-Z NPs with immunogenic cell
death (ICD) inducers enhance antigen presentation and T-cell
infiltration, overcoming radioresistance in immunologically
“cold” tumors (Zhen et al., 2023). While biological sensitization
offers a multidimensional approach to radiotherapy enhancement,
its clinical translation requires addressing NP heterogeneity in
cellular uptake and off-target immune activation.

The conventional “three-phase” model (physical-chemical-
biological) fails to capture systemic effects like immune
modulation or bystander effects. A “systems radiobiology”
approach integrating multi-omics is needed to map NP-induced
molecular networks (Karapiperis et al., 2021). Furthermore, while
most research focuses on photon beams, NP interactions with
protons or carbon ions remain under explored. Monte Carlo
simulations suggest Au, Pt, Gd, and Fe NPs enhance proton
energy deposition by 14–27% at 5–50 MeV (Martinez-Rovira and
Prezado, 2015; McKinnon et al., 2016), but experimental validation
is lacking. To translate these mechanisms into clinical practice, NP
formulations should be co-engineered with imaging tracers for real-
time monitoring of tumor distribution and dose enhancement,
which is a critical step toward personalized radiotherapy.

3.4 Comparative analysis of High-Z NPs:
surface modification, morphology, and size-
dependent effects

The radiosensitization efficacy of high-Z NPs such as Au, Gd,
and Bi is intrinsically linked to their physicochemical properties,
including surface modifications, morphology, and size. GNPs have
been extensively studied due to their tunable size (2–100 nm) and
morphology-dependent optical properties, which enable precise
control over surface plasmon resonance effects (Ding et al.,
2025a; Kaercher and Lear, 2025). For instance, thiolated surface
functionalization enhances GNPs’ biocompatibility and reduces
aggregation in biological environments (Wang et al., 2025), while
ATP-coated ultrasmall GNPs (2–5 nm) exhibit selective binding
capabilities to biomolecular targets (Katrivas et al., 2023). The
surface roughness of GNPs, influenced by aspect ratios (1:1 to 1:
10), also plays a critical role in minimizing cytotoxicity when
integrated into biomedical devices (Shin et al., 2023). In contrast,
Gd-based nanoparticles, such as gadolinium oxide (GdO),
demonstrate unique advantages due to their paramagnetic
properties and high X-ray attenuation. Surface modification with
bovine serum albumin (BSA) in GdO@BSA-Au hybrid NPs not only
improves colloidal stability but also synergistically enhances
radiation dose deposition within tumors (Nosrati et al., 2023).
Spherical Gd orthoferrite NPs with uniform surface morphology
further exhibit enhanced biocompatibility and cellular uptake, as
confirmed by FE-SEM and HR-TEM analyses (Guganathan et al.,
2022). Bismuth oxide (BiO) NPs, on the other hand, are notable for
their high photoelectric absorption cross-section. Surface
functionalization with β-cyclodextrin (β-CD) improves their
dispersibility and enables efficient drug loading (Alex and
Mathew, 2023), while BiSe nanosheets with thiolated gold
nanoclusters achieve superior surface area and charge modulation

for targeted applications (Li et al., 2024). Size-dependent effects are
particularly pronounced in Bi NPs, where smaller particles (<30 nm)
exhibit higher radiosensitization due to increased surface-to-volume
ratios (Guruswamy Pandian et al., 2025). Importantly, Monte Carlo
simulations reveal that secondary electron emission peaks at distinct
energies for Au (30 keV), Bi (30 keV), and Gd (60 keV), highlighting
material-specific radiation enhancement mechanisms (Mansouri
et al., 2024). Collectively, these findings underscore the necessity
of tailoring surface chemistry, size, and morphology to optimize the
therapeutic index of high-Z NPs, with GNPs excelling in tunable
surface engineering, Gd NPs in multimodal imaging compatibility,
and Bi NPs in high-Z-driven dose enhancement (Stergioula et al.,
2023). Future research should focus on standardizing synthesis
protocols to reconcile disparities in reported dose enhancement
factors across studies.

4 Quantification of dose enhancement:
multidimensional metrics and
translational challenges

4.1 Survival fraction (SF) and mean
inactivation dose (MID): from empirical
models to mechanistic insights

Survival Fraction (SF) is a fundamental radiobiological
parameter quantifying the proportion of cells retaining
clonogenic potential after irradiation. Derived from clonogenic
assays (Subiel et al., 2016), SF reflects the cumulative effects of
DNA damage and repair mechanisms, serving as a critical endpoint
to evaluate radiation efficacy and sensitizer performance (Figure 2).
The linear-quadratic (LQ) model (SF = exp (-αD-βD2))
distinguishes between lethal (α) and sublethal (β) damage (Hong
et al., 2024; Abdollahi et al., 2024). Higher α values indicate stronger
radiosensitization by increasing irreparable damage per unit dose.
For example, thulium (III) oxide NPs (Tm2O3) combined with
carboplatin reduced SF in metastatic cutaneous squamous cell
carcinoma models compared to radiation alone (Perry et al.,
2020). However, recent studies highlight emerging insights into
the biocompatibility and toxicological profiles of TmO NPs. For
instance, TmO NPs designed with varying thulium compositions
demonstrated enhanced X-ray absorption and ROS generation
capabilities, suggesting oxidative stress as a potential mechanism
of toxicity (Zhu et al., 2025b). Additionally, critical gaps persist in
understanding organ-specific accumulation and chronic exposure
effects of TmO NPs, necessitating systematic in vivo toxicokinetic
studies to bridge current knowledge limitations. Similarly, gold
nanowires also suppressed SF in breast cancer models more
effectively than nanospheres, likely due to higher oxidative stress
and α elevation than spherical counterparts (Bai et al., 2020).
Notably, TiO2 nanotubes were shown to increase the α value
while simultaneously decreasing the β value (Mirjolet et al.,
2013). These findings suggest a higher α/β ratio in tumor cells
treated with nanoradiosensitizers, indicating increased tumor
sensitivity to ionizing radiation. Basically, most studies use a
2 Gy dose to evaluate the effectiveness of NPs in vitro, as it
corresponds to the standard dose per fraction in conventional
radiotherapy (Subiel et al., 2016). However, some studies
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calculate the DEF based on survival levels using acute doses of 3 Gy
(SF3) (Coulter et al., 2012; Taggart et al., 2014), 4 Gy (SF4) (Taggart
et al., 2014; Maggiorella et al., 2012), or 8 Gy (SF8) (Taggart et al.,
2014; Maggiorella et al., 2012). Table 1 listed nanoparticle studies
using survival fraction to calculate dose enhancement effect
(Table 1). While SF remains a gold standard, nanoparticle off-
target effects may complicate clonogenic assay results.
Innovations in 3D tumor models and real-time SF monitoring
could refine predictive power, bridging in vitro findings to
clinical translation.

The mean inactivation dose (MID), calculated as the area under
the SF curve, reflects the average dose required to inactivate a cell
population (Figure 2A). The concept of MID was firstly introduced
to assess survival curves of mammalian cells. Recent advances in
high-Z NP-mediated radiosensitization used MID to quantify dose
enhancing effects. For example, studies using iron oxide NPs (IONs)
under proton irradiation demonstrated enhanced localized energy
deposition via Coulomb nanoradiator (CNR) effects, which
amplified secondary electron emission and ROS generation by
1.2 to 2.5 fold (Jeon et al., 2016). Diverging from conventional
metrics, MID offers a holistic view of cellular response dynamics,
particularly valuable for high-Z NPs where heterogeneous energy
deposition complicates traditional models. Table 2 listed NP studies
using MID to calculate dose enhancement effect (Table 2).

4.2 Dose enhancement factor (DEF) and
sensitizer enhancement ratio (SER): bridging
physics and biology

The dose enhancement factor (DEF), defined as the ratio of
radiation dose in the presence of NPs to that without NPs
(Figure 2B), primarily quantifies the physical dose amplification
from the high photoelectric and Auger electron yields of high-Z
materials (Chow and Jubran, 2023). In contrast, sensitizer
enhancement ratio (SER), calculated as the ratio of radiation
doses required to achieve the same biological effect with and
without NPs (Figure 2C), incorporates both physical dose
enhancement and biological interactions (Guerra et al., 2022).

Studies on high-Z NPs have demonstrated significant DEF and
SER values under varying irradiation conditions. For example,
AuNPs exhibited a DEF of 5.7–8.1 in clinical megavoltage (MeV)
beams at depths up to 30 cm (Gerken et al., 2024). Similarly,
magnetic FeO@AuNPs achieved a DEF of 22.17% in cytoplasm
under a magnetic field, demonstrating the role of NP targeting in
enhancing local dose deposition (Mesbahi et al., 2022). However,
SER values are more context-dependent. For glioblastoma cells,
AuNPs achieved SER values of 1.5–1.8, while iron oxide NPs
(IONPs) showed lower SER values (1.09–1.32), emphasizing the
importance of NP composition and cell type (Guerra et al., 2022).
Notably, coating layers and aggregation states of NPs also influence
DEF and SER, as thicker coatings may attenuate secondary electron
emission, while optimized surface functionalization can improve
tumor retention and radiation interaction (Mansouri et al., 2023).

A critical perspective emerges from the interplay between DEF
and SER. While DEF often dominates in kilovoltage (KeV) X-rays
due to strong photoelectric effects, but SER gains importance in
MeV beams through biological mechanisms like ROS amplification
(Gerken et al., 2024). For example, Hf-based NPs achieved a SER of
1.55 at 30 cm depth under MeV beams, suggesting that biological
sensitization may outweigh physical dose enhancement in deep-
seated tumors (Gerken et al., 2024). However, challenges persist in
translating these metrics to clinical practice. Variability in NP
distribution within tumors, inconsistent DEF-SER correlations
across studies, and the lack of standardized protocols for
measuring these parameters hinder robust comparisons. A
summary of DEF and SER used in NP studies can be found in
Table 3 (Table 3).

4.3 ROS and DNA damage quantification:
from probes to clinical correlations

ROS generation and DNA damage are crucial to NP-mediated
radiosensitization. However, their quantification faces technical
challenges. Fluorescent probes like H2DCF-DA are widely used
for ROS detection due to their accessibility and compatibility
with live-cell imaging. However, limitations such as auto-

FIGURE 2
Graphical representation of quantification of NP-mediated radiation enhancement effect from clonogenic survival data. (A) Quantification of the
radiobiological impact of NPs by calculating the ratio of MIDs. (B)DEF is calculated through estimation of the SF level through the following steps: (1) Dx Gy

(no NP) is chosen, (2) SF at Dx,Gy (no NP) is evaluated, (3) Dx,Gy (with NPs) is calculated). (C) SER is calculated as the ratio of radiation doses required to
achieve the same biological effect with and without NPs. Reproduced with permission of Creative Commons Attribution 4.0 License (Subiel
et al., 2016).
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TABLE 1 Overview of Survival Fraction (SF) used in nanoparticle studies.

Enhancement factor used NP material (size) Radiation source Cell line Reference

SF4 Au-NPs 160 KeV X-rays DU145 Jain et al. (2011)

α, β- qualitative analysis (1.9 nm) 6 MeV X-rays MDA-MB-231

15 MeV X-rays L132

SF2 Ti-NPs MeV photons (LINAC) SNB-19 Mirjolet et al. (2013)

α, β- qualitative analysis (10 nm) U87MG

SF2 Gd2O3-NPs Cs-137 U87 Yu (2015)

SF5 (sub-10 nm)

SF8

SF GdBN Gamma ray, 60Co irradiator U87 Stefancikova et al. (2016)

(3 nm)

α, β- qualitative analysis Au-NPs 225 KeV X-rays MDA-MB-231 Cui et al. (2014)

(2.7 nm)

α, β- qualitative analysis Au-NPs 160 KeV X-rays MDA-MB-231 Jain et al. (2014)

(1.9 nm) DU145

α, β- qualitative analysis Au-NPs 30–100 KeV synchrotron X-rays BAOEC Rahman et al. (2014)

(1.9 nm)

SF2 Gd based NPs 6 MeV X-rays U87 Mowat et al. (2011)

SF5

SF8

SF3 Gd-doped Ti NPs 250 KeV X-rays CCL-136 Morrison et al. (2017)

(5–20 nm) CRL-7763

SF2 Au-NPs 6 MeV X-rays U87 Kazmi et al. (2020)

(42 nm)

SF2 Au-NPs 100 KeV MDA-MB-231 Tudda et al. (2022)

(15 nm) 190 KeV,

6 MeV X-rays

SF2 Au-NPs 250 KeV X-rays MDA-MB-231 Velten and Tome (2023)

SF8 (50 nm)

SF2 Au-NPs Cs-137 A431 Tsai et al. (2022)

SF4 (50 nm)

SF8

SF2 AgNPs 6 MeV X-rays U251 Zhao et al. (2021)

SF4 (18 nm)

SF6

SF8

SF2 Pt-NPs Cs-137 MDA-MB-231 Hullo et al. (2021)

SF4 (20–25 nm) T47D

SF6
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oxidation, photobleaching, and interference from intracellular thiols
or metal ions often lead to false positives or underestimation
(Stergioula et al., 2023). For example, studies involving AuNPs
found differences in ROS quantification when comparing
H2DCF-DA with ESR, which has lower sensitivity, requires
higher sample-volumes, and cannot resolve spatial-temporal
dynamics in biological systems (Stergioula et al., 2023). Similarly,
DNA damage quantification relies heavily on γ-H2AX foci imaging,
a marker for DSBs (Figures 3A,B). This method is semi-quantitative
and accessible, but cannot distinguish between direct radiation-
induced damage and NP-specific chemical interactions, potentially
overestimating therapeutic efficacy (Bemidinezhad et al., 2024).

Recent studies show that high-Z NPs enhance both ROS and
DNA damage (Figures 3C,D). For example, Au@AgBiS core-shell
NPs increased ROS generation by 2.3 times compared to radiation
alone, as validated by fluorescent probes and ESR (Xiao et al., 2023).
Hafnium-based NPs like NBTXR3 increased DSBs by 40% in
melanoma models, quantified by γ-H2AX foci and comet assays,
and correlated with better tumor control in preclinical trials (Zheng
and Sanche, 2023). However, inconsistencies arise when linking
in vitro quantification to clinical outcomes. For example,
superparamagnetic iron oxide NPs (SPIONs) showed persistent
γ-H2AX foci in melanoma cells, indicating unrepairable DNA
damage, but their clinical translation is limited due to unresolved
toxicity and off-target effects (Bemidinezhad et al., 2024).

4.4 Survival and tumor dynamics: from
median survival time to growth inhibition

In vivo evaluation of high-Z NP radiosensitization uses various
metrics to measure survival benefits and tumor response (Table 4).
Median survival time (MST) is a key endpoint, indicating survival
benefits and often correlated with tumor control and treatment
durability. For example, glioblastoma-bearing mice treated with
PEGylated-gold nanoparticles had an MST of 28 days, compared to
14 days in controls, showing the radiosensitizing potential of targeted
NPs (Figure 4A) (Yang et al., 2022). mAuNPs alone showed no
improvement in survival of B16-F10 cell-bearing mice (16 days,
similar to PBS controls), combined therapy with carbon ion
irradiation extended survival to 42 days (Figure 4B). In HER3-

expressing tumor models, Z-ABD-Z-mcDM1 conjugates extended
MST from 68 days for monotherapy to 90 days by enhancing
radiation-triggered drug release (Zhang et al., 2024). Similarly, Lu-
FAP-2287, a lutetium-based radiopharmaceutical, combinedwith anti-
PD-1 immunotherapy, suppressed tumor growth and extended
survival in fibrosarcoma models (Chen et al., 2024). Tumor volume
tripling time (TVTT), another metric, reflects regrowth kinetics and
provides additional insights. Studies on pancreatic cancer revealed
median volume doubling times (VDT) of 40 days, with growth rates
inversely correlated to tumor size (Figure 4C) (Hussain et al., 2023).
Tumor growth inhibition (TGI), which measures the reduction in
tumor volume compared to untreated controls, includes both
cytostatic and cytotoxic effects. For example, Gd2O3@BSA-Au NPs
achieved 50% TGI in 4T1 tumor-bearing mice, (Figure 4D) (Kim et al.,
2024). Notably, NPs like CMP (cationic polymer-coated Au NPs)
combined with irreversible electroporation (IRE) achieved over 80%
TGI and extended survival in mice by enhancing immunogenic cell
death (Atkinson et al., 2025). These metrics connect preclinical
findings to clinical relevance, aiding dose optimization and
mechanistic validation.

Although MST and TGI are prevalent in current studies,
integrating tumor volume kinetics and temporal heterogeneity
could enhance outcome predictions. Faster-growing tumors might
need higher NP concentrations or fractionated radiation to boost TGI
(Feucht et al., 2024). The correlation between NP retention time and
MST highlights the importance of pharmacokinetic optimization.
However, challenges like standardizing growth rate measurements
and dealing with interspecies variability in NP biodistribution remain
(Xu et al., 2022). Future research could investigate multimodal
imaging with dynamic TGI modeling for personalized NP-
enhanced radiotherapy. In summary, in vivo quantitative metrics
such as MST, TVTT, and TGI are crucial for understanding the
therapeutic potential of high-Z NPs. Combining these metrics with
mechanistic studies and advanced imaging will speed up the
development of precision radiosensitization strategies.

5 Discussion

The quantification of radiosensitization effects mediated by
high-Z NPs remains a critical yet contentious topic due to the

TABLE 2 Overview of Mean Inactivation Dose (MID) used in nanoparticle studies.

Enhancement factor used NP material (size) Radiation source Cell line Reference

MID Au-NPs 160 KeV X-rays MDA-MB-231 Jain et al. (2011)

(1.9 nm) 6 MeV X-rays DU145

15 MeV X-rays L132

Au-NPs 160 KeV X-rays MDA-MB-231 Jain et al. (2014)

(1.9 nm)

Au-NPs 6 MeV X-rays MDA-MB-231 McMahon et al. (2011)

(2 nm) 15 MeV X-rays

Glu-GNPs 6 MeV X-rays MDA-MB-231 Wang et al. (2015)

(16 nm or 49 nm)
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heterogeneity of experimental models, radiation parameters, and
biological endpoints. Metrics like DEF and SER derived from the LQ
model offer simplified frameworks for comparing NP efficacy.
However, these metrics often overlook the complex interaction
between physical dose enhancement and biological mechanisms,
such as ROS-mediated DNA damage and immune modulation
(Tabatabaie et al., 2022). DEF calculations usually assume
uniform NP distribution and ignore localized ROS bursts, which
can amplify DNA damage independently of physical dose deposition
(Zheng and Sanche, 2023). Similarly, SER values derived from

clonogenic survival assays (SF) fail to consider immune-mediated
bystander effects, a phenomenon increasingly recognized in NP-
aided radiotherapy (Zhang et al., 2023). Furthermore, SF and MID
do not account for the tumor microenvironment (TME). ROS
quantification relies on error-prone fluorescent probes, while
DNA damage assays overlook repair dynamics.

In vivo metrics, such as MST and TGI, struggle to separate NP-
specific radiosensitization from off-target immune effects. While Hf-
based NPs demonstrate enhanced tumor control via combined dose
enhancement and immune activation (Choi et al., 2023), traditional

TABLE 3 Overview of Dose Enhancement Factor (DEF) and Sensitizer Enhancement Ratio (SER) used in NP studies.

Enhancement factor used NP material (size) Radiation source Cell line Reference

DEF Au-NP 225 KeV X-rays MDA-MB-231 Taggart et al. (2014)

(1.9 nm) DU-145

T98G

Au-NP 160 KeV X-rays DU-145 Butterworth et al. (2010)

(1.9 nm) MDA-231-B

MCF-7

L-132

T98G

AGO-1522B

NBTXR3-NP 6 MeV X-rays HT1080 Co-60 Maggiorella et al. (2012)

(50 nm)

Au-NP 6 MeV X-rays Gel Behrouzkia et al. (2019)

(30 nm, 50 nm)

Au-NP 6 MeV X-rays C-33a Gray et al. (2023)

(30 nm) 18 MeV X-rays

Au-NP 192Ir Monte Carlo Gray et al. (2020)

(30 nm)

Au-NP 10 to 370 KeV X-rays Monte Carlo Martinov et al. (2023)

SER Au-NP 6 MeV X-rays MDA-MB-231 Wang et al. (2015)

(16 nm)

Au-NP 26 KeV X-rays HCT116 Shi et al. (2016)

(2.7 nm)

Ag-NP 6 MeV X-ray U251 Liu et al. (2018)

(27 nm) C6

Alb-Au-NPs 6 MeV X-ray A549 Chen et al. (2023)

(205 nm)

PSMA-AuNPs 6 MeV X-ray Monte Carlo Schmidt et al. (2022)

Ag@Au NPs 6 MeV X-ray U87 Li et al. (2022)

(11 nm)

Pt-NPs Cs-137 HeLa cells Yang et al. (2020)

(14.6 nm)
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endpoints like TVTT may mix these mechanisms, leading to
overestimations of pure physical sensitization (Zou et al., 2024).
Immune-related metrics such as cytokine profiling and T-cell
infiltration are rarely integrated into current quantification
systems, despite evidence that NPs like Au and Se modulate the
TME to synergize with radiotherapy (Forenzo and Larsen, 2024).

Among current metrics, DEF is a crucial metric to compare the
radiation amplification potential of different NP compositions and
optimize their physicochemical properties, such as size, concentration,
and atomic number. For example, studies have demonstrated DEF
values ranging from 1.09 to 1.32 for iron oxide NPs and up to 22.17%
enhancement for FeO@AuNPs under magnetic field guidance (Fathy
et al., 2022). This highlights DEF’s utility in quantifying localized
energy deposition. The necessity of DEF lies in its ability to connect
theoretical predictions with experimental validations, enabling
researchers to correlate NP-induced physical dose escalation with
biological outcomes, such as tumor cell death (Diaz-Galindo and
Garnica-Garza, 2024). However, DEF calculations often
oversimplify the complex interplay between physical dose
enhancement and biological mechanisms, such as ROS generation,
DNA repair inhibition, and immune modulation (Hernandez Millares
et al., 2024). Hernández Millares et al. demonstrated that while GNPs
achieved a 9-fold DEF under 300 kVp X-rays, biological mechanisms
dominated radiosensitization under 6 MV irradiation (DEF ≤10%),

evidenced by a lethality enhancement factor (LEF) of 3–4x at low
doses. Integrating LEF reduced computational deviations in SER
to ≤3.2%, underscoring the necessity of coupling physical and
biological effects for accurate modeling.Moreover, DEF
measurements are highly sensitive to experimental conditions,
including NP distribution heterogeneity within tumors, coating
layer composition, and irradiation energy (Gerken et al., 2024).
Coating materials, often ignored in DEF-centric studies, can reduce
dose enhancement by decreasing NP-tissue interfacial interactions,
leading to misleading conclusions about NP performance (Mansouri
et al., 2023). DEF’s clinical relevance is also debated, as its predictive
power diminishes with MeV X-rays due to reduced photoelectric
effects, raising questions about its translatability to human
radiotherapy (Gerken et al., 2024). Therefore, DEF must be
supplemented with auxiliary data to enhance interpretability, such
as ROS validation through ESR or CRISPR-based biosensors, immune
profiling by quantifying CD8+ T-cell density to assess abscopal effects,
and NP biodistribution verification via PET/CT imaging with
radiolabeled NPs like 64Cu-AuNPs. In conclusion, while DEF
remains a valuable tool for initial screening of NP radiosensitizers,
its limitations necessitate a more holistic evaluation framework.

Future research on radiosensitization quantification using high-
Z NPs should prioritize standardized radiation energy protocols to
isolate NP-specific effects across preclinical (220 KeV) and clinical

TABLE 4 Parts of quantifying factors used in vivo studies.

Enhancement factor used NP material (size) Radiation source Animal model Reference

Median survival time Au-NPs 175 KeV X-rays U251 orthotopic mouse model Joh et al. (2013)

(23 nm)

Ag-NPs 6 MeV X-rays U251 orthotopic mouse model Liu et al. (2016)

(27 nm)

Ag-NPs 6 MeV X-rays C6 orthotopic rat model Liu et al. (2013)

(88 nm) (200 MU per minute)

IONPs 320 KeV X-rays U87MG orthotopic mouse model Bouras et al. (2015)

(10 nm) (1.2 Gy per minute)

Gd-NPs 90 KeV X-rays 9LGS orthotopic rat model Le Duc et al. (2014)

(2.1 nm)

Tumor volume tripling time Au-NPs 250 KeV X-rays U87MG subcutaneous mouse model Bhattarai et al. (2017)

(61 nm)

Tumor growth inhibition Au-NPs 100 KeV X-rays MDA-MB-361 subcutaneous mouse model Chattopadhyay et al. (2013)

(30 nm)

Au-NPs Cs-137 U14 subcutaneous mouse model Zhang et al. (2012)

(4.8, 12.1, 27.3 46.6 nm)

Gd2O3@BSA-Au NPs 6 MeV X-rays 4T1 subcutaneous mouse model Nosrati et al. (2023)

(13 nm)

Au-NPs Carbon Ion Irradiation B16-F10 subcutaneous mouse model Zhang et al. (2021)

(14 nm)
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(6 MeV) beam energies. Additionally, the radiosensitization efficacy
of high-Z NPs is dictated by their material-specific physicochemical
properties, such as tunable surface engineering, multimodal imaging
compatibility, and high atomic number-driven secondary electron
emission. Standardizing synthesis protocols is essential to unify dose
enhancement metrics and accelerate clinical translation of these
nanoplatforms. A critical advancement lies in multiscale modeling
frameworks that integrate Monte Carlo simulations for physical
dose deposition, spatiotemporal ROS kinetics, and immune
microenvironment dynamics to connect nanoscale energy
transfer with macroscale therapeutic outcomes. Furthermore,
immune-inclusive endpoints such as abscopal response rates
must be included to evaluate systemic antitumor effects mediated
by NP-enhanced radiotherapy. The development of a

multidimensional Radiosensitization Index (RSI) is proposed as a
unifying metric, encompassing: a physical dimension using DEF or
SER standardized to clinical (6 MeV) and preclinical (220 KeV)
beam energies; a chemical dimension measuring ROS yields
through ESR or catalytic activity; a biological dimension tracking
γ-H2AX foci kinetics and circulating tumor DNA (ctDNA)
clearance rates; an immunological dimension assessing CD8+/
FoxP3+T-cell ratios and PD-L1 expression dynamics; and a
clinical dimension based on RECIST-defined TGI and
progression-free survival (PFS). This framework integrates
physical-chemical interactions, biological damage cascades,
immune reprogramming, and clinical translatability, providing a
robust platform for cross-disciplinary optimization of NP-enhanced
radiotherapy.

FIGURE 3
Quantification of DNA damage and ROS generation with radiation in the presence of high-Z nanoparticles. (A) Fluorescence images representing γ-
H2AX foci formation in B16 cells after 6 Gy irradiation and AGuIX incubation (left). Quantification of the γ-H2AX foci in each cell, representing DNA
damage (right). (B)Quantification of the 53BP1 foci representing DNA strand breaks in H1299 activated cells after 4 Gy irradiation and AGuIX incubation,
24 h post-irradiation. (C) Studies in human tongue cancer Cal27 cells using yH2AX to detect DNA damage showed more foci when gold
nanoparticles were combined with a single 4-Gy photon dose. (D) Flow cytometry quantification of 2′,7′ -Dichlorofluorescin (DCF) revealed elevated
ROS levels in gold nanoparticle-treated cells exposed to 4-Gy radiation from a Cesium-137 source. Reproduced with permission of Creative Common
Attribution license (Dubey et al., 2022; Aubrun et al., 2025).
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6 Conclusion

High-Z nanoparticles hold transformative potential for precision
radiotherapy by enabling tumor-selective dose amplification through
physical, chemical, and biological synergies. However, their clinical
translation faces challenges due to fragmented quantification
methods, oversimplified models that neglect TME complexity, and
inconsistent preclinical-to-clinical correlations. Current metrics do
not account for immune modulation, stromal interactions, and
nanoparticle heterogeneity, all of which impact therapeutic
outcomes. To advance this field, standardizing radiosensitization
protocols, using 3D/organoid platforms that mimic TME
dynamics, and co-developing multifunctional NPs with diagnostic
and therapeutic capabilities are essential. Future success relies on
collaboration among radiobiologists, nanotechnologists, and
clinicians to validate multidimensional radiosensitization indices in
robust trials. Though challenges remain, integrating advancedmodels,
scalable synthesis, and immune-aware design strategies will speed up
the clinical adoption of high-Z NPs, improving radiotherapy for
resistant cancers.
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FIGURE 4
In vivo evaluation of high-Z NP radiosensitization effect. (A) GNP administration in combination with RT improves survival in mice with advanced
GBM tumors.Median and mean survival analysis were obtained with Kaplan-Meier analysis, and comparison between RT versusGNP + RT survival curves
showed p = 0.011. Mean survival times are shown with 95% confidence intervals. (B) Effects of AuNPs on tumor size and survival in mice. (left) Tumor
growth rates of the mice in the different groups; (right) Survival of the tumor-bearing mice in the different groups (*, p < 0.05; **, p < 0.01). (C)
Normalized tumor volumemeasurements (H) and survival fractions (I) over time for different treatments with Au3+ (0.0 or 0.2 mg/kg) and radiation (0 or
10 Gy). (D) Relative tumor volume of mice treated with various treatment plans. Reproduced with permission of Creative Common Attribution license
(Joh et al., 2013; Zhang et al., 2021; Nosrati et al., 2023; Schwartz-Duval et al., 2024).
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