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Drought stress is a prime abiotic constraint that reduces microgreen growth and
nutritional quality. This research explores a new strategy involving using green-
synthesized selenium nanoparticles (SeNPs) to improve drought stress tolerance
and biofortification of Amaranthus microgreens (var. Arka Suguna). SeNPs were
synthesized from Cassia auriculata leaf extract and characterized via UV-Vis
spectroscopy, TEM, XRD, FT-IR, and DLS, establishing their crystalline nature,
spherical shape (80.6–135 nm), and phytochemical capping. Toxicity screening
indicated 1,000 ppm as growth-inhibitory, whereas 100 ppm was optimal for
plant growth. Drought assays employing PEG-induced stress indicated that
100 ppm SeNPs greatly enhanced germination (97.5%), yield (330 mg), plant
height (5.6 cm), and biochemical profiles. Treated microgreens exhibited higher
total protein (377.2 mg/100 g), carbohydrates (951 mg/100 g), flavonoids
(11.4 mg/g), vitamin C (36.67 mg/100 g), and antioxidant enzyme activities
(SOD: 0.065 U/mg/min; CAT: 13.5 U/mg/min). SeNPs also promoted selenium
accumulation (10.69 mg/g DW) and had no negative impacts on valuable soil
microbes, including Pseudomonas aeruginosa, Bacillus subtilis, and Trichoderma
viride. This paper is the first comprehensive report on Cassia auriculata-mediated
SeNPs administered through seed, soil, and foliar application to enhance drought
tolerance and nutrient status in Amaranth microgreens. The findings indicate
SeNPs as a green nano-priming approach for promoting crop yield under abiotic
stress conditions.
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1 Introduction

Selenium (Se), an essential micronutrient, exhibits potent antioxidant and antimicrobial
properties, making it a cost-effective and safer option for agricultural and biomedical
applications (Abbas et al., 2020). Compared to selenate or selenite, selenium nanoparticles
(SeNPs) demonstrate lower toxicity while promoting plant growth, enhancing antioxidant
activity, and improving vegetable nutrient accumulation (Hernández-Hernández et al.,
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2019). The antioxidant and anti-cancer potential of SeNPs is well-
documented, but their synthesis method critically influences their
safety and efficacy. Chemical synthesis using reducing agents like
ascorbic acid often yields hazardous byproducts (Lin et al., 2021). In
contrast, green synthesis utilizes plant extracts as reducing,
stabilizing, and capping agents, offering an eco-friendly
alternative that enhances SeNPs’ biocompatibility and functional
properties (Kamal et al., 2019; Alsafran et al., 2025). This biogenic
approach reduces toxicity and improves the antioxidant and anti-
cancer effects of SeNPs without harming healthy cells (Budhani
et al., 2019).

Nanotechnology has transformative applications across diverse
sectors, including agriculture, where nanoparticles (1–100 nm)
leverage unique physicochemical properties to enhance crop
yields and sustainability (Usman et al., 2020). Innovations such
as gold nanoparticles for COVID-19 antibody detection and 3D-
printed nanomaterials underscore nanotechnology’s versatility in
medicine and materials science. In agriculture, nano-agrochemicals
enable targeted delivery, controlled release, and improved solubility
of nutrients, thereby minimizing environmental harm (Ali et al.,
2018; Chhipa, 2019). Despite these advances, challenges like
scalability and long-term ecological impacts require resolution
(Du et al., 2023). Commonly used silver, titanium dioxide, Zinc
oxide and silica nanoparticles have shown promise in boosting
germination and stress resilience (Rastogi et al., 2019; Francis
et al., 2024a). In addition, these metal nanoparticles enhance
crop productivity (20% increase), stress tolerance, and nutrient
efficiency while reducing disease (50%) and nutrient leaching
(30%). However, risks like toxicity and environmental

accumulation must be addressed for sustainable agricultural use
(Francis et al., 2024b).

Microgreens, such as amaranth, are nutrient-dense crops valued
for their high concentrations of secondary metabolites, minerals (Fe,
Mg, K), and digestible proteins (Ayeni, 2021). However, abiotic
stresses (e.g., drought, salinity) often limit their productivity, which
triggers oxidative damage, impairing growth and metabolism (El-
Saadony et al., 2022). Selenium nanoparticles (SeNPs) effectively
counteract abiotic stress by modulating key physiological processes,
including the upregulation of chlorophyll biosynthesis,
enhancement of photosynthetic efficiency, and promotion of
osmoprotectant accumulation (Rady et al., 2020). Furthermore,
SeNPs stimulate the activity of critical antioxidant enzymes, such
as ascorbate peroxidase (APX), superoxide dismutase (SOD), and
catalase (CAT), which collectively mitigate oxidative damage
through efficient scavenging of reactive oxygen species (ROS).
This dual mechanism significantly bolsters plant stress adaptation
and tolerance. The SeNPs, particularly biosynthesized ones, improve
crops’ resilience to abiotic stresses (e.g., drought, salinity) by
increasing germination, antioxidant activity, and stress-responsive
genes. Their size and application method influence their efficacy in
enhancing growth, photosynthesis, yield, and plant physiology
(Fatima et al., 2024). Additionally, SeNPs exhibit antimicrobial
activity by catalyzing the oxidation of intracellular thiols
(Webster and Ramos, 2012). Earlier studies have shown that
green-synthesized selenium nanoparticles (SeNPs) have been
reported to act as biostimulants of the antioxidant defense and
physiological processes. Recent study shows that the application of
green-synthesized SeNPs in the alleviation of drought stress in
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numerous crops like Soyabean, Purple coneflower, Rice, and Wheat
(Zeeshan et al., 2024; Rezagholi et al., 2025; Iqbal et al., 2025; El-
Saadony et al., 2021). While numerous studies have investigated the
potential of selenium nanoparticles (SeNPs) to alleviate abiotic stress
in crops, most of these studies concentrate on conventional
vegetables and field crops, frequently involving chemically
synthesized particles.

The current study presents novel approaches, such as Cassia
auriculata leaf extract, for the green synthesis of SeNPs, a less
commonly investigated phytochemical source. Second, the
research incorporates a combined application strategy, seed
priming, soil drenching, and foliar spraying, which have not been
thoroughly tested in microgreens under drought conditions. Third,
we employed Amaranthus microgreens, a high-value crop with a
short crop cycle characterized by nutritional density but
underrepresented in SeNP research. Unlike previous reports, this
study includes an in-depth characterization (UV-Vis, DLS, TEM,
FT-IR, XRD), toxicity studies, and compatibility studies with
beneficial soil microorganisms. Finally, our study provides a
comprehensive assessment that includes growth, biochemical,
enzymatic, and microbial compatibility parameters. It thus brings
new information to the nano-enabled biofortification and stress
tolerance area of short-cycle edible crops. By harnessing the
synergistic potential of biogenic SeNPs and microgreens, this
research aims to develop sustainable strategies for enhancing
crop resilience in drought-stressed environments.

2 Materials and methods

2.1 Materials source

Sodium selenite (Na2SeO3) (MWof 172.94) was purchased from
Hi Media, India. Fresh leaves of C. auriculata were collected from
Tiruvannamalai district, Tamil Nadu, India (latitude 12.3841 and
longitude 79.1178). The amaranthus variety used in the study is
Arka Suguna, which is resourced from IIHR, Bangalore, India.

2.2 Biosynthesis of SeNPs

Cassia auriculata leaf powder was tested at three concentrations
(0.5, 2.5, and 5 g) suspended in 100 mL of double-distilled water
(ddH2O) for optimal extract preparation. The suspensions were
maintained in a water bath at 60°C with continuous stirring
(200 rpm) for 30 min. The resulting mixtures underwent
sequential filtration: primary filtration through sterile muslin
cloth to remove particulate matter, followed by vacuum filtration
using Whatman No. 42 filter paper to eliminate residual macro
particles. The clarified, particle-free extracts were aseptically
transferred to sterile reagent bottles and stored at 4°C for
immediate use in SeNP synthesis. Sodium selenite (Na2SeO3;
Molecular Weight: 172.94 g/mol; HiMedia Laboratories) solutions
were prepared in five concentrations (5, 8, 10, 12, and 15 mM) using
ddH2O as solvent. For SeNP synthesis, each concentration was
combined with the standardized leaf extract (5 g/100 mL) in a 1:
4 (v/v) ratio. The 1:4 ratio was chosen due to its demonstrated
efficacy in prior optimization studies of NP production (Khurana

et al., 2019; El-Saadony et al., 2021). The reaction mixtures were
incubated at 75°C (±1°C) for 25 min in a hot plate magnetic stirrer
(800 rpm) to ensure complete reduction of Se4+ to Se0. Temperature
and stirring speed were rigorously controlled to maintain consistent
reaction kinetics across all trials.

To achieve optimal nanoparticle stability, the biosynthesized
SeNP solution underwent controlled incubation in an orbital shaker
(120 rpm) under sequential temperature conditions: initial
stabilization at 72°C (±0.5°C) for 3 h, followed by gradual cooling
to 37°C (±0.5°C) for extended incubation periods (6, 12, 24, 48, 60,
and 72 h). At each time interval, aliquots were aseptically collected
and analyzed by UV-Vis spectroscopy to monitor plasmon
resonance peak stability at 230 nm. This dual-phase thermal
protocol ensured progressive nanoparticle maturation while
preventing aggregation.

2.3 Characterization of
biosynthesized SeNPs

The synthesized biogenic selenium nanoparticle’s
physicochemical properties were characterized using advanced
analytical techniques. UV-Vis spectral analysis was carried out on
a Genesys 180 spectrophotometer (Thermo Fisher Scientific,
United States), with absorbance measurements recorded across
200–800 nm wavelengths at 1 nm intervals. Nanoparticle
morphology and elemental composition were evaluated through
transmission electron microscopy (Quanta 200 FEG, FEI,
Netherlands) coupled with energy-dispersive X-ray spectroscopy
(Oxford Instruments X-MaxN EDX system), performed at 200 kV
accelerating voltage at Tamil Nadu Agricultural University’s facility.
Crystalline structure was determined by X-ray diffraction analysis
(Bruker D8 Advance, United States) employing a 2θ range of 10°–80°
with 0.02° step resolution. Surface functional group identification was
achieved using FT-IR spectroscopy (PerkinElmer Spectrum Two)
scanning the 4,000–400 cm−1 spectral range at Central University
of Tamil Nadu’s analytical laboratory. For quantitative analysis, TEM
micrographs were processed using ImageJ software (v1.45, NIH) with
threshold-based particle detection. Size distribution histograms and
statistical parameters (mean ± SD) were generated using OriginPro
2022 (OriginLab Corporation) with Gaussian curve fitting. All
measurements were performed in triplicates.

2.4 Biocompatibility assay and toxicity assay
of biosynthesized SeNP

The biocompatibility of biosynthesized SeNPs was evaluated
against two beneficial soil microorganisms: Bacillus subtilis (MTCC
121) and Pseudomonas aeruginosa (MTCC 7903). Sterile nutrient
agar (20 mL; HiMedia, M001) was supplemented with 5 mL of SeNP
solution (100 ppm) in Petri plates (90 mm diameter). Bacterial
cultures (100 µL of 108 CFU/mL suspension) were spread-plated and
incubated for 48 h at 37°C (±0.2°C). Microbial growth was assessed
by measuring colony diameter (mm) and optical density (600 nm)
compared to untreated controls.

Seeds of Amaranthus var. Arka Suguna underwent surface
sterilization using 0.4% (v/v) sodium hypochlorite solution for
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5 min, followed by three thorough rinses with sterile distilled water.
After air-drying under aseptic conditions in a laminar flow hood, the
sterilized seeds were transferred to Petri plates containing 2% plain
agar media (HiMedia, GRM026), which had been pre-treated with
either 100 ppm SeNPs solution or control treatments. The plates
were maintained in a growth chamber set at 25°C with a 16-h
photoperiod/8-h dark cycle. Daily observations were conducted over
7 days to quantify germination percentage and measure radicle
elongation (in mm).

2.5 Standardization of PEG concentration
for artificial induction of drought

Artificial drought conditions were established using
polyethylene glycol 6000 (PEG-6000; HiMedia, PCT1306).
Four osmotic stress levels were tested: 16.7 mM (−0.05 MPa),
25 mM (−0.10 MPa), 37.5 mM (−0.20 MPa), and 56.3 mM
(−0.40 MPa) PEG solutions. Each concentration was applied
at 5 mL per potray cell (4 cm diameter × 5 cm depth)
containing the growth medium. The optimal PEG
concentration was determined based on germination
percentage and Amaranthus var seedling vigor index. A
standardized growth medium was prepared by homogenizing
farmyard manure (FYM), river sand, and vermicompost in a 1:1:1
(v/v/v) ratio. Physical properties of the substrate were
characterized (pH 6.8 ± 0.2, EC 1.2 ± 0.3 dS/m).

2.6 Application methods of
biosynthesized SeNPs

Surface-sterilized Amaranthus var. Arka Suguna seeds were
nano-primed via incubation in 25 or 100 ppm biosynthesized
SeNP solutions (1:2 seed: solution ratio) for 60 min at 25 rpm
(25°C ± 1°C) using a benchtop tube rotator before sowing. Soil
application was performed on day 3 post-germination (D3) via root
zone drenching with 100 ppm SeNP solution (5 mL/portray cell). In
comparison, foliar spraying (25 ppm, 1 mL/portray cell) was
conducted at the first true leaf stage (D6) using an atomizer
(50–100 μm droplets) during peak stomatal activity to optimize
uptake. All treatments were employed in controlled environmental
conditions (28°C ± 2°C, 70% RH).

2.7 Determination of growth parameters

Amaranthus var. Arka Suguna microgreens were harvested at
physiological maturity (9 days post-sowing) for growth and yield
evaluation. Germination percentage was calculated as (number of
germinated seeds/total seeds sown) × 100, with radicle
emergence ≥2 mm as the germination criterion. Plant height was
measured from the growth medium surface to the apical meristem
using digital calipers (Mitutoyo, ±0.01 mm precision). For yield
analysis, fresh weight was recorded immediately post-harvest
(Shimadzu balance, ATX224R, Japan), while dry weight
measurements followed 48-h dehydration in a forced-air oven at
60°C ± 1°C (P-Lab, Precession lab industries, India) until constant

mass was achieved. All measurements were conducted in triplicate
across three independent experimental runs.

2.8 Determination of biochemical
parameters

2.8.1 Chlorophyll and carotenoid content
Chlorophyll and carotenoid content were analyzed using a

modified acetone extraction method. Fresh leaf tissue (0.1 g) was
homogenized in 10 mL of 80% acetone (HI-AR, AS025, Himedia
laboratories, India) and then centrifuged at 5,000 × g for 10 min at
4°C to separate debris. The absorbance of the supernatant was
measured at 643 nm and 660 nm (GENESYS 180, Thermo Fisher
Scientific) for chlorophyll quantification using
established equations:

Chlorophyll a � 9.93 A660( ) − 0.777 A643( ) × V
W × 1000

Chlorophyll b � 17.6 A643( ) − 2.81 A660( ) × V
W × 1000

where V = extract volume (mL) and W = sample fresh weight (g).
The procedure proposed by Mazumdar and Majumder (2021)

was employed to determine the carotenoid content with minor
modifications. 10 mL of 80% acetone was used to pulverize 0.1 g
of the plant sample. The extract was filtered and the volume was
increased to 50 mL using ddH2O. Using a spectrophotometer, the
value was determined by measuring the carotenoid content at a
specific wavelength (645, 660, and 663). The following formula was
used to calculate the value:

Carotenoids mgg−1( ) � 4.69 × A660 − 0.268 × 20.2 xA645

+ 8.02 × A663

All extractions were performed in triplicate under dim light to
prevent pigment degradation.

2.8.2 Total soluble protein quantification
The soluble protein content was assessed using the Lowry

method (Lowry et al., 1951), with modifications. Fresh plant
tissue (0.1 g) was homogenized in 5 mL of ice-cold phosphate
buffer (0.1 M, pH 7.0) and subsequently centrifuged at 10,000 × g for
15 min at 4°C. One milliliter of supernatant was mixed with 5 mL of
alkaline copper reagent and incubated at 25°C ± 1°C for a duration of
10 min. Following the addition of 0.5 mL of Folin-Ciocalteu reagent
(1:1 dilution), absorbance was assessed at 660 nm utilizing a UV-VIS
Spectrophotometer (GENESYS 180), with a phosphate buffer blank
serving as the reference. Protein concentration was assessed using a
bovine serum albumin (BSA) standard curve with a range of
0–100 μg/mL.

2.8.3 Total carbohydrate estimation
Carbohydrate content was analyzed via the anthrone-sulfuric

acid method. Lyophilized samples (50 mg) were hydrolyzed with
1.25 mL 2.5 N HCl at 100°C for 3 hours, neutralized with sodium
carbonate and diluted to 50 mL with ddH2O. After centrifugation
(1,000 × g, 10 min), aliquots (1 mL) were reacted with 4 mL ice-cold
anthrone reagent at 100°C for 8 min. The green-to-dark green color
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transition was quantified at 630 nm using a UV-VIS
Spectrophotometer. All extractions and reactions were performed
in triplicate.

2.8.4 Total phenolic content
Phenolic compounds in fresh leaf samples were quantified using

the Folin-Ciocalteu assay. Methanolic extracts (0.5 mL, 70% v/v)
were mixed with 0.2 mL F-C reagent (1N), 3.25 mL ddH2O, and
1 mL 20% (w/v) Na2CO3. After vortexing (30 s), samples were
incubated in amber vials (25°C ± 1°C, 30 min) to develop the
chromogenic reaction. The absorbance at 700 nm was compared
to a methanol blank using a UV-VIS Spectrophotometer. The
calibration curve (Y = 0.012X + 0.021; R2 = 0.998) was generated
by gallic acid standards (0–100 μg/mL), and the results were
expressed as mg gallic acid equivalents (GAE) per g fresh weight.

2.8.5 Total flavonoid content
Flavonoids were analyzed via aluminum chloride complexation

(Ordonez et al., 2006). Methanolic extracts (1 mL) were combined
with 1.5 mL 80% methanol, 0.1 mL 10% (w/v) AlCl3, 0.1 mL 1M
CH3COONa, and 2.8 mL ddH2O. Following incubation (25°C,
30 min, dark), absorbance at 415 nm was compared against
quercetin standards (0–50 μg/mL; Y = 0.025X–0.112; R2 = 0.991).
Data were expressed as mg quercetin equivalents (QE) per g
fresh weight.

2.8.6 FRAP assay
Total antioxidant activity was assessed using the FRAP protocol

by Benzie and Strain (1999). The working solution consisted of
10 mL of 300 mM acidified acetate buffer, 1 mL of 10 mM TPTZ in
hydrochloric acid, and 1 mL of 20 mM ferric chloride. Plant extracts
(0.5 mL) were mixed with 1.8 mL of the FRAP reagent and 1.2 mL of
ultrapure water, then incubated at room temperature for 30 min.
Absorbance at 593 nm was measured spectrophotometrically and
converted to antioxidant equivalents using a calibration curve based
on ascorbic acid standards, showing good linearity (r2 = 0.964).
Antioxidant capacity was normalized to sample mass and expressed
as micromolar ascorbic acid equivalents per gram of fresh tissue
weight (μmol AAE/g FW).

2.8.7 Total soluble sugars
Glucose content (% w/w) and total soluble solids (TSS, % Brix)

were quantified using digital refractometry. Fresh tissue (1 g) was
homogenized in 10 mL ddH2O (1:10 w/v) and filtered through a
muslin cloth. Clear extracts were analyzed using calibrated digital
meters: glucose (HI96803, HANNA range 0%–85%) and TSS
(HI96801, HANNA, range 0–85°Brix). Results represent the mean
of three technical replicates per biological sample.

2.8.8 Vitamin C quantification
L-ascorbic acid was measured via redox titration (Contreras-

Calderón et al., 2010). Samples (0.05 g) were homogenized in 10 mL
4% (w/v) oxalic acid and centrifuged (8,000 × g, 10 min). The
supernatant (5 mL) was titrated against standardized 2,6-
dichlorophenolindophenol (DCPI, 0.1 mg/mL) until a persistent
pink endpoint (pH 3.0–4.0). Vitamin C content (mg/100 g FW) was
calculated.

2.9 Antioxidant enzymatic activities

2.9.1 Superoxide dismutase (SOD) activity assay
The superoxide dismutase (SOD; EC 1.15.1.1) enzymatic assay

was performed according to established photochemical methods
(Beyer and Fridovich, 1987). Plant tissue samples were homogenized
in 50 mM phosphate buffer (pH 7.8) containing 1% (w/v)
polyvinylpyrrolidone to minimize phenolic compound
interference. The complete reaction system (4 mL final volume)
incorporated 50 mM phosphate buffer (pH 7.8), 0.15 mM EDTA,
0.12 mM NBT, 20 mM methionine, and 0.075 mM riboflavin.
Following addition of 500 μL enzyme extract, the mixture was
exposed to 5,000 lux fluorescent illumination for 30 min to
generate superoxide radicals and initiate NBT reduction.
Absorbance measurements at 560 nm determined the extent of
reaction inhibition, with one SOD unit defined as the enzyme
quantity required for 50% suppression of NBT reduction
compared to light-exposed controls. Activity calculations
employed the formula: % inhibition = [(A560 control -
A560 sample)/A560 control] × 100. All experimental
measurements included triplicate analyses along with appropriate
light-exposed and dark control samples to ensure methodological
reliability.

2.9.2 Catalase assay
The enzymatic activity of catalase (EC 1.11.1.6) was quantified

using UV-visible spectrophotometry based on hydrogen peroxide
decomposition kinetics. Following the established protocol of Aebi
(1984), enzyme extraction was performed in ice-cold 50 mM
phosphate buffer (pH 7.0), with subsequent clarification
through centrifugation (10,000 × g, 15 min, 4°C). The assay
system consisted of 3 mL reaction volume containing: (1)
50 mM phosphate buffer (pH 7.0), (2) 10 mM H2O2 substrate
solution, and (3) 100 μL of enzyme extract. Catalase-mediated
H2O2 breakdown was monitored by measuring absorbance decline
at 240 nm (extinction coefficient = 39.4 mM−1cm−1) for 60 s at
25°C. Enzyme activity calculations were normalized to total protein
content and reported as micromoles of H2O2 catabolized per
minute per milligram of protein.

2.10 Estimation of selenium content

Selenium concentration in Amaranthus microgreens was
determined using a modified (Duff and Chessin, 1965) acid
digestion method. 0.5 g of tissue was digested in a 10 mL acid
mixture (7.5:2.5 v/v nitric: perchloric acids) at 85°C–100°C until
white fumes appeared. After cooling, 3 mL 30% hydrogen peroxide
(H2O2) was added and reheated (5–10 min) to complete oxidation.
The digestate was reacted with 10 mL 3% hydrazine sulfate
(reducing agent) and 3 mL 2.5% gum arabic (stabilizer) in a
boiling water bath (10 min), producing an orange-red Se-
hydrazine complex. The final volume was adjusted to 25 mL
using deionized water, and absorbance was recorded at 420 nm
relative to sodium selenite standards (0–5 ppm). Spike recovery tests
(90%–105%) and reagent blanks validated the protocol, with results
expressed as mg Se/g dry weight (triplicate measurements).
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2.11 Statistical analysis

Three independent biological replicates were performed for all
experimental treatments. Data analysis was conducted using R

Statistical Software (version 4.2.3) with specialized packages for
agricultural research (dplyr v1.1.0, agricolae v1.3-6, and
multicomp v1.4-23). Treatment comparisons were assessed
through one-way analysis of variance (ANOVA) followed by post

FIGURE 1
Variations in the absorption spectra of (A) Sodium selenite with increasing concentrations (5 mM, 8 nM, 10 nM, 12 nM, 15 nM), (B) Incubation time for
SeNP reduction (6, 12, 24, 36, 48, 60, 72 h).

FIGURE 2
Standardization of PEG concentrations (16.7, 25, 37.5, 56.3 mM) for artificial drought induction in Amaranth microgreens var. Arka Suguna.

FIGURE 3
Biocompatibility of biosynthesized SeNPs with beneficial microorganisms (A) Bacillus subtilis, (B) Pseudomonas aeruginosa and (C) Effects of SeNPs
on toxicity levels of Invitro germinated Amaranthus seeds.
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hoc testing using Tukey’s honestly significant difference (HSD)
method at α = 0.05. Significant differences between treatment
groups were indicated using compact letter display notation
following standard agricultural research conventions. For
additional verification, Fisher’s least significant difference (LSD)
test was performed at the 5% probability level. All graphical
representations were generated using GraphPad Prism software
(version 8.4.3) to visualize treatment effects and statistical
relationships.

3 Result and discussion

3.1 Standardization of leaf extract, sodium
selenite concentrations and incubation time
for the biosynthesis of SeNP

The biosynthesis of selenium nanoparticles (SeNPs) was
optimized using C. auriculata leaf extract with various
concentrations of sodium selenite (5 mM, 8 mM, 10 mM,
12 mM, 15 mM) and incubation hours (6, 12, 24, 48, 60, 72 h).
Among tested concentrations, 5% leaf extract combined with
12 mM sodium selenite yielded the most effective SeNP
synthesis, exhibiting peak absorbance at 230 nm with high
intensity (Figure 1A). The reduction process commenced
immediately upon mixing. Subsequent stabilization studies
revealed that a 72-h incubation period at 120 rpm produced
SeNPs with the highest absorbance peak (Figure 1B). These
standardized conditions 5% leaf extract, 12 mM sodium
selenite, and 72-h incubation were thus established as optimal
for efficient and stable SeNP biosynthesis.

3.2 Standardization of PEG concentration
for artificial induction of drought

To establish an effective in vitro drought induction system,
polyethylene glycol (PEG) was tested at varying concentrations
(16.7, 25, 37.5, 56.3 mM). Results demonstrated that 37.5 mM
and 56.3 mM PEG most effectively simulated drought stress
(Figure 2), as evidenced by pronounced physiological responses.
Thus, 37.5 mM PEG concentration was selected for subsequent
experiments to evaluate drought-induced changes in plant
biochemical and physiological parameters.

3.3 Biocompatibility of biosynthesized SeNP
with beneficial microorganisms and
toxicity test

The biocompatibility assessment of biosynthesized SeNPs
(100 ppm) demonstrated a stimulatory effect on beneficial soil
microorganisms, including P. aeruginosa and B. subtilis. Unlike
exhibiting inhibitory effects, the SeNPs enhanced microbial
growth compared to untreated controls (Figures 3A,B). These
findings suggest that the biosynthesized SeNPs maintain
compatibility with essential soil microbiota while potentially
promoting their proliferation. A toxicity assessment of
biosynthesized SeNPs was conducted on Amaranthus var. Arka
Suguna microgreens using four concentrations (100, 250, 500 and
1,000 ppm). While the highest concentration (1,000 ppm) exhibited
phytotoxic effects, impairing plant development, lower
concentrations (100–500 ppm) showed no adverse effects and
instead promoted normal growth (Figure 3C). These results

FIGURE 4
(A)UV-visible spectrums after 72 h of incubation of crude extract of biosynthesized SeNPs, pure sodium selenite powder 99%, biosynthesized SeNPs
(100 ppm)- sterilized, biosynthesized SeNPs (100 ppm)- non sterilized; (B) dynamic light scattering pattern of biosynthesized SeNPs; (C) Fourier transform
intra-red spectroscopy (FTIR) spectra of - Cassia auriculata leaf extract, (D) sodium selenite, (E) biosynthesized SeNPs; (F) X-ray diffraction pattern of -
chemically synthesized SeNPs (ascorbic acid as reducer), (G) biosynthesized SeNPs (C. auriculata extract as reducer).
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establish a concentration-dependent response to SeNPs, with
1,000 ppm representing the toxicity threshold for this cultivar.

3.4 Characterization of
biosynthesized SeNPs

UV-Vis spectroscopic analysis of biosynthesized SeNPs
(prepared with 12 mM sodium selenite and 5% C. auriculata leaf
extract) revealed characteristic absorbance peaks at 230 nm for all
tested samples, including 100 ppm SeNPs, pure selenium powder,
and crude leaf extract (Figure 4A). Dynamic light scattering analysis
indicated the synthesized nanoparticles had an average size
distribution of 337.3 nm with a polydispersity index (PdI) of
0.321 (Figure 4B), demonstrating moderate size variation among
the nanoparticles. The particle size measurements, polydispersity
index (PDI), and zeta potential were carried out in Milli-Q water as
the dispersion medium. Nevertheless, it is established that such
physicochemical features are highly affected by the matrix
surrounding it, e.g., ionic strength, pH, and the occurrence of
macromolecules like root exudates and soil colloids (El-Saadony
et al., 2021; Iqbal et al., 2025). Thus, under real application
conditions like seed coating, soil correction, or foliar spraying,

nanoparticle behavior can differ significantly from that seen in
water. Environmental interactions may influence nanoparticle
stability, uptake efficiency, and biological efficacy. Future studies
should consider evaluating nanoparticles’ size distribution and
surface charge directly in the relevant matrices to better correlate
their physicochemical properties with plant responses and
agronomic outcomes.

FT-IR spectroscopy confirmed the involvement of functional
groups from C. auriculata leaf extract in the reduction and
stabilization of biosynthesized SeNPs. Comparative analysis of
the leaf extract (Figure 4C), sodium selenate (Figure 4D), and
biosynthesized SeNPs (Figure 4E) identified key vibrational
frequencies, including a broad OH stretch at 3291.09 cm−1

(indicative of aromatic rings and ether-methoxy groups) and
C–H asymmetric bending at 1066.03 cm−1 and 92.99 cm−1. The
observed redshift in the OH band of SeNPs suggested hydroxyl
group interactions with nanoparticle surfaces, a critical factor in
their stabilization. Spectral changes, including the retention or
disappearance of–OH/COO–peaks, further supported the role of
these functional groups in capping and stabilizing the SeNPs. These
findings align with reported mechanisms of plant-mediated
nanoparticle synthesis and stabilization. The X-ray diffraction
(XRD) result reveals that the biosynthesized SeNPs are

FIGURE 5
(A) TEM image of synthesized SeNP using Ascorbic acid as a reducer. (B) TEM image of synthesized SeNP using 5 mM Na2Se2O3. (C) TEM image of
synthesized SeNP using 12 mM Na2Se2O3. (D) EDAX profile of synthesized SeNP using Ascorbic acid as a reducer. (E) EDAX profile of synthesized SeNP
using 5mMNa2Se2O3. (F) EDAX profile of synthesized SeNP using 12mMNa2Se2O3. (G) Area distribution (nm2) of synthesized SeNP using Ascorbic acid as
a reducer. (H) Area distribution (nm2) of synthesized SeNP using 5 mM Na2Se2O3. (I) Area distribution (nm2) of synthesized SeNP using 12 mM
Na2Se2O3. (J) Size distribution (nm) of synthesized SeNP using Ascorbic acid as a reducer. (K) Size distribution(nm) of synthesized SeNP using 5 mM
Na2Se2O3. (L) Size distribution(nm) of synthesized SeNP using 12 mM Na2Se2O3.
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amorphous in nature (Figures 4F, G). The result matches with the
previous reported values (Chen et al., 2009).

TEM analysis revealed spherical selenium nanoparticles (SeNPs)
with distinct size distributions: chemically synthesized SeNPs
ranged from 100 to 200 nm (Figure 5A), while biosynthesized
SeNPs using C. auriculata leaf extract exhibited smaller sizes
(80.6–135 nm; Figures 5B,C). EDAX confirmed Se presence in all
samples, with characteristic absorption peaks at 0.1–0.5 keV and
10–10.5 keV (Figures 5D–F). The 5 mM Na2SeO3-derived SeNPs
showed higher peak intensity in the lower energy range than 12 mM
Na2SeO3 or ascorbic acid-synthesized particles. Size distribution
analysis further demonstrated that ascorbic acid-produced SeNPs
had the largest mean area (953.7 nm2) and particle size (163.71 nm).
At the same time, biosynthesized SeNPs (5 mM and 12 mM
Na2SeO3) displayed smaller, more uniform dimensions (Figures
5G–L). Copper signals in EDAX spectra originated from the
TEM grid substrate.

3.5 Effect of SeNP on amaranthus growth
and yield parameters

Se is generally considered a non-essential micronutrient for the
plant growth (Zhan et al., 2021). Recent studies highlighted the
potential of SeNp to improve germination percentage, growth and
stress tolerance in various crops (Abouelhamd et al., 2023; Ghanbari
et al., 2023). The study investigated the effects of biogenic
synthesized SeNp on the growth attributes of amaranth
microgreens (Amaranthus var Arka Suguna) under artificially
induced drought conditions with PEG @ 37.5 mM). The
combined application method involves seed treatment (ST) and
soil application of SeNp at 100 ppm conc. (SA) and foliar application
at 25 ppm conc. (FA) had a significant impact on all growth
parameters. The combined application (ST+SA+FA) enhanced
seed germination to 96.67% under artificial drought stress while
also increasing plant height (5.63 cm), fresh weight (332.24 mg) and
dry weight (24.14 mg) of harvested amaranth microgreens (Table 1;
Figure 6). The seed treatment combined with the soil application
(ST+SA) followed the ST+SA+FA treatment in terms of germination
percentage, and plant height, showing similar results. However, the
ST+SA treatment did not significantly differ in fresh weight
(283.87 mg) and dry weight (23.93 mg) compared to the
combined application. The lowest germination percentage of
72.50 percent, plant height of 4.43 cm, fresh weight 205.48, and
dry weight 14.91mg was observed in control (Figure 6). The findings
of this study align with previous research indicated that
biosynthesized SeNPS significantly increases the germination
percentage of Amaranth microgreens. Similar growth promotion
by SeNp has been reported in carrot plants (Abouelhamd et al.,
2023), green beans (Ismail et al., 2023), and potatoes (Perfileva et al.,
2023) increased plant height and physiological tolerance (Nagdalian
et al., 2023). reported that applying SeNp at 20 mg/L concentration
enhances the growth in barley. These results support the role of
SeNp in enhancing plant growth under stress conditions
(Figures 6A–D).

Application of SeNp significantly increased both fresh and dry
weight of amaranth microgreen, which aligns with the findings of de
los Santos-Vázquez et al. (2016), who reported that foliar applicationT

A
B
LE

1
E
ff
e
ct

o
f
S
e
N
P
s
o
n
g
ro

w
th

an
d
yi
e
ld

p
ar
am

e
te
rs

o
f
A
m
ar
an

th
m
ic
ro

g
re
e
n
s
va

r.
A
rk
a
S
u
g
u
n
a
in

In
-v
iv
o
.

T
re
at
m
e
n
ts

G
e
rm

in
at
io
n

p
e
rc
e
n
ta
g
e
(%

)
P
la
n
t

h
e
ig
h
t
(c
m
)

Fr
e
sh

w
e
ig
h
t
(m

g
)

D
ry

w
e
ig
h
t
(m

g
)

C
h
lo
ro
p
h
yl
l
A

(m
g
/1
0
0
g
)

C
h
lo
ro
p
h
yl
l
B

(m
g
/1
0
0
g
)

C
ar
o
te
n
o
id

(m
g
/g
)

T
SS

(O
B
ri
x)

G
lu
co

se
(%

W
/W

)

C
on

tr
ol

72
.5
0
±
2.
5c

4.
43

±
0.
06

d
20
5.
48

±
1.
50

e
14
.9
1
±
2.
08

c
0.
69

±
0.
02

b
0.
17

±
0.
00
5b

57
.2

±
6.
23

b
0.
77

±
0.
15

b
0.
52

±
0.
01

e

ST
92
.5
0
±
2.
5b

5.
23

±
0.
06

b
24
5.
01

±
0.
88

d
17
.1
0
±
2.
09

c
0.
76

±
0.
07

b
0.
17

±
0.
02

b
60
.4

±
3.
73

b
0.
80

±
0.
10

a
0.
63

±
0.
00

d

ST
+
SA

96
.6
7
±
2.
5a

5.
63

±
0.
06

a
31
4.
61

±
10
.4

b
25
.0
9
±
2.
35

ab
0.
84

±
0.
09

ab
0.
19

±
0.
01

ab
63
.4

±
2.
42

b
1.
33

±
0.
20

a
1.
47

±
0.
05

b

ST
+
FA

92
.5
0
±
1.
4b

5.
10

±
0.
10

c
28
3.
87

±
4.
62

c
23
.9
3
±
1.
07

b
0.
78

±
0.
05

b
0.
18

±
0.
01

b
63
.1

±
7.
25

b
1.
20

±
0.
10

a
1.
03

±
0.
02

c

ST
+
SA

+
FA

96
.6
7
±
1.
4a

5.
63

±
0.
06

a
33
2.
24

±
1.
79

a
28
.1
4
±
2.
38

a
1.
03

±
0.
23

a
0.
24

±
0.
06

a
79
.7

±
16
.9

a
1.
30

±
0.
26

a
2.
13

±
0.
05

a

C
D

(p
≤
0.
05
)

3.
89

0.
12

9.
49

3.
72

0.
21

0.
05

16
.1
9

0.
32

0.
06

C
on

tr
ol
-
N
o
N
an
op

ar
ti
cl
es
ap
pl
ie
d,
ST

:S
ee
d
tr
ea
tm

en
tw

it
h
Se
N
P
s
(1
00

pp
m
),
ST

+
SA

:S
ee
d
tr
ea
tm

en
tw

it
h
Se
N
P
s
(1
00

pp
m
)
an
d
So
il
ap
pl
ic
at
io
n
w
it
h
Se
N
P
s
(1
00

pp
m
),
ST

+
FA

:S
ee
d
tr
ea
tm

en
tw

it
h
Se
N
P
s
(1
00

pp
m
)
an
d
Fo

lia
r
ap
pl
ic
at
io
n
w
it
h
Se
N
P
s
(1
00

pp
m
),

ST
+
SA

+
FA

:
Se
ed

tr
ea
tm

en
t
w
it
h
Se
N
P
s
(1
00

pp
m
),
So
il
ap
pl
ic
at
io
n
w
it
h
Se
N
P
s
(1
00

pp
m
)
an
d
Fo

lia
r
ap
pl
ic
at
io
n
w
it
h
Se
N
P
s
(1
00

pp
m
).
D
at
a
pr
es
en
te
d
in

th
e
ta
bl
e
re
pr
es
en
ts
th
e
m
ea
n
±
SD

(n
=
3)

at
th
e
si
gn
ifi
ca
nc
e
le
ve
l
of

p
≤
0.
05
.

a-
d
re
pr
es
en
ts
th
e
st
at
is
ti
ca
l
si
gn
ifi
ca
nc
e
am

on
g
th
e
tr
ea
tm

en
ts
.
T
re
at
m
en
ts
w
it
h
sa
m
e
le
tt
er
s
ar
e
st
at
ic
al
ly

on
-p
ar

w
it
h
ea
ch

ot
he
r.

Frontiers in Nanotechnology frontiersin.org09

Gomathi et al. 10.3389/fnano.2025.1621024

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2025.1621024


of Se at 5 mg/L increased the biomass production and vitamin C
content in lettuce by overwhelmed stress. Similarly, dry matter
production and essential oil content were improved by applying

SeNp under drought conditions in Basil (Asghari et al., 2023). The
current study findings correlate with these findings and show that
the combined application of biosynthesized SeNp (ST+SA+FA) can

FIGURE 6
Effects of SeNPs and drought stress on (A) Germination Percentage, (B) Plant height, (C) shoot fresh weight, (D) shoot dry weight in Amaranth
microgreens var. Arka Suguna. All the plants were drought-stressed with PEG (37.5 mM). Control- No Nanoparticles applied, ST: Seed treatment with
SeNPs (100 ppm), ST + SA: Seed treatment with SeNPs (100 ppm) and Soil application with SeNPs (100 ppm), ST + FA: Seed treatment with SeNPs
(100 ppm) and Foliar application with SeNPs (100 ppm), ST + SA + FA: Seed treatment with SeNPs (100 ppm), Soil application with SeNPs (100 ppm)
and Foliar application with SeNPs (100 ppm). Different letters demonstrate significant differences among the treatments (p < 0.05).

FIGURE 7
Effects of SeNPs and drought stress on (A) Chlorophyll A, (B) Chlorophyll B, (C) Carotenoid, (D) Total soluble salts, (E)Glucose, (F) Total Proteins, (G)
Carbohydrates in Amaranth microgreens var. Arka Suguna. All the plants were drought-stressed with PEG (37.5 mM). Control- No Nanoparticles applied,
ST: Seed treatment with SeNPs (100 ppm), ST + SA: Seed treatment with SeNPs (100 ppm) and Soil application with SeNPs (100 ppm), ST + FA: Seed
treatment with SeNPs (100 ppm) and Foliar application with SeNPs (100 ppm), ST + SA + FA: Seed treatment with SeNPs (100 ppm), Soil application
with SeNPs (100 ppm) and Foliar application with SeNPs (100 ppm). Different letters demonstrate significant differences among the treatments (p < 0.05).
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enhance drought tolerance and biomass production in amaranth
microgreens under drought conditions and highlight the potential of
SeNp as a sustainable tool for enhancing crop resilience and
productivity in stress environments.

3.6 Effect of SeNP on amaranth biochemical
parameters of amaranthus microgreens

The biochemical parameters of amaranth microgreens
(Amaranthus var. Arka Suguna) viz., chlorophyll content,
carotenoids, total phenols, flavonoids, antioxidants,
carbohydrates, vitamin c, soluble proteins, total soluble sugars
(TSS), enzymatic activity and Se accumulation, was influenced by
biogenic synthesized SeNp. The results obtained in the study
revealed that SeNp significantly enhances these biochemical
parameters, promoting plant growth and stress tolerance under
drought conditions. The photosynthetic efficiency of the crop
plants was determined by the accumulation of chlorophyll
content in the plant systems. In our study, chlorophyll content in
the amaranth microgreen was significantly influenced by the
combined application of SeNp (ST+SA+FA), recording the
highest chlorophyll A and B (1.03 and 0.24 mg/100 g) content,
along with higher carotenoid level (79.7 mg/g) followed by ST+SA
(Table 1; Figures 7A–C). All other methods of application of SeNp
show statistically similar results at the 5 percent significance level.
These results were supported by the previous studies conducted by
Abbas (2012), who reported that Se influences Chlorophyll and
carotenoid levels by controlling the redox status of leaves. Also,
Vijayarengan (2013) and Marisamy et al. (2015) identified that Se
application has protective effects on chloroplast enzymes and
improves photosynthetic pigments. Additionally, applying
selenium at 10 and 5 µM enhanced the photosynthetic pigments
in cucumber leaves exposed to salt stress (Hawrylak-Nowak, 2009).
The result suggested that applying biosynthesized SeNPs increases
photosynthetic pigments of amaranth microgreens.

Combined application of SeNp (ST+SA+FA) recorded the
highest phenolic content (6.23 mg/g), while ST+SA+FA also
showed increased flavonoid levels (11.4 mg/g). The total
antioxidant availability was highest in ST+SA (23.6 mg/g),
followed by the combination of ST+SA+FA of SeNp (22.3 mg/
g) under drought conditions (Table 2; Figures 8A–C). These
results are closely related to the findings of Chu et al. (2009), who
observed that Se application reduces ROS and malondialdehyde
content while increasing phenolic and flavonoid levels in wheat
under cold stress. Similarly, antioxidant activity and robust
antioxidant potential of SeNps under both saline and non-
saline conditions were reported by Shahraki et al. (2022) and
Guleria et al. (2020), implying their role in mitigating oxidative
stress and enhancing plant growth and development. Earlier
studies demonstrated that selenium nanoparticles (SeNPs)
synthesized via green methods possess significant antioxidant
activity (Kondaparrthi et al., 2019; Mellinas et al., 2019;
Boroumand et al., 2019; Dumore and Mukhopadhyay, 2020).
These findings align with the observed enhancement in total
phenols, flavonoids, and antioxidant levels in Amaranthus
microgreens following treatment with biosynthesized SeNPs
(Table 2; Figures 8A–C).T
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Carbohydrate content was significantly higher in amaranth
microgreens treated with ST+SA+FA of SeNp, recording a
maximum of 951 mg/100 g, followed by ST+SA of SeNp-treated
microgreens (782 mg/100 g) under drought conditions (Table 2;
Figure 7G). Consistent with the reports of Alam et al. (2022) and
Zhou et al. (2022), selenium nanoparticles were shown to boost
growth performance in stressed plants through enhanced
carbohydrate metabolism. Likewise, vitamin C content is also
higher in amaranth microgreen treated with ST+SA+FA of SeNp
(36.7 g/100 g) under drought conditions (Table 2; Figure 8D), in line
with the findings of de los Santos-Vázquez et al. (2016), reported
that application of SeNp improves antioxidant and vitamin C

content in tomatoes and melons. These results suggest that SeNp
enhances nutrient accumulation and drought tolerance in amaranth
microgreens.

SeNPs and selenite significantly enhance total selenium
accumulation and soluble protein content in crops such as
soybean sprouts and potato tubers. However, the effects vary by
species, in soybeans (Sarwar et al., 2020) leads to an increase in the
accumulation of soluble proteins, whereas in soybean sprouts,
soluble proteins get reduced (Rao et al., 2022). In this study,
biosynthesized SeNPs elevated total soluble proteins in
Amaranthus microgreens, with the highest levels in ST+SA+FA
(377.2 mg/100 g) and the lowest in the control (65 mg/100 g)

FIGURE 8
Effects of SeNPs and drought stress on (A) Total Phenol, (B) Total flavonoid, (C) Total Antioxidant, (D) Vit C in Amaranth microgreens var. Arka
Suguna. All the plants were drought-stressed with PEG (37.5mM). Control- No Nanoparticles applied, ST: Seed treatment with SeNPs (100 ppm), ST + SA:
Seed treatment with SeNPs (100 ppm) and Soil application with SeNPs (100 ppm), ST + FA: Seed treatment with SeNPs (100 ppm) and Foliar application
with SeNPs (100 ppm), ST + SA + FA: Seed treatment with SeNPs (100 ppm), Soil application with SeNPs (100 ppm) and Foliar application with SeNPs
(100 ppm). Different letters demonstrate significant differences among the treatments (p < 0.05).

FIGURE 9
Effects of SeNPs and drought stress on (A) Catalase, (B) SOD in Amaranth microgreens var. Arka Suguna. All the plants were drought stressed with
PEG (37.5 mM). Control- No Nanoparticles applied, ST: Seed treatment with SeNPs (100 ppm), ST + SA: Seed treatment with SeNPs (100 ppm) and Soil
application with SeNPs (100 ppm), ST + FA: Seed treatment with SeNPs (100 ppm) and Foliar application with SeNPs (100 ppm), ST + SA + FA: Seed
treatment with SeNPs (100 ppm), Soil application with SeNPs (100 ppm) and Foliar application with SeNPs (100 ppm). Different letters demonstrate
significant differences among the treatments (p < 0.05).
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(Table 2; Figure 7F). Glucose content was highest in ST+FA (1.13%
w/w), comparable to ST (1.10% w/w), while ST+SA+FA and ST+SA
showed slightly lower values (1.03% w/w) (Table 2; Figure 7E). Total
soluble solids (TSS) peaked in ST+SA+FA and ST+SA (1.33% Brix),
followed by ST and ST+FA (1.20% Brix), with the control exhibiting
the lowest (0.76% Brix) (Table 2; Figure 7D). These findings align
with reports that SeNPs improve sugar accumulation by enhancing
stress resilience and metabolic activity, as seen in tomatoes treated
with 10 mg/L SeNPs (Hernández-Hernández et al., 2019). The
present study confirms that biosynthesized SeNPs boost total
soluble sugars in Amaranthus microgreens (Table 2; Figures 7D,E).

3.7 Effect of SeNP on enzymatic activity

Selenium is an essential component of antioxidant enzymes,
critically involved in scavenging reactive oxygen and nitrogen
species to mitigate oxidative cellular damage. In the current
investigation, catalase (CAT) activity reached its maximum in the
ST+SA+FA treatment (13.50 U/mg/min), with ST+SA (12.77 U/mg/
min) showing comparable results, whereas the control group
displayed the lowest activity (10.65 U/mg/min) (Table 2;
Figure 9A). A parallel trend was observed for superoxide
dismutase (SOD), where ST+SA+FA exhibited the highest activity
(0.065 U/mg/min), significantly surpassing the control (0.032 U/mg/
min), with intermediate treatments showing no statistically distinct
effects (Table 2; Figure 9B). These results corroborate earlier studies
highlighting selenium’s capacity to upregulate antioxidant enzymes,
enhancing plant resilience under stress. For instance, Jiang et al.
(2017) documented elevated SOD activity in selenium-

supplemented maize, and Hussein et al. (2019) reported
analogous antioxidant enzyme modulation. Further evidence
from Wu et al. (2016) and Marslin et al. (2017) underscores
selenium’s ability to augment proline accumulation, peroxidase,
and glutathione peroxidase (GPX) activity, collectively
attenuating oxidative stress and lipid peroxidation. The present
findings validate that biosynthesized selenium nanoparticles
(SeNPs) markedly enhance CAT and SOD activity in
Amaranthus microgreens (Table 2; Figure 9), solidifying
selenium’s pivotal role in fortifying antioxidant defense
mechanisms in plants.

3.8 Estimation of selenium content in
amaranth seedling

Selenium is primarily absorbed by plant roots through sulfur
transporters and incorporated into organic compounds, with its
accumulation in shoots influenced by soil selenium availability and
organic matter content (Terry et al., 2000; Arscott and Goldman,
2012). Similar dose-dependent selenium accumulation patterns
have been reported in wheat, alfalfa, sunflower (Lintschinger
et al., 2000; Lyons et al., 2005), Brassica species (Banuelos et al.,
1997), kale (Lefsrud et al., 2006), and onion (Barak and Goldmon,
1997). The selenium content in Amaranthus microgreens was
highest in the ST+SA+FA treatment (10.69 mg/g), followed by
ST+SA (8.16 mg/g), while the control exhibited minimal
accumulation (0.60 mg/g) (Table 2; Figure 10). These findings
align with previous studies demonstrating that soil-applied SeNPs
significantly enhance selenium uptake in plants, as observed in bok
choy, where root concentrations exceeded shoot levels (Ramos
et al., 2010).

The current study confirms that biosynthesized SeNPs
effectively promote selenium biofortification in Amaranthus
microgreens (Table 2; Figure 10), highlighting their potential for
enhancing nutritional quality in leafy vegetables.

4 Conclusion

This study highlights the significant potential of biosynthesized
selenium nanoparticles (SeNPs) in enhancing abiotic stress
tolerance and improving growth parameters in Amaranthus
microgreens (var. Arka Suguna). The most effective treatments
are seed treatment, soil application, and foliar spray (ST+SA+FA)
of 100 ppm SeNPs, resulting in remarkable improvements across all
measured parameters. The treatment achieved a 97.5% germination
rate, increased plant height to 5.6 cm, and boosted yield to 330 mg.
Nutritionally, it enhanced protein content to 377.20 mg/100 g,
carbohydrates to 951 mg/100 g, flavonoids to 11.40 mg/g, and
vitamin C to 36.67 mg/100 g. The antioxidant capacity
significantly improved with SOD activity reaching 0.07 U/mg/
min and CAT activity 13.49 U/mg/min, indicating stronger stress
defense mechanisms. Notably, selenium accumulation peaked at
10.68 mg/g, demonstrating effective biofortification. Beyond plant
growth, the SeNPs showed compatibility with beneficial soil
microorganisms, suggesting broader ecosystem benefits. These
comprehensive results position biosynthesized SeNPs as a

FIGURE 10
Effects of SeNPs and drought stress on the Selenium content in
Amaranth microgreens var. Arka Suguna. All the plants were drought
stressed with PEG (37.5 mM). Control- No Nanoparticles applied, ST:
Seed treatment with SeNPs (100 ppm), ST + SA: Seed treatment
with SeNPs (100 ppm) and Soil application with SeNPs (100 ppm), ST +
FA: Seed treatment with SeNPs (100 ppm) and Foliar application with
SeNPs (100 ppm), ST + SA + FA: Seed treatment with SeNPs (100 ppm),
Soil application with SeNPs (100 ppm) and Foliar application with
SeNPs (100 ppm). Different letters demonstrate significant differences
among the treatments (p < 0.05).
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multifaceted solution for modern agriculture, capable of
simultaneously addressing productivity challenges posed by
abiotic stresses while improving nutritional quality. The findings
strongly support the adoption of SeNPs as sustainable nano-
fertilizers, offering an innovative approach to enhance crop
performance under stressful environmental conditions. In the
future, nano selenium can be mass-produced commercially for
agricultural applications. This research provides a practical and
environmentally friendly method of enhancing microgreen
production and drought resistance, which is particularly
beneficial for small-scale and urban agriculture farmers.
Improving nutrient content supports food security in areas with
limited water availability. The results also complement international
sustainability objectives, calling for lesser dependency on chemical
inputs in agriculture.

Recent studies have shown that selenium nanoparticles can
induce epigenetic modifications by altering stress-related gene
expression, such as DNA methylation in plants like chicory and
pepper. These changes may contribute to enhanced abiotic stress
tolerance. While transgenerational inheritance has not yet been
confirmed, the potential for epigenetic memory warrants
investigation. Long-term studies are necessary to assess whether
such traits are retained and if they provide adaptive advantages in
offspring under abiotic stress. A potential limitation of this study is
the use of short-term microgreen trials under controlled conditions,
which may not fully reflect the field-level responses. Future work
should evaluate SeNPs effects across developmental stages and at
different environmental conditions.
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