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Here, we report a large-scale wafer microfabrication process and in-depth
electrical analysis of atomic layer deposition (ALD) grown bilayer (i.e., HfO2/
Ta2O5) memristive devices. The fabricated bilayer devices initially require an
electroforming event and show stable bipolar resistive switching responses
with some variations in the device switching voltages. These variations are
covered in the 15.7%–22.7% range corresponding to the maximum switching
voltage of the tested devices. Moreover, time series analysis (TSA) is employed by
considering the device switching voltages (VSET and VRESET) to predict the device
performance and the obtained outcomes are well matched to the experimental
data. Furthermore, the least values of coefficient of variability (CV) in the device
switching voltages are 6.09% (VSET) and 3.22% (VRESET) in the case of device-to-
device (D2D) while 1.76% (VSET) and 2.14% (VRESET) in the case of cycle-to-cycle
(C2C). Furthermore, the fabricated devices efficiently perform the synaptic
functionalities in terms of potentiation (P) and depression (D), paired-pulse
facilitation (PPF), and paired-pulse depression (PPD), with a least value of
nonlinearity (NL) factor of 0.43 in synaptic response, which is close to the
ideal value of NL in biological synapses. Therefore, the present work shows
that the single ALD system can be an efficient depositionmethod to deposit high-
k oxide materials for memristive arrays over large-scale wafers.
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1 Introduction

The high-k dielectric metal oxide (MO) plays a pivotal role in developing memristive
devices with stable switching responses for various potential applications including data
storage (Furber, 2016), multi-bit storage (Jeong et al., 2016), artificial synapses (Jeong et al.,
2016), analog/neuromorphic computation (Kumar et al., 2022a) and in-memory
computation (Mehonic et al., 2020). These oxides-based memristive devices are fully
capable of adopting the existing standard complementary metal oxide semiconductor
(CMOS) fabrication process which further enhances their acceptability and integration with
CMOS technologies in current and future electronic systems (He et al., 2021). Importantly,
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high-k MO-based memristive devices are efficiently realized
aforementioned applications (Furber, 2016; Jeong et al., 2016;
Kumar et al., 2022a; Mehonic et al., 2020) due to their unique
properties such as non-volatility (Zidan et al., 2018), nanoscale
device scalability (Kim et al., 2021), ultrafast switching speed
(Torrezan et al., 2011) and atto joule (aJ) energy and femto watt
(fW) power consumption (Choi et al., 2016; Chen et al., 2020).
Considering these benefits, scalable memristive devices can be a
forefront solution in future computing technologies (Singh et al.,
2025). However, the variability factor in device switching parameters
such as switching voltages, ON/OFF ratio, and conductance levels,
either in device-to-device (D2D) or in cycle-to-cycle (C2C)
(Amirsoleimani et al., 2020; Zhang et al., 2019), poses a
significant challenge to the wider acceptance of this memory
technology.

These variabilities or inconsistencies could hinder their
integration into future cutting-edge applications, including
advanced memory technologies (Xia and Yang, 2019), in-memory
computation (Xia and Yang, 2019), and neuromorphic computing
architectures (Xia and Yang, 2019).

Previously, several attempts have been made to realize the high-
k MO-based bilayer memristive devices with different electrode
configurations including Pt/Ta2O5/HfO2/TiN (Ghenzi et al., 2024;
Ryu et al., 2021). Ghenzi et al. (2024) have demonstrated
heterogeneous reservoir computing wherein, HfO2 (10 nm) was
grown by using thermal ALD at 280°C while Ta2O5 (10 nm) was
deposited through plasma-enhanced ALD at 200°C. However, due to
the process variations and growth temperature difference, fabricated
memristive devices exhibited high switching voltages (<10 V) with
inconsistency in the resistive switching responses (Ghenzi et al.,
2024). Ryu et al. (2021) have also reported Pt/Ta2O5/HfO2/TiN-
based memristive structure to implement long-term and short-term
plasticity wherein, HfO2 (5 nm) was grown via thermal ALD at
250°C while Ta2O5 (15 nm) was deposited through reactive DC
magnetron sputtering at room temperature. However, the reported
outcomes revealed that the device switching voltages showed
comparatively high values of CV in VSET (6.78%) and VRESET

(4.78%) which could be due to the utilization of two different
deposition systems and growth temperature that led to the
anomalies and irregularities on the device surface (Ryu et al., 2021).

Napari et al. (2024) have reported a TiN/HfO2/Ta2O5/TiN-
based memristive device structure in which Ta2O5 (5 nm) was
deployed using plasma-enhanced ALD at 200°C while HfO2

(3 nm) was grown by thermal ALD at 175°C. However, the
obtained data show that device performance is not very stable
with a weak memory window and the detailed statistical analysis
has also not been discussed (Napari et al., 2024). Recently, Kumar
et al. (2025) have demonstrated TiN/HfO2/Ta2O5/TiN-based
standalone memristive devices through a single thermal ALD
having a memory cell size of 400 μm2. In this reported work, the
impact of a thin Ta2O5 (2 nm) layer was investigated in HfO2-based
memristive devices. Additionally, the reported work (Kumar et al.,
2025) experimentally demonstrated that the origin of switching was
resistive rather than capacitive through impedance spectroscopy
analysis (Kumar et al., 2025). Considering the aforementioned
experimental reports (Ghenzi et al., 2024; Ryu et al., 2021;
Napari et al., 2024), utilization of two different deposition
systems and variation in growth temperature could introduce

surface/interface anomalies which further deteriorate the device
performance. Therefore, to avoid these issues, we have utilized a
single thermal ALD system with constant growth temperature for
both oxide layers which significantly improves the statistical
performance of the fabricated devices in the crossbar array
configuration.

Herein, we have thoroughly electrically characterized the
randomly selected memristive devices from a large-scale wafer
(6-inch diameter having total devices of ~100 k in the crossbar
configuration) and examined their resistive switching responses and
values of variability factor in the device switching parameters. The
selected memristive devices exhibit bipolar switching responses with
excellent stability and show 22.72% (VSET) and 15.72% (VRESET)
variations in the device switching voltages corresponding to the
maximum switching voltages of the tested devices. Moreover, time
series analysis (TSA) is employed by considering the device
switching voltages (VSET and VRESET) to predict the device’s
performance. TSA is a robust statistical and well-recognized
method for analyzing data collected at regular intervals which
facilitates the investigation of inherent patterns and trends in
datasets. The obtained outcomes are well matched with the
experimental data which further shows the efficiency of the
utilized model. Additionally, the devices depict the lowest value
of the coefficient of variability (CV) in both D2D (3.22%) and C2C
(1.76%) in device switching voltages. Additionally, the fabricated
memristive devices successfully emulate the synaptic functionalities
including potentiation (P), depression (D), paired-pulse facilitation
(PPF), and paired-pulse depression (PPD), and synaptic response
having a least value of nonlinearity (NL) factor of 0.43 close to the
ideal value of NL in biological synapses (Kumar et al., 2022a).

2 Fabrication process of
memristive devices

The detailed fabrication process flow for bilayer (HfO2/Ta2O5)
switching oxide structures is illustrated in Figure 1. The switching
oxide layers are deposited using thermal ALD (Veeco Fiji2 ALD),
while the top and bottom contacts are formed using an Angstrom
Engineering sputtering tool. The process begins with the growth of a
200 nm-thick SiO2 layer on a Si substrate through thermal oxidation
as shown in Figures 1a, b.

The substrate undergoes thorough cleaning in an ultrasonicator
with acetone and isopropanol (IPA) for 10 min each to remove
surface impurities, such as dust particles and organic residues. To
pattern the bottom electrode (BE), direct-write photolithography is
performed using a MicroWriter ML® 3 Pro system (Durham
Magneto Optics, DMO), followed by sputtering of a 50 nm TiN
layer at room temperature, as shown in Figures 1c–f. The
photolithography process utilizes a 5 µm resolution lens, a
405 nm light source, and a pre-optimized exposure dose of
180 mJ/cm2 to accurately define all three levels of the mask
design. Next, ~8 nm HfO2 and ~2 nm Ta2O5 layers are
deposited as a switching oxide layer without breaking vacuum, as
illustrated in Figure 1g. The deposition temperature for both
materials is maintained at 300°C. HfO2 is deposited using tetrakis
(dimethylamido) hafnium (IV) (TDMAHf) as the hafnium
precursor and H2O as the co-reactant, requiring nearly 78 ALD
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cycles. For Ta2O5, pentakis (dimethylamido) tantalum (PDMATa)
serves as the tantalum precursor with H2O as the co-reactant,
necessitating around 25 ALD cycles to achieve a ~2 nm thickness.

The precursor bottles are heated to 75°C for TDMAHf and
105°C for PDMATa. Each HfO2 ALD cycle involves a 0.25 s
TDMAHf pulse followed by a 5 s Ar purge, and a 0.06 s H2O
pulse followed by another 5 s Ar purge, resulting in an average
growth per cycle (GPC) of 0.1028 nm. For Ta2O5 deposition, each
ALD cycle consists of a 0.6 s PDMATa pulse, a 5 s Ar purge, a 0.06 s
H2O pulse, and a final 5 s Ar purge, achieving an average GPC of
0.0842 nm. After depositing the oxide layers, reactive ion etching
(RIE) with CHF3/Ar plasma is used to expose the contact pads for
the BEs. The etching duration is approximately 13 min to etch the
HfO2/Ta2O5 bilayer, with an etch rate of 0.820 nm/min (Figures
1h–j). Finally, photolithography is performed to pattern the 50 nm
top TiN electrode (TE) (Figures 1k–m). Figures 1n, o and (o)
illustrate the optical microscope images of the final device on a
large-area wafer scale having a device structure of TiN/HfO2/Ta2O5/
TiN. The memory cell size in the fabricated arrays is (10 × 10) µm2.

3 Results and discussion

We utilize a custom in-house memristor testing tool (ArC ONE)
for conducting these electrical measurements. Figure 2 illustrates the
primary resistive switching mechanism observed in the fabricated
bilayer memristive devices. The conduction process in these bilayer
structures is primarily linked to the formation of conductive paths
composed of oxygen vacancies (Ryu et al., 2021). Figure 2a shows the
pristine device state in which there is no electric potential applied
over the device. Typically, oxygen vacancies in resistive switching
oxides are generated during the electroforming process, as shown in

Figures 2b, c. The creation of conductive filaments during this initial
forming stage can be explained by the migration of oxygen vacancies
or ions from the TE toward the BE. Figure 2d shows the
electroforming process during current-voltage (I-V)
measurements wherein forming voltage (VF) is +5.5 V. Here, it
should be noted that the initial resistance of the pristine device is in
the range of 10–20 GΩ and after the forming event the device
resistance is in the range of 5–7 kΩ.

Additionally, the fabricated devices demonstrate analog resistive
switching behavior (Kumar et al., 2022b). To prevent permanent
damage during measurements, a compliance current (ICC) of 1 mA
is applied to the device (Kumar et al., 2023). After the forming
event, ±4.5 V is imposed over the TE of the fabricated devices while
BE is kept at the ground.

As observed from Figure 3a, under the positive voltage from 0 to
+4.5 V, the memristive device is switched from a high resistance
state (HRS) to a low resistance state (LRS) at the voltage of +3.75 V
(i.e., D1), and this event is termed as “SET” process.While, under the
negative voltage bias from 0 to −4.5 V on TE, the device resistance
state is switched back from LRS to HRS at the voltage of −4.01 V
(i.e., D1), and this process is known as the “RESET” process. Figures
3a–5a(D1-D34) depict the analog-type resistive switching responses
of the randomly selected memristive devices from the fabricated
crossbar array architecture. As observed, these devices exhibit stable
bipolar resistive switching characteristics with some variations in the
device switching voltages (VSET and VRESET) as illustrated in Figures
5b, 6a, b, e, f. Figure 5b displays the average values of the first
10 switching cycles of VSET and VRESET of individual devices
(D1-D34).

However, some observable variations have been seen which
might have appeared due to the crossbar array configuration
wherein sneak-path current is a serious concern (Shi et al., 2020;

FIGURE 1
Step-by-step fabrication process for memristive devices on wafer scale; (a) Si substrate, (b) Thermally grown thick SiO2 layer (200 nm), (c)
Photoresist spin-coating, (d) Laser lithography and development process, (e)Deposition of TiN BE via sputtering, (f) Lift-off process, (g)Deposition of thin
HfO2 and Ta2O5 via thermal ALD, (h) Photoresist spin coating, (i) Laser lithography, development process and pad opening for BE through RIE, (j)
Photoresist removal process, (k) Photoresist spin-coating, (l) Laser lithography and development process, (m) Deposition of TiN TE via sputtering
and lift-off process, (n) Final wafer scale fabricated memristive crossbar array devices, and (o) Optical microscope images of fabricated memristive
devices in array configuration.
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Chen et al., 2021). As discussed, the fabricated devices essentially
required an electroforming process to obtain the switching
responses. Therefore, non-uniform heat dissipation can cause
localized hot spots. These variations can lead to either abrupt or
gradual switching depending on the temperature dependence of the
underlying mechanisms (Kumar et al., 2022c). Additionally, in
memristive devices, switching involves the formation and rupture
of conductive filaments (CFs) composed of defects including oxygen
vacancies. The stochastic nature of CF formation leads to variability:
abrupt switching occurs when a filament forms or breaks suddenly,
while gradual switching results from partial or progressive filament
changes. This inherent randomness contributes to inconsistencies in
device behavior (Kumar et al., 2022c). Additionally, long endurance
was also performed which further confirms the better device stability
as shown in Figure 5c. However, each device has inherent variations
(or uncontrolled ionic motion during the switching process) in the
ON/OFF ratio, which might lead to the overall variation in the LRS
and HRS values throughout the different devices over the wafer
scale. Moreover, in the fabricated devices, a thin layer of Ta2O5 acts
as the thermal enhanced layer to improve the uniformity of oxygen
vacancy distribution during the switching process (Xiang et al., 2019;
Wanga et al., 2021).

As analyzed in Figure 6, the randomly selected memristive
devices show nearly 22.72% variations in the VSET concerning
maximum VSET voltage as shown in Figure 6a while 15.72%

variations in the VRESET concerning maximum VRESET voltage of
the device as shown in Figure 6e. These observed variations cover a
large area of the wafer as different locations of the device have been
considered and electrically characterized to perform statistical
analysis. Additionally, these variations are also correlated with
the anomalies in the device fabrication process, material growth
conditions, and quality of deposited thin films (Zheng et al., 2024; Li
et al., 2021).

Moreover, time series analysis (TSA) techniques are utilized to
model and forecast variations in the switching voltages, specifically
VSET and VRESET. This statistical framework significantly helps to
analyze collected data at regular intervals and predict the inherent
patterns and trends in datasets (Roldan et al., 2021; Alonso et al.,
2021; Roldan et al., 2023). This analytical methodology supports
precise modeling, prediction, and forecasting and has been
extensively applied across diverse research disciplines.

In recent years, the application of TSA to investigate and predict
variations in switching parameters within resistive switching devices
has garnered significant attention and exhibited substantial growth
(Alonso et al., 2021; Thorat et al., 2024; Mullani et al., 2023). In this
study, the analysis is focused on the VSET and VRESET series. Given
the stoichiometric complexities and variability intrinsic to the
switching parameters of memristive devices, addressing their
nonlinear behavior necessitated the adoption of advanced TSA
methodologies. To this end, the Holt-Winters Exponential

FIGURE 2
Dominant resistive switchingmechanism: (a) Pristine device i.e., no electrical potential applied, (b) Formation of conductive filament throughout the
switching oxide layers under the application of external applied electrical potential, (c) Filament ruptured device under reverse electrical potential, and (d)
Filament forming event during I-V response.
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Smoothing (HWES) technique is employed to model, predict, and
forecast the data series as reported in (Rokade et al., 2024; Katkar
et al., 2022).

The derived parameters α, β, and γ estimates are instrumental in
constructing predictive models for VSET and VRESET. For VSET, the
respective values are 1.4901 × 10−8, 1.4894 × 10−8, and 3.0798 × 10−15,
while for VRESET, these are 1.49 × 10−8,1.489 × 10−8, and 6.1825 ×
10−17. Utilizing these parameters, predictions for the switching
voltages are generated, with the results illustrated in Figures 6b, f.
Notably, the TSA approach proved highly effective in forecasting the
switching voltages VSET and VRESET for the next 30 devices, as
depicted in Figures 6b, f. These predictions closely aligned with the

experimentally obtained values, thereby demonstrating the
predictive accuracy of the HWES technique. The outcomes
further reveal that the HWES method successfully captured
variations in both switching voltages and current states. These
findings validate the reliability of HWES in modelling the
switching parameters of HfO2/Ta2O5-based devices. Furthermore,
the autocorrelation function (ACF) and partial autocorrelation
function (PACF) values of the residuals for all series, are
presented in Figures 6c, d and Figures 6g–h, indicate an absence
of significant lag in the residuals. This lack of correlation in both
ACF and PACF confirms the robustness of the model (Rokade et al.,
2024; Khot et al., 2024).

FIGURE 3
(a) Resistive switching responses of the randomly selected devices (D1-D12) from the fabricated memristive crossbar array structure.
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The realization of high-k dielectric metal oxide-based
memristive devices faces a significant challenge in the
fluctuations in device switching parameters during device-to-
device (D2D) and cycle-to-cycle (C2C) (Kumar et al., 2022b;
Baeumer et al., 2017; Sangwan et al., 2018). In the case of D2D,
the variations are introduced due to inhomogeneity and anomalies
in fabrication processes including nonuniformity and smoothness in
the deposited thin films while C2C variations are dominated due to
the stochastic nature of the resistive switching process (Sangwan
et al., 2018). Therefore, to better analyze and quantify these
fluctuations, the coefficient of variation (CV) plays a pivotal role

which is defined as the ratio of the standard deviation (σ) to the
mean (μ) (Chen et al., 2020; Kumar et al., 2022b). This crucial metric
provides insights into the consistency and reliability of switching
parameters.

In our study, device switching voltages (VSET and VRESET) of
randomly selected devices are utilized and for C2C CV, a single
memristive cell is considered. This approach allows us to gauge the
extent of variability and enhance device performance evaluation.
The cumulative distribution function (CDF) of VSET and VRESET in
D2D and C2C are illustrated in Figures 7a–d which is calculated by
using Equation 1 as follows for each value of VSET and VRESET.

FIGURE 4
(a) Resistive switching responses of the randomly selected devices (D13-D24) from the fabricated memristive crossbar array structure.
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CDF x( ) � 1
2

1 + erf
x − μ

σ
�
2

√( )[ ] (1)

Here, µ is the mean, σ is the standard deviation, and x is the input
value. To evaluate the values of D2D CV, randomly selected
34 devices and for C2C CV, 50 consistent cycles were utilized. As
observed from Figure 7a, the values of D2D CV in VSET and VRESET

are presented wherein VSET CV and VRESET CV are 6.09% and 3.22%,
respectively. These lowest CV values in switching parameters are
further associated with the thin film uniformity and low leakage

current in the fabricated devices (Yun et al., 2021; Park et al., 2024).
Figures 7b–d shows the values of C2C CV in multiple devices (D1,
D5, and D8). Here, values of C2C CV are 1.76% (VSET), 2.26%
(VRESET), 2.28% (VSET), 3.58% (VRESET), and 4.16% (VSET), and
2.14% (VRESET) associated with the device D1, D5 and D8,
respectively. Moreover, these minimal values of CV validate the
stability and reproducibility of the fabricated devices. Furthermore,
the lower C2C variations ensure the reliability and stability
consistency in memory cells across multiple read/write cycles.
Additionally, low C2C variations support precise control over the

FIGURE 5
(a) Resistive switching responses of the randomly selected devices (D25-D36) from the fabricated memristive crossbar array structure, (b) D2D
variations in VSET and VRESET, and (c) Pulse endurance tests up to consistent 500 cycles for device no. D31. Here, insets show the applied pulse scheme
during the test.
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resistance levels, which enables more accurate synaptic weight
tuning in synaptic and neuromorphic computing tasks (Sun and
Yu, 2019). The precise tunability of the synaptic weight in the
biological synapses further enhances learning and recognition tasks.

The potentiation and depression functionality of the artificial
synapse has been implemented by applying the input voltage
pulses. Figure 8a shows the potentiation (P) process, wherein the
device conductance is continuously strengthened under the
application of a train of 50 positive successive pulses with
VA = +4.0 V, PW = 100 µs, and PD = 10 µs In the case of the
depression (D) process, the device conductance is continuously
weakened under the application of a train of 50 negative pulses
with VA = −4.0 V, PW = 100 µs, and PD = 10 µs Here, the
amplitude of the read voltage pulse (VR) is ±0.5 V, as depicted in
Figure 8c. Figure 8b depicts the combined plot of potentiation
and depression which assists in evaluating the value of the
nonlinearity (NL) factor for P and D processes and the

calculated value to be 0.43 at pulse number (n) = 25. Here, to
evaluate the value of the NL factor, Equation 2 formulation has
been utilized (Kumar et al., 2022a; Wang et al., 2016):

NLFactor � Max GP n( ) − GD n( )| | for n � 1 toN (2)
where, GP(n) and GD(n) are the conductance values after the nth
P-pulse and nth D-pulse, respectively. Here, it should be noted
that the evaluated value of the NL factor is normalized with
overall plasticity and defined in the range from 0 to 1 during a
synaptic weight update sequence comprising an equal number
(N) of consecutive P-pulses and D-pulses. However, for a
completely linear synaptic weight update, the value of the NL
factor is equal to 0 (Wang et al., 2016) wherein learning and
forgetting processes can be overlapped. The obtained
memristive device characteristics show a similar agreement
with the P and D functionalities of the real biological synapse
(Zhao et al., 2022). Moreover, paired-pulse facilitation (PPF)

FIGURE 6
Variability analysis of randomly selected devices from wafer-scale memristive crossbar arrays: (a) VSET for (D1-D34), (b) Predicted values of VSET for
next 30 devices corresponding to experimentally measured values, (c) Autocorrelation function of residual for VSET, (d) Partial autocorrelation function of
residual for VSET, (e) VRESET for (D1-D34), (f) Predicted values of VRESET for next 30 devices corresponding to experimentally measured values, (g)
Autocorrelation function of residual for VRESET, and (h) Partial autocorrelation function of residual for VRESET.

Frontiers in Nanotechnology frontiersin.org08

Kumar et al. 10.3389/fnano.2025.1621554

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2025.1621554


FIGURE 7
Variability analysis in terms of coefficient of variability (CV): (a)D2D, and (b-d)C2C in randomly selected memristive devices. Here, (b)D1, (c)D5, and
(d) D8.

FIGURE 8
(a) Synaptic learning and forgetting responses in terms of potentiation and depression mechanisms under a train of the symmetric pulsing scheme,
(b) Illustration of non-linearity factor analysis, and (c) Schematic representation of applied symmetric pulsing scheme during the weight update process.
Here, PW is pulse width and PD is pulse delay, (d) Paired-pulse facilitation (PPF) index, and (e) Paired-pulse depression (PPD) index mechanisms. Insets
show input pulsing schemes.
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defines the pivotal information in short-term plasticity (STP)
behavior (Santschi and Stanton, 2003), showing how the
synaptic response of the first stimulus enhances the synaptic
response to the second stimulus. In the biological synapses, PPF
behavior is defined by the amplification of the second post-
synaptic response current under the applications of two
consecutive spike stimuli, where the interval between spikes
is shorter than the recovery time (Zhang et al., 2017). Figure 8d
shows the experimental characterization of PPF functionality in
the fabricated devices which is calculated by utilizing Equation
3. This experimental evidence underscores the device’s
capability to replicate crucial aspects of PPF behavior which
is also observed in the biological synapses, showcasing its
potential to emulate synaptic plasticity in neuromorphic
computing (Tang et al., 2022).

PPF � A2 − A1( )
A1

× 100% (3)

here, A1, and A2 represent the amplitude of currents
corresponding to the first and second voltage stimulus,
respectively. In Figure 8d, the interrelation between the
increase in rate and the amplitude of the synaptic response
current during successive positive or negative pulses is
illustrated for different time intervals. The pulse interval is
systematically varied from 5 µs to 50 µs up to 200 µs, while
maintaining a fixed pulse magnitude and width of 4 V and 10 µs,
respectively. From Figure 8d, it is observed that under the
consistently positive paired-pulse facilitation (PPF) across all
pulse intervals, indicating that the current during the second
pulse consistently exceeds that of the first pulse. In the case of
paired-pulse depression (PPD), the current in the second pulse
consistently decreases behind that of the first pulse as depicted in
Figure 8e. Therefore, this electrical investigation provides in-
depth insights into the dynamic behavior of the device, and its
ability to replicate PPF and PPD mechanisms as similarly
observed in the real biological synapses while varying pulse

intervals. Finally, Table 1 shows a detailed comparison
analysis between our work and other reported literature
(Ghenzi et al., 2024; Ryu et al., 2021; Napari et al., 2024;
Kumar et al., 2025; Kim et al., 2018).

4 Conclusion

Herein, we have reported the microfabrication process and
in-depth electrical characterizations of the bilayer (HfO2/Ta2O5)
memristive devices. A low-temperature single thermal ALD tool
is utilized to deposit both active oxide layers at 300°C without
breaking the system vacuum to minimize the effect of surface
anomalies. The fabricated memristive devices required an
electroforming process to show the stable bipolar resistive
switching responses. The obtained outcomes suggest that all
devices depict stable switching responses over hundreds of
cycles. The randomly selected devices from wafer-scale
memristive arrays exhibited 22.75% (VSET) and 15.72%
(VRESET) variations in the device switching voltages
corresponding to the maximum switching voltage of the tested
devices. Additionally, the adopted TSA analysis efficiently
predicted the device switching voltages (VSET and VRESET) for
the next 30 devices which was well matched with the obtained
experimental data. The values of coefficient of variability (CV) for
D2D (CV: 3.22%) and C2C (CV: 1.76%) revealed the remarkable
stability and reproducibility of the fabricated devices and
confirmed that the ALD-grown thin film has a smooth and
uniform surface. Furthermore, the fabricated devices are
efficiently able to mimic the synaptic functionalities including
potentiation, depression, PPF, and PPD under low pulse width
which makes them a perfect candidate for synaptic and
neuromorphic devices. The value of the NL factor (0.43) is
close to the ideal value which suggests that these device
configurations can be useful for developing ideal
synaptic systems.

TABLE 1 Comparison analysis between this work and other reported work (Ghenzi et al., 2024; Ryu et al., 2021; Napari et al., 2024; Kumar et al., 2025; Kim
et al., 2018).

Device
structure (BE-

to-TE)

Oxides
thickness

(nm)

Deposition
technique

Forming
process

Switching
voltages

Coefficient of
variability (CV)

Crossbar array
Configuration

Pt/Ta2O5/HfO2/TiN
(Ghenzi et al., 2024)

HfO2: 10
Ta2O5: 10

Thermal ALD and
Plasma Enhanced ALD

Not required VSET = +8 V
VRESET = −9 V

Not Reported Yes

TiN/HfO2/Ta2O5/Pt
(Ryu et al., 2021)

HfO2: 5
Ta2O5: 15

ALD and Reactive DC
magnetron sputtering

Yes, required
(Vform: −9.57 V)

VSET = −1 V
VRESET = +2 V

VSET = 6.78%
VRESET = 4.78%

No, Standalone Devices

TiN/HfO2/Ta2O5/TiN
(Napari et al., 2024)

HfO2: 3
Ta2O5: 8

Thermal ALD and
Plasma Enhanced ALD

Not required VSET = +3 V
VRESET = −3 V

Not Reported No, Standalone Devices

TiN/HfO2/Ta2O5/TiN
(Kumar et al., 2025)

HfO2: 8
Ta2O5: 2

ALD Yes, required
(Vform: +5.5 V)

VSET = +4.1 V
VRESET = −4.2 V

Not Reported No, Standalone Devices

Pt/HfO2/Ta2O5/Ti
(Kim et al., 2018)

HfO2: 15
Ta2O5: 3

ALD and RF magnetron
sputtering

Yes, required
(Vform: +8.1 V)

VSET = +1.5 V
VRESET = −1.7 V

VSET = 6.21%
VRESET = 2.20%

No, Standalone Devices

TiN/HfO2/Ta2O5/TiN
[This work]

HfO2: 8
Ta2O5: 2

ALD Yes, required
(Vform: +5.5 V)

VSET = +3.75 V
(D1)

VRESET =
-4.01 V (D1)

VSET = 1.76%
VRESET = 2.26%

Yes
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