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Artificial Intelligence (AI) is revolutionizing industries worldwide, delivering
unprecedented productivity gains across diverse sectors, from healthcare to
manufacturing. Recent advances in generative AI models have particularly
accelerated innovation, enabling more efficient execution of complex tasks
such as drug discovery, autonomous driving, and predictive maintenance. In
the areas of electronics manufacturing: a sector crucial to the advancement of
modern technologies, the impact of AI is profound, with the potential to
transform every stage of the supply chain. This perspective investigates the
role of AI in reshaping the electronics and semiconductor industries, exploring
how it integrates into various stages of production and development. The
approach to AI integration is structured and methodical, addressing both
challenges and opportunities across five key nanotechnology areas: materials
discovery, device design, circuit and system design, testing/verification, and
modeling. In materials discovery, AI aids in identifying new, more efficient and
sustainable materials. In device design, it enhances the functionality and
integration of components. AI’s capabilities in circuit and system design
enables more complex and precise electronic systems. During the testing and
verification stage, AI contributes to more rigorous and faster testing processes,
ensuring reliability before market release. Finally, in modeling, AI’s predictive
capabilities allow for accurate simulations, crucial for anticipating performance
under various scenarios. Each pillar of this electronics supply chain underscores
AI’s ability to accelerate processes, optimize performance, and reduce costs.
Supported by case studies of AI-driven breakthroughs, this perspective provides a
comprehensive review of current AI applications across the entire electronic
supply chain, illustrating improvements in yield and sustainable manufacturing
practices.
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1 Introduction

AI is rapidly transforming science and technology by enhancing productivity,
improving decision-making, and optimizing complex systems across a wide range of
domains. In software development, tools like GitHub Copilot and ChatGPT are
reshaping how code is written and reviewed, boosting efficiency and reducing cognitive
load for developers (Noy and Zhang, 2023; Weber et al., 2024; Bird et al., 2023; Ziegler et al.,
2024). Similar gains are evident in finance (Humaid et al., 2024) and public services
(Henman, 2020), where AI supports tasks from fraud detection to policy design, including
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critical areas such as cybersecurity (Kroll et al., 2021). Furthermore,
AI is enabling breakthroughs in clean energy (Chen et al., 2023),
precision medicine (Tan et al., 2023; Heydari et al., 2024; Serov and
Vinogradov, 2022; Gholap et al., 2024; Liu et al., 2021), and
agriculture (Zhang et al., 2021). These advances are driven by
innovations such as predictive modeling for nanomaterials,
personalized drug delivery systems, and data-driven approaches
to crop optimization. These advancements also bring challenges,

such as managing complex datasets and modeling nanoscale
systems. Additionally, AI’s integration into public sector
workflows prompts broader discussions on ethics, transparency,
and human development (Ardichvili, 2022; Tong et al., 2021).

Building on these broader advancements, particularly in
nanomaterials and system-level optimization, AI is increasingly
influencing nanoelectronics, where it supports innovations across
material characterization, device optimization, and advanced

FIGURE 1
(a) Five key pillars encompassing the electronic supply chain centered by human centric artificial intelligence (b) This block diagram illustrates a
complete automated design of experiments system for digital domain applications with six key components.

Frontiers in Nanotechnology frontiersin.org02

Sivasubramani and Prodromakis 10.3389/fnano.2025.1627210

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2025.1627210


manufacturing processes. In material characterization, AI
techniques are crucial for ensuring that properties meet specific
device requirements, as demonstrated by (Botifoll et al., 2022),
exploring AI’s role in nanomaterial characterization and electron
microscopy for advanced nanocharacterization. In terms of device
design and optimization, (Xu et al., 2023), illustrate how AI
enhances the functionality and sensitivity of wearable electronics
like electronic skin, while (Khailany, 2020) highlight AI’s
automation of semiconductor device design processes. The
manufacturing industry also benefits from AI, with
(Papadimitriou et al., 2024; Konstantopoulos et al., 2022; Arinez
et al., 2020) discussing its role in materials design, nanomaterial
manufacturing, and advanced manufacturing techniques, which
lead to more efficient and less wasteful production methods. AI’s
predictive capabilities are leveraged for thermal management and
optimizing power efficiency in densely packed electronic devices, as
shown by (Basu et al., 2024; Zhao et al., 2020). Optoelectronic
technologies also benefit from AI, with (Chen et al., 2022), and
(Piccinotti et al., 2020) enhancing the design and functionality of
optical components integral to sensors and communication
modules. Furthermore, AI plays a significant role in energy
storage for portable electronics, as (Lombardo et al., 2021)
discuss its application in developing more efficient battery
solutions. The advancements in AI-driven nano-electronics, set
the stage for a deeper integration of these technologies into the
broader electronics supply chain.

The electronics supply chain is a complex and multifaceted
industry, structured around five critical pillars: material discovery,
device design, circuits and system design, testing and verification,
and modeling, which collectively support the development,
production, and distribution of high-quality electronic systems.
As illustrated in Figure 1, these pillars are integrated with
centralized artificial intelligence, forming a closed-loop
framework where six interconnected components, including an
optimization engine that continuously refines the design of
experiments based on prior outcomes, enhance efficiency and
innovation across the supply chain. Material discovery focuses on
the research and development of new materials that enhance the
performance, durability, and efficiency of electronic devices, leading
to innovations in semiconductors. Device design is crucial for
determining the physical and functional characteristics of
components like transistors and capacitors, optimizing their
performance within electronic circuits. In circuits and system
design, these components are integrated into coherent systems
that meet specific functional requirements while ensuring
reliability. Testing and verification ensure that every component
and system meets rigorous standards for reliability and safety,
identifying potential failures and design flaws before mass
production. Lastly, modeling involve creating virtual replicas of
physical devices or systems to simulate real-world behavior,
allowing designers to predict performance and identify issues
without physical prototypes, thereby speeding up development
and reducing costs. Together, these pillars form a robust
framework supporting innovation and efficiency in the
electronics supply chain, facilitating the seamless delivery of
electronic products to the market. Understanding these complex
nature of the electronics supply chain provides a foundational
backdrop for this paper, which emerges into how AI-driven

methodologies are specifically transforming the field of
nanoelectronics.

As a result, this paper presents a structured perspective on the
latest advancements. Section 2 covers AI for synthesizing electronic
materials, where machine learning models facilitate the discovery
and optimization of nanomaterials by predicting material
properties, identifying novel compounds, and refining synthesis
processes. These AI-driven approaches reduce reliance on the
need for costly trial-and-error experimentation, accelerating
material development. Section 3 covers AI for optimizing
nanodevice architectures, focusing on how AI enhances
nanodevice design by refining physical and electrical
characteristics, optimizing transistor performance, sensor
sensitivity, and memory efficiency. Advanced algorithms improve
scalability and energy efficiency, addressing key design constraints.
Section 4 covers AI for automating the synthesis of circuits and
systems. Given the complexity of nanoelectronic circuits, AI-
powered tools aid in circuit layout generation, performance
validation, and verification, facilitating the development of highly
integrated and reliable electronic systems. Section 5 covers AI for
aiding the testing and verification of nanoelectronics, where AI-
driven methodologies improve fault detection, enhance test
coverage, and predict failure mechanisms, thereby reducing
manufacturing costs and improving device robustness. Section 6
covers AI for the development of digital twins for semiconductors.
AI supports the creation of virtual models of nanoelectronic systems
that enable real-time monitoring, predictive analysis, and
performance optimization. These AI-enhanced simulations
improve manufacturing precision and device lifecycle
management. Finally, section 7 provides a future outlook,
emphasizing the need for workforce development to address
unresolved challenges.

2 AI for nanomaterials in electronics

The integration of AI into the synthesis of nanomaterials for
electronics utilizes advanced algorithms to streamline synthesis
processes, predict material properties, and minimize resource
consumption and environmental impact. This section explores
AI’s contributions to various aspects of nanomaterial synthesis as
detailed in the forthcoming subsections.

2.1 Machine learning for property prediction
and design

The application of machine learning in material science,
particularly for property prediction and design, advances our
ability to develop new materials and optimize existing ones with
substantial precision. The use of machine learning algorithms
enables the prediction of material properties and the design of
new materials in ways that established methods cannot match.

Advancements in Material Science through ML: Data driven
approach is changing the way materials are developed,
characterized, and optimized, enabling to achieve breakthroughs
at substantial speeds. For example, (Kadulkar et al., 2022), discusses
how machine learning assists in the design of material properties,
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significantly reducing the dimensionality of design spaces and
accelerating the process of material innovation. Similarly, (Lampe
et al., 2023), highlights the rapid, data-efficient optimization of
perovskite nanocrystal syntheses through the fusion of machine
learning algorithms, which enhances the material properties with
limited experimental data, showcasing the practical benefits of AI in
synthesizing advanced materials. The drive towards discovering new
materials is further advanced by (Cai et al., 2020), where machine
learning algorithms play a pivotal role in uncovering new potential
materials, thus expanding the boundaries of material science. The
comprehensive application of AI across the whole life cycle of
material discovery is explored by (Li Jiali et al., 2020),
demonstrating how AI is integrated at every stage from synthesis
to application, thereby enhancing the material development process.
In addition, (Hei Chan et al., 2022), explores the application of
machine learning for advanced material prediction and design,
providing insights into how AI can be leveraged to predict
material behaviors and properties accurately.

AI-Driven Innovations in Material Design and Synthesis: In the
forefront of this development, (Xu et al., 2022; Badini et al., 2023),
reviews the instantaneous property prediction and inverse design of
plasmonic nanostructures using machine learning, highlighting
current applications and future directions in nanoengineering.
(Furxhi et al., 2024). provides a practical example of how
machine learning is applied to the synthesis of silver
nanoparticles, establishing design rules that optimize nanoparticle
development based on synthesis parameters. These studies
collectively underscore the substantial impact of machine
learning on the field of material science, enabling more rapid,
efficient, and innovative material discovery and design processes
that are set to redefine the industry standards. (Batra et al., 2021),
discusses the emergence of materials intelligence ecosystems driven
by machine learning, illustrating how these systems integrate diverse
datasets to accelerate innovation and discovery in material science.
Furthermore, (Yang et al., 2022), provides a comprehensive review
of computational, data-driven design of nanomaterials, highlighting
how big data is utilized predicting material structures and
properties, optimizing synthesis processes and material
functionalities. The work by (Pollice et al., 2021) on data-driven
strategies for accelerated materials design exemplifies the
application of high-throughput virtual screening and inverse
molecular design, techniques that leverage large datasets to
rapidly prototype and refine materials. (Ahmadi et al., 2021),
addresses the application of machine learning in the high-
throughput experimental exploration of metal halide perovskites,
demonstrating how AI streamlines the exploration of compositional
space to enhance the performance of these materials significantly.

2.2 AI-driven synthesis optimization

The study by (Wang and Zhu, 2024) demonstrates the
effectiveness of AI in optimizing online processes compared to
established offline methods, achieving better resource efficiency
and maintaining high-quality nanocrystal production. (Han et al.,
2020), explores machine learning to optimize the synthesis of carbon
dots, achieving higher quantum yields important for optoelectronics
and bioimaging. The integration of Bayesian optimization and deep

learning by (Mekki-Berrada et al., 2021) quickly produces
nanoparticles with desired optical properties, demonstrating AI’s
potential to accelerate and refine synthesis processes. Further
advancements include (Vikram et al., 2021)’s use of neural
networks for the accelerated screening of colloidal nanocrystals,
effectively reducing the number of required experiments. The
“Artificial Chemist,” an autonomous quantum dot synthesis bot
introduced by (Epps et al., 2020), marks a step towards fully
automated laboratories, speeding up material development with
minimal human intervention. Additionally, (Price et al., 2024),
highlights the predictive capabilities of machine learning in
synthesizing nanomaterials, where key properties are predicted
from small datasets, optimizing time and resource use. The
combination of machine learning with microfluidics technology
in a self-driving platform for metal nanoparticle synthesis by
(Tao et al., 2021) dynamically optimizes reaction conditions,
improving scalability and efficiency. (Epps et al., 2021), discusses
the use of ensemble neural networks to optimize material synthesis
in microfluidic systems, showing superior performance over known
methods. Moreover, (Xu et al., 2024), employs neural networks to
predict outcomes of hot injection quantum dot synthesis, providing
insights that enable fine-tuning of synthesis parameters for optimal
product quality. Lastly, a comprehensive review by (Gulevich et al.,
2024) on machine learning-assisted colloidal synthesis encapsulates
the broad spectrum of AI applications in this field, highlighting the
advancements and efficiencies brought by machine learning
techniques in optimizing colloidal nanomaterial synthesis. These
studies collectively put-forth the role of AI in enhancing
nanomaterial synthesis, offering improved efficiency and reduced
environmental impact while opening new avenues.

2.3 Autonomous systems and robotics in
material discovery

In parallel, the integration of AI with robotics in material
discovery automates the entire process of material synthesis and
discovery, leading towards the development of fully autonomous
laboratories. This approach is exemplified by (Jiang et al., 2022),
where an AI-enabled chemical synthesis robot, AI-EDISON,
autonomously explores chemical spaces and optimizes
nanomaterial synthesis, enhancing the precision and efficiency of
material development. The development of closed-loop systems that
integrate robotics with machine learning for continuous
optimization of nanoparticle synthesis is discussed by (Park et al.,
2023), enhancing throughput and consistency in production.
Similarly, (Soldatov et al., 2021), discusses the implementation of
self-driving laboratories that automate the synthesis and
optimization of new functional materials, showing how AI can
streamline complex chemical processes and accelerate material
innovation. The convergence of AI and experimental automation
in autonomous laboratories is further explored by (Xie Yunchao
et al., 2023), which enhance the autonomy of material synthesis
processes, thereby increasing throughput and reducing human
intervention. Moreover, (Li Jiagen et al., 2020), explores into the
use of Bayesian optimization in autonomous systems for materials
synthesis, illustrating the synergy between AI and robotics in
creating more efficient and responsive synthesis protocols. The
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concept of on-demand material synthesis is brought to life by
(Szymanski et al., 2023), where collaborative robots and virtual
reality are employed to enable autonomous materials synthesis and
scientific discovery, pushing the boundaries of what is possible in
materials science.

As we conclude this section, it is evident that AI technologies
have significantly impacted the field of material science, particularly
in the synthesis and design of materials for electronics. By
automating synthesis processes, enhancing material properties,
and reducing environmental impacts, AI is not only optimizing
current methodologies but also paving the way for future
discoveries. In the next section, we will understand how
nanodevice designs are impacted by AI.

3 AI for optimising nanodevice design

AI is increasingly being integrated into the field of nanodevice
design, significantly enhancing the capabilities of design and
simulation processes. This integration leverages advanced
machine learning algorithms to streamline and improve the
accuracy of simulations, predict device behavior under various
conditions, and optimize design parameters. AI’s role extends
from the initial conceptual stages through to the detailed
engineering phases, enabling faster development cycles and more
efficient validation of nanodevices. This section explores how AI
technologies are being applied to reshape established standard
approaches in nanodevice architecture, focusing on design
optimization, simulation enhancements, and predictive analysis.

3.1 AI-enhanced design and simulation in
nanodevice architecture

The integration of AI into nanodevice architecture has
significantly transformed the landscape as evident across various
facets of semiconductor design, from conceptualization to the
detailed predictive simulations that anticipate device behavior
under diverse conditions.

AI-Driven Design Optimization: Studies such as those by
(Cauwenberghs et al., 2023; Jeong et al., 2021) discuss AI’s role
in enhancing the design of micro/nano circuits and systems. These
technologies automate and refine processes that traditionally
required extensive manual intervention and iterative testing. For
instance, (Cheng et al., 2021), explores sensitivity prediction for
VLSI technology development using ML, demonstrating how AI can
expedite the development cycle by predicting outcomes based on
design changes. AI’s ability to handle complex datasets enables the
simulation of scenarios that are challenging to model using
conventional methods. For example, (Wang et al., 2021; Wang
et al., 2024) illustrate how AI models simulate advanced
semiconductor devices, providing insights that guide the
optimization of design parameters for enhanced performance.
Additionally, (Aleksandrov et al., 2023a), describes a fully
convolutional generative machine learning method for
accelerating non-equilibrium Green’s function simulations,
showcasing further advancements in simulation technologies
facilitated by AI. Furthermore, semiconductor device geometry

optimization has emerged as a crucial area where AI significantly
enhances performance and efficiency. By intelligently exploring vast
design spaces, AI-driven models identify optimal geometrical
configurations that minimize power consumption, improve
switching speed, and reduce heat generation.

Simulation and Predictive Analysis: AI extends into the
simulation phase, aiding in predicting the physical and electronic
properties of materials and devices. (Chen et al., 2024; Osowiecki
et al., 2024; Manley et al., 2024) discuss AI in semiconductor process
optimization, where predictive models forecast the outcomes of
various manufacturing processes. This predictive capability is
crucial for identifying optimal manufacturing conditions and
reducing the time and cost associated with experimental trials.
Additionally, AI facilitates the development of accurate models
for electronic design automation (EDA). As noted by (Qiao et al.,
2025), AI-driven tools enable the simulation of complex electronic
systems, allowing designers to anticipate the performance of these
systems in real-world applications. This is particularly important in
the context of heterogeneous integration technologies, where
different components must be seamlessly integrated into a single
device. The studies by (Butola et al., 2022; Xiao Li et al., 2022) further
emphasize the role of AI in enhancing the modeling and simulation
of intrinsic parameter fluctuations and multiphysics digital twins,
respectively, highlighting the breadth of AI applications in device
simulation.

3.2 AI in process control and manufacturing

AI significantly impacts the manufacturing phase of
nanodevices, enhancing both process control and
operational efficiency.

Enhancing Process Control: AI-driven virtual metrology and
process control systems, as discussed in (Maitra et al., 2024; Liu et al.,
2025), predict defects and process deviations, enabling real-time
corrective actions. This not only improves yield but also enhances
the reliability of the manufacturing process. AI models assist in real-
time monitoring and adjustment of manufacturing processes,
optimizing the settings of manufacturing equipment, which is
critical for maintaining the precision required in nanofabrication
((Lin et al., 2021; Ho et al., 2021)).

Manufacturing Efficiency: AI also plays a pivotal role in
enhancing the overall efficiency of manufacturing processes. For
example, (Gökgöz et al., 2024; Lai et al., 2023) highlight how AI
algorithms optimize production lines and reduce waste, thereby
improving both the speed and quality of manufacturing. The
integration of AI into these processes ensures that nanodevice
fabrication meets the high standards required for advanced
applications.

3.3 AI for device characterization

AI contributes significantly to the characterization of
nanodevices, particularly in analyzing and predicting material
behavior and device performance.

Predictive Modeling and Characterization: AI models, such as
those discussed in (Aleksandrov et al., 2023b; Hong et al., 2025), are

Frontiers in Nanotechnology frontiersin.org05

Sivasubramani and Prodromakis 10.3389/fnano.2025.1627210

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2025.1627210


used tomodel and analyze the behavior of materials at the nanoscale.
These models provide valuable insights essential for improving
device performance, predicting how materials will behave under
different conditions, and identifying potential improvements in
material properties.

Enhancing Device Reliability: AI-driven characterization tools
also enhance the reliability of devices. By accurately predicting
device failures and identifying potential quality issues before they
become critical, AI systems save significant resources and time. This
predictive maintenance capability leads to longer device lifespans
and more reliable performance metrics, as demonstrated in studies
like (KimMin-Hwi et al., 2021; Gökgöz et al., 2024). The integration
of AI across various stages of nanodevice architecture: from design
and simulation to manufacturing and characterization, marks a
significant advancement in the field. This integration not only
enhances efficiency and accuracy but also paves the way for
innovations that were previously unattainable, setting a new
standard for the development of nanodevices. Next, we will
explore how it impacts circuits.

4 AI for automating the synthesis of
circuits and systems

The integration of AI into the synthesis and layout automation
of circuits and systems has challenged EDA. This section examines
two key aspects of AI applications in synthesis and layout
automation inluding design and optimization techniques,
reliability and performance evaluation. AI introduces new
capabilities that streamline design workflows, improve accuracy,
and reduce time-to-market, enabling engineers and designers to
address complex design challenges more effectively.

4.1 AI-driven design and optimization
techniques

AI has significantly evolved the efficiency and accuracy of circuit
design and optimization processes. The review by (Fayazi et al.,
2021) encapsulates AI’s applications in modeling and optimizing
analog and mixed-signal circuits, focusing on automated circuit
sizing and performance model accuracy improvements. (Zhao and
Zhang, 2020), introduces an automated framework for topology
synthesis in analog integrated circuits, enhancing design efficiency
by generating and evaluating creative circuit topologies. (Li Jiagen
et al., 2020), proposes an AI-based design approach for optimizing
power converter circuit parameters, automating the design process
that traditionally requires extensive human intervention. In the
domain of approximate computing, (Zervakis et al., 2020),
presents a framework for designing circuits with runtime
reconfigurable accuracy to improve energy efficiency without
compromising performance. (Khailany, 2020), explores the
acceleration of chip design using AI to automate optimization
tasks, transforming traditional workflows. The survey by
(Scarabottolo et al., 2020) discusses the synthesis of approximate
circuits, a method that relaxes accuracy requirements to achieve
benefits in design area and power consumption. (Fayazi et al., 2023),
introduces AnGeL, a neural network-assisted framework that

significantly reduces the need for labeled data in analog circuit
generation. (Senhora et al., 2022), explores topology optimization
through a physics-based learning strategy, enhancing the design
process without sacrificing accuracy.

The application of graph neural networks in high-level synthesis
design space exploration is detailed by (Ferretti et al., 2022), which
improves efficiency and prediction accuracy over established
methods. (Carrion Schafer and Wang, 2019), provides a
comprehensive look at the past, present, and future of high-level
synthesis design space exploration, emphasizing the role of AI in
exploring optimal hardware microarchitectures. The deep
reinforcement learning approach by (Martins and Lourenço,
2023) for analog integrated circuit topology synthesis showcases
significant improvements in handling large-scale designs and
generating creative topologies. The comprehensive survey by
(Chen et al., 2020) on EDA and graph neural networks
highlights the integration of machine learning into various stages
of the EDA flow, addressing time and resource constraints and
enhancing solution quality. Lastly, (Lau Neto et al., 2022), discusses
FlowTune, a framework that uses a domain-specific multiarmed
bandit approach for optimizing logic exploration, demonstrating
superior performance in EDA toolflows.

4.2 AI applications in reliability and
performance evaluation

This subsection highlights AI’s role in enhancing the reliability
and performance evaluation of circuits and systems. (Xiao Jie et al.,
2022), introduces a GPU-accelerated stochastic-based method for
rapidly and accurately estimating the reliability of combinational
circuits at the register transfer level. This method significantly
speeds up computations and reduces error margins compared to
standard approaches. In the area of aging prediction, (Genssler
et al., 2023), discusses the use of a machine learning model to
accurately predict transistor aging under workload dependency.
This approach not only enhances the prediction accuracy but also
offers a substantial speedup over conventional physics-based
models. Similarly (Milo et al., 2021), explores the programming
schemes for resistive switching memory (RRAM) in neural
network circuits, highlighting the trade-offs between accuracy,
size, and power consumption, which are critical for optimizing
memory performance in AI applications. The reduction of yield
loss in AI and deep learning accelerators is addressed by (Sadi and
Guin, 2021), presenting a methodology that leverages the fault
tolerance of deep learning models. This approach significantly
enhances the yield of accelerator chips by allowing them to sustain
higher fault rates with minimal impact on accuracy. (Traiola et al.,
2024), examines the impact of high-level synthesis tools on the
reliability of artificial neural network hardware accelerators,
emphasizing the need for evaluating these tools through
physical fault injection to ensure robustness. (Venkataramani
et al., 2020), presents an AI hardware accelerator core that
utilizes approximate computing techniques across the stack to
improve the efficiency of AI platforms. This study highlights the
potential of leveraging custom number representations and
mixed-precision architectures to enhance performance and
energy efficiency.
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The exploration of AI applications across various aspects of
circuit and system design highlights AI’s significant impact on
electronic design automation. From optimizing design parameters
to automating complex layout tasks, AI has become an essential tool
in advancing circuit design. The studies reviewed demonstrate AI’s
role in enhancing established processes.

5 AI for aiding the testing and
verification of nanoelectronics

This section is organized into three distinct parts, providing a
comprehensive overview of how AI technologies are improving the
efficiency and effectiveness of electronic systems.

5.1 AI-enhanced testing and fault detection
in semiconductor manufacturing

The use of AI in semiconductor manufacturing for enhanced
testing and fault detection is important in establishing more efficient
and accurate processes. (Chaudhuri et al., 2021), introduces a
method for generating test patterns at the processing element
level of AI accelerator chips, which significantly reduces the
number of test patterns needed, as well as the associated time
and cost, while maintaining comprehensive test coverage. This
method benefits from a reconfigurable scan architecture that
enhances the testing efficiency across the entire accelerator array.
Similarly (Schlosser et al., 2022), presents a hybrid system that
combines well-defined computer vision techniques with deep neural
networks. This system is particularly effective in detecting extremely
small defect patterns, achieving an F1-score of up to 99.5%, which
marks an 8.6-fold improvement over previous methods. (Sadi and
Guin, 2021), explores AI-driven fault tolerance and the selective
deactivation of faulty processing elements, which helps in improving
the yield and accuracy of AI accelerator chips. The methodology
leverages the inherent fault tolerance of deep learning models to
minimize yield loss, demonstrating that accelerators maintain less
than 1% accuracy loss even with a 5% fault rate. (Basak Chowdhury
et al., 2022), examines the application of deep learning in testing
integrated circuits, focusing on identifying suitable performance
metrics and ensuring robustness against structural perturbations.
This study emphasizes the importance of developing appropriate
input abstractions allowing machine learning models to learn
reliable and robust features. (Chau-Cheung Cheng et al., 2021),
develops a machine learning-based method for automatically
detecting test-induced defects on wafers, distinguishing these
from defects caused during the fabrication process with over 97%
accuracy. This method improves the overall manufacturing yield by
retesting the affected dies. (Ibtesam et al., 2021), proposes a testing
architecture for low-power AI accelerators that reduces testing time,
power, and area requirements, making it particularly suitable for
applications in autonomous driving systems, having stringent
reliability requirements. (Kundu et al., 2023), introduces a GAN-
based test pattern generation method that significantly enhances the
detection of functional safety violations in DNN accelerators,
thereby improving the functional safety of these critical
components. Finally (Kundu et al., 2021), discusses strategies for

generating a small set of functional test patterns that are effective in
detecting safety violations in deep learning hardware accelerators,
ensuring high fault coverage and addressing the challenges of
ensuring functional safety in these systems.

5.2 AI applications in semiconductor design
and optimization

This subsection focuses on how AI is integrated into
semiconductor design and optimization processes, enhancing the
capabilities and efficiencies of manufacturing operations. (Pan et al.,
2021), discusses the application of AI-integrated physical modeling
and transfer learning for highly accurate defect detection in
advanced semiconductor transistors. The study achieved
remarkable accuracies in classifying defect regions, demonstrating
the effectiveness of AI in identifying critical defects based on
electrical responses, especially in next-generation transistors. (El-
Sayed et al., 2022), introduces a novel metric for evaluating the fault
detection capability of samples used in training and testing spiking
neural networks (SNNs). This metric helps in quickly ranking
samples based on their fault detection capabilities, achieving
near-perfect fault coverage for critical faults that affect SNN
accuracy. The approach is innovative for its application in
neuromorphic computing circuits, where established testing
methods may be inadequate. (Jeong et al., 2021), explores the
integration of TCAD simulation with AI, proposing an AI
emulator that learns from TCAD simulations. This hybrid
modeling approach significantly reduces the computational
demands and simulation runtime, critical in modern
semiconductor design. (Khailany, 2020), examines how machine
learning transforms chip design workflow by automating
optimization tasks and enhancing designer productivity. The
work highlights the application of deep convolutional neural
networks and graph-based neural networks in areas like
automatic design space exploration and VLSI physical design,
pointing towards a future of AI-assisted automated chip design
workflows. (Sundaram and Zeid, 2023), presents an AI-based Smart
Quality Inspection approach that achieves very high accuracy in
detecting defects. This model outperforms all other published
models on the same dataset in terms of accuracy and F1-score,
showcasing the potential of AI to revolutionize quality inspection in
manufacturing.

5.3 AI for advanced diagnostics and system
verification in electronics

The integration of ML techniques in various domains of
electronic design and verification has been a significant focus of
recent research, as evidenced by a diverse array of studies spanning
from side-channel attacks in cryptography to hardware design
verification. (Hoang et al., 2024), explores the application of deep
learning to enhance side-channel analysis for attacking post-
quantum cryptography implementations, specifically targeting the
CRYSTALS-Kyber algorithm. This study underscores the potential
of ML in cryptanalysis by demonstrating the ability to recover
private keys with minimal trace information. Similarly (Pan
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et al., 2022), discusses the role of ML in optimizing test case selection
and prioritization in software engineering, aiming to improve
regression testing efficiency in continuous integration
environments. In the area of hardware design, ML’s impact is
equally profound. (Bennett and Eder, 2025), reviews the
application of ML in micro-electronic design verification,
highlighting both the historical context and the current
challenges that hinder widespread adoption in the industry. This
is complemented by (Genssler et al., 2023; Chu et al., 2021),
respectively addressing the modeling of transistor aging and the
optimization of chip package design using ML-based methods,
showcasing the practical benefits and efficiency improvements
that ML bring to existing engineering tasks.

Moreover, (Kim et al., 2022; Kim Jungsik et al., 2021) further
illustrate the capabilities of ML in simulating and designing fin field-
effect transistors, with a focus on accelerating well-defined simulation
processes and enhancing design accuracy. However, the adoption of
ML in these high-stakes domains is not without concerns. (Xie Zhiyao
et al., 2023; Basak Chowdhury et al., 2022) examine the security and
reliability issues associated withML applications in EDA, emphasizing
the need for robust and reliable ML models that can withstand
potential adversarial attacks and maintain integrity under various
operational conditions. The challenges of ensuring model robustness
and the implications for IC test problems are critically analyzed,
suggesting a cautious approach to integrating ML in sensitive and
critical design processes. Lastly, (Wu et al., 2024), provides a
comprehensive survey of ML applications in hardware design
verification, reflecting on past achievements and outlining future
prospects, thereby framing the ongoing evolution of ML as a
transformative tool in hardware verification. Together, these studies
not only demonstrate the diverse applications of ML across different
facets of electronic design and verification but also highlight the
ongoing challenges and considerations that must be addressed to
fully leverage ML’s potential in these critical domains.

The diverse applications of AI in nanoelectronics, underscore its
role in driving technological advancements and operational
efficiencies. From enhancing fault detection in semiconductor
manufacturing to optimizing design processes and improving
system-level diagnostics in chip design, AI proves to be an
indispensable tool in the modern technological landscape. Now,
lets understand how it shapes digital twins towards modeling.

6 AI for aiding the development of
nanoelectronic digital twins

This section explores the integration of AI in semiconductor
design and digital twins (Ren et al., 2025), focusing on the following
key areas: enhancing modeling and simulation techniques,
advancing predictive maintenance/lifecycle management,
integrating AI with TCAD/physical modeling.

6.1 AI-enhanced modeling and simulation
techniques

The study by (Wang et al., 2024) demonstrates how machine
learning significantly reduce the reliance on experimental data in

semiconductor device modeling, achieving a notable reduction in
mean absolute error. (Xiao Li et al., 2022). introduces an algorithm
capable of creating dynamic digital twins for large-scale electronic
chips, emphasizing the importance of real-time computing and
predictive modeling in the semiconductor industry. Further
exploring the capabilities of AI in this field, (Li et al., 2024),
provides a comprehensive overview of emerging methodologies
that integrate device physics with machine learning engines. This
approach not only enhances the standard compact modeling but
also facilitates effective design technology co-optimization, as
highlighted by (Khailany, 2020; Sheelvardhan et al., 2023),
focusing on the computational speed and accuracy improvements
in chip design workflows. The integration of AI with TCAD is
further exemplified by (Jeong et al., 2021), which bridges the gap
between TCAD simulations and AI, enabling more efficient and
scalable semiconductor design processes. (Chen et al., 2023),
discusses the integration of ML in digital twins for predictive
maintenance, highlighting the role of ML in enhancing the
predictability and adaptability of maintenance strategies.
Similarly, (Ren et al., 2022), explores the lifecycle management of
complex equipment through ML-driven digital twins,
demonstrating how these technologies are capable of providing
early warnings and improve operational efficiency. The
application of digital twins in smart manufacturing is further
elaborated by (Jain and Narayanan, 2023), which showcases how
digital twins enabled by ML drastically reduce the time required for
data generation andmodel accuracy. This is complemented by (Fuhr
et al., 2024), where deep learning is used for segmenting defects in
monolayer MX2 phases, illustrating the precision that ML bring to
defect identification in manufacturing processes. (Qian et al., 2022),
provides a broader perspective on the architecture, applications, and
future directions of digital twins, emphasizing the need for robust
data representation and networking to support diverse industrial
applications. The potential of digital twins in smart manufacturing is
also explored by (Xia et al., 2021), which integrates deep
reinforcement learning with digital twins to automate and
optimize manufacturing tasks. (Gong et al., 2022), discusses a
physics-informed ML approach for reduced-order modeling in
digital twins, applied to nuclear reactor physics. This study
highlights the effectiveness of ML in simplifying complex
simulations and enhancing the predictive capabilities of
digital twins.

6.2 Integration of AI with TCAD and
physical modeling

The integration of AI with TCAD improves the accuracy and
efficiency of semiconductor processes as detailed below. (Jungmann
et al., 2023), introduces a framework that combines TCAD
simulations with ML to build highly accurate and reliable models
for semiconductor technology development. This approach
significantly enhances the predictive capabilities and reliability of
semiconductor manufacturing processes. Similarly, (Pan et al.,
2021), explores the use of AI-integrated physical modeling and
transfer learning to enable efficient failure analysis for nanometer-
scale CMOS transistors, demonstrating high classification accuracy
in defect identification. The work by (Mehta et al., 2020) further
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exemplifies the potential of ML in semiconductor design by
improving TCAD-augmented ML models for identifying
structural variations and enabling inverse design without
extensive domain expertise. (Hirtz et al., 2021), discusses a
framework that utilizes convolutional neural networks in
conjunction with TCAD simulations to predict multi-I–V
characteristics of semiconductor devices, showcasing the ability to
bridge the gap between data-driven methods and established
semiconductor research. (Kim Jungsik et al., 2021), presents a
machine learning approach that accurately reproduces TCAD
simulation results for predicting the impact of point defects on
FinFET device performance, highlighting the precision and
efficiency of ML models in semiconductor analysis. Additionally,
(Kim et al., 2022), demonstrates how ML models accelerate
transistor simulations and enable inverse design, significantly
reducing the time required for device optimization. (Alexopoulos
et al., 2020), illustrates the application of digital twin-driven
supervised ML in the development of AI applications for
manufacturing, emphasizing the role in enhancing the training
and implementation of ML models in industrial settings. (Oliveri
et al., 2022), discusses the use of ML in creating efficient digital twins
for modeling reflectarray unit cells, showcasing how AI enhance the
accuracy and reliability of electromagnetic applications.

The work by (Kwak and Kim, 2023) focuses on semiconductor
multilayer nanometrology, where ML significantly improves the
accuracy of thickness measurements in semiconductor
fabrication. This advancement is vital for ensuring the reliability
and performance of semiconductor devices. (Mazhar Rathore et al.,
2021), provides a comprehensive review of the role of AI, ML, and
big data in digital twinning, identifying the challenges and
opportunities in enhancing digital twin technology for industrial
applications. (Batra et al., 2021), discusses the emerging materials
intelligence ecosystems propelled by ML, highlighting the
transformative impact of AI in materials science and engineering
for faster and more efficient materials development.
(Konstantopoulos et al., 2022), addresses the integration of ML
in nanomaterial manufacturing, focusing on predictive modeling
and optimization of nanomaterial properties for green
manufacturing practices. This research is pivotal in advancing
sustainable approaches. (Friederich et al., 2022), presents a
framework for data-driven digital twins in smart manufacturing,
which leverages ML and process mining techniques to automate the
generation of simulation models, thereby reducing reliance on
expert knowledge and adapting quickly to changing market
demands. (Sheelvardhan et al., 2023; Khailany, 2020) both
highlight the role of ML in accelerating chip design, where AI
techniques automate optimization tasks and improve design
workflows, significantly enhancing productivity and reducing
time-to-market for new semiconductor products. Lastly, (Jain
and Narayanan, 2023), discusses the advantages of digital twin-
enabled ML in smart manufacturing, focusing on its application in
production planning and control.

This section highlighted the integration of AI in semiconductor
design and digital twin development, showcasing their role in
advancing digitalization and automation across the industry.
These technologies are pivotal in improving the accuracy of
simulations and models, optimizing manufacturing processes,
and extending equipment lifecycles. CF. Figure 2, illustrates how

AI is reshaping the semiconductor industry, this diagram is organized
in three primary layers showing the flow from AI techniques to device
property modeling to implementation decisions.

7 Future outlook

7.1 Use case applications in industry

AI has already made a substantial impact in nanoelectronics
manufacturing, revolutionizing processes across design,
production, testing, and logistics. Industry leaders have adopted
AI technologies to enhance efficiency, reduce costs, and improve
product quality. For example, Intel employs AI-driven predictive
maintenance systems in its semiconductor fabrication plants.
These systems analyze data from sensors embedded in
manufacturing equipment to predict failures before they occur,
minimizing downtime and maximizing production output.
Similarly, TSMC uses AI algorithms to optimize
photolithography and wafer inspection processes. In component
manufacturing, Siemens has integrated AI-powered solutions in
its factories through its MindSphere platform, which enables real-
time monitoring and optimization of production lines. This
platform leverages AI to analyze fabrication tool performance
and make adjustments, improving throughput and reliability.
Foxconn, one of the largest electronics manufacturers, uses AI-
driven robots to automate assembly lines, especially for precision
tasks such as component placement and soldering in smartphones
and laptops. These robots operate with exceptional accuracy,
enabling mass production while maintaining high-
quality standards.

Cadence Design Systems and Synopsys provide AI-powered
EDA tools that streamline PCB and chip layout optimization and
error detection. These tools quickly analyze complex circuit
designs and identify potential issues, drastically reducing
design cycles and accelerating time-to-market. In testing and
verification, Advantest, a leader in automated test equipment,
uses AI to optimize test plans and improve defect coverage,
resulting in faster validation of semiconductor devices. In
logistics and inventory management, Samsung has adopted AI
to predict demand patterns and optimize supply chain
operations. AI models forecast material requirements and
dynamically adjust supply routes to avoid disruptions,
enabling just-in-time delivery and reducing excess inventory.
Amazon Robotics, widely employed in electronics warehouses,
uses AI-powered robots to automate sorting, packing, and
shipping processes, enhancing efficiency and accuracy in
distribution networks.

AI is also making an impact on sustainability in electronics
manufacturing. IBM applies AI models to monitor energy usage and
reduce carbon footprints in its production processes. Additionally,
HP has implemented AI algorithms to improve material recycling by
identifying and sorting reusable components, advancing efforts in
sustainable manufacturing. As a leader in AI adoption, General
Electric utilizes AI in digital twins of physical products and systems,
to test performance and predict maintenance needs before
manufacturing begins. This approach reduces waste, optimizes
designs, and accelerates innovation. These real-world examples
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highlight the role of AI in reshaping electronics manufacturing by
improving efficiency, enhancing quality, and promoting
sustainability. As AI technologies continue to evolve, they are

expected to drive even greater advancements across the industry,
ensuring competitiveness and meeting growing demands for
smarter and more sustainable electronic products.

FIGURE 2
(a) AI techniques for semiconductor device engineering (b) Device properties influenced by AI in semiconductor chip design (c) Left Panel: device
types and structures, Right Panel: implementation decision - layer on device and design decisions.
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7.2 Perspective

We are witnessing a significant shift in the design and delivery of
the electronics that power our world. From smartphones to complex
systems, electronics are increasingly integrated into our daily lives.
Currently, the convergence of AI and nanotechnology is transforming
the electronics supply chain, necessitating both technological
advancements and a human-centered approach. As this
convergence advances, five areas of foundational nanotechnology
stand out: material discovery, device optimization, circuits and
systems synthesis, chip testing and verification, and digital
modeling through the use of twins. Each of these areas is
undergoing change not merely due to the speed or power of AI,
but because it is evolving into a more effective tool that supports
decision-making, expands capabilities, and assists engineers in
developing smarter, more sustainable technologies.

The discovery of new materials for electronics has traditionally
involved a combination of scientific knowledge, practical experience, and
intuition. The integration of AI is accelerating this process, not by
replacing engineers, but by facilitating the exploration of possibilities that
may otherwise be unfeasible to test manually. AI models predict how a
new compound might behave or which material combinations could
offer better performance or sustainability. It should be noted that AI
cannot be trusted blindly; every model must be scrutinized, and every
prediction validated. AI does not eliminate the need for human insight;
rather, it prompts specific questions to be asked about the outputs it
generates. In this process, AI acts as a co-pilot rather than a replacement.

As devices become smaller and more powerful, performance
optimization becomes more complex. AI explores millions of
possible design options, finding the best trade-offs between speed,
power use, cost, and reliability. It is to be observed that
understanding a design is not just a math problem, it involves
goals and risk analysis, reiterating the need for AI systems to be
explainable. Engineers need to understand the logic behind a
suggested design, which helps teams make better, informed
decisions ensuring that safety, sustainability, even fairness remain
part of the process.

In the past, building a complex chip could take years. Now, AI
helps automate parts of this process, especially at the level of circuits
and entire systems. However, automation can sometimes be perceived
as a black box; it is efficient, yet challenging to trust. A structured
approach should maintain the involvement of engineers, utilizing AI
to manage repetitive tasks while affording individuals the opportunity
to adjust, investigate, and confirm designs. The integration of
machines and humans in a collaborative framework leverages the
scalability and speed of automation alongside human capabilities in
judgment, context, and creativity. This synergy ensures that both
entities contribute effectively to the operational process.

Testing and verifying chips represents one of the most critical
and time-consuming stages in electronics manufacturing. AI can
assist in identifying errors early, simulating real-world usage, and
predicting failures before they occur. However, maintaining trust is
crucial, as errors during this stage could lead to defective products or
significant safety risks. Consequently, it is imperative that AI tools
are designed to be transparent and auditable. Trustworthy AI is not
merely a feature; it is a fundamental responsibility.

Digital twins, virtual replicas of physical systems, are becoming
vital in electronics. They let engineers test ideas without building

expensive prototypes, saving time and resources. AI helps make
these models more accurate and useful, allowing for simulation of
everything from nanoscale behaviors to system-wide interactions.

The changes seen today are similar to those of the early days of
computers. During that time, the shift from analog to digital created
entirely new industries, ways of working, and ways of thinking.
Today, AI and nanotechnology are pushing those boundaries again,
this time within the materials and systems that make emerging
digital technologies. The opportunity is enormous, but it comes with
responsibility. Design must consider not just efficiency, but also
fairness; not just performance, but sustainability; and not just speed,
but understanding.

At the edge of this new Frontier in nanoelectronics, AI is not a
magic answer; it is a powerful tool. When guided by human values, it
can help discover new materials, optimize devices, improve systems,
ensure safety, and better model the world that is being built.
Consequently, there is an urgent need to realign educational
curricula to reflect this interdisciplinary reality. Students must be
trained not only in AI algorithms or electronic design, but also in
systems thinking and ethics. Lifelong learning opportunities should be
made available to current professionals whose roles are evolving
alongside these technologies. Outreach must not be an afterthought;
it must be part of the central mission. The public must be engaged: not
merely as consumers of advanced electronics, but as stakeholders
whose trust, understanding, and perspectives shape the trajectory of
technological adoption.

8 Conclusion

The integration of AI into electronics manufacturing is
fundamentally reshaping material discovery, device design,
fabrication processes, and system optimization. AI-driven
methodologies enhance predictive modeling, process control, and
defect detection, addressing critical challenges in scalability,
variability, and resource efficiency. Machine learning and
reinforcement learning algorithms enable real-time parameter
tuning, optimizing fabrication precision while reducing defects and
process drift. AI-accelerated simulations improve the design and
validation of emerging materials and device architectures by
refining multi-physics models and reducing computational
overhead. Despite these advancements, several technical challenges
remain. The accuracy and generalizability of AI models depend on the
availability of high-fidelity datasets, which are often constrained by
experimental limitations. Ensuring AI-driven solutions integrate
effectively with existing manufacturing workflows requires robust
data pipelines, interoperability frameworks, and standardized
validation methodologies. Furthermore, AI-optimized circuit design
and heterogeneous computing architectures must align with existing
EDA toolchains to achieve practical scalability. Future research should
focus on developing interpretable AImodels that incorporate domain-
specific physics constraints, enabling reliable extrapolation to novel
materials and device configurations. Autonomous optimization
frameworks, digital twin-based process control, and generative
design approaches will be instrumental in reducing prototyping
cycles and improving manufacturing adaptability. Establishing
rigorous methodologies for uncertainty quantification in AI-driven
predictions is critical for ensuring reliability across applications.
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Continued innovation in AI algorithms, coupled with improvements
in experimental characterization techniques, will drive progress
toward highly efficient, scalable, and adaptive manufacturing systems.
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