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Structure elucidation is a stage of paramount importance in the discovery of novel
compounds because molecular structure determines their physical, chemical and
biological properties. Computational prediction of spectroscopic data, mainly NMR,
has become awidely used tool to help in such tasks due to its increasing easiness and
reliability. However, despite the continuous increment in CPU calculation power,
classical quantum mechanics simulations still require a lot of effort. Accordingly,
simulations of large or conformationally complex molecules are impractical. In this
context, a growing number of research groups have explored the capabilities of
machine learning (ML) algorithms in computational NMR prediction. In parallel,
important advances have been made in the development of machine learning-
inspired methods to correlate the experimental and calculated NMR data to facilitate
the structural elucidation process. Here, we have selected some essential papers to
review this research area and propose conclusions and future perspectives for the
field.
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1 Introduction

Determination of molecular structure is one of the most complex and important stages in
the discovery of natural products. Traditionally, this has been done using various spectroscopic
techniques, NMR being the most important and decisive one (Gil, 2011). However, even with
the advent of increasingly powerful equipment and new multidimensional experiments (Liu
et al., 2019), structural misassignment is far from being eradicated, and unfortunately persists in
current literature (Nicolaou and Snyder, 2005; Chhetri et al., 2018). In this context,
computational chemistry has been synergistically coupled with experimental NMR, giving
rise to a huge variety of hybrid methods that greatly facilitate elucidation (Napolitano et al.,
2011; Gutiérrez-Cepeda et al., 2014). From earlier contributions of Bifulco, Bagno, and Saielli
(Barone et al., 2002a; Barone et al., 2002b; Bagno et al., 2006), to the explosion in the post-DP4
era (Smith and Goodman, 2010; Grimblat et al., 2015; Ermanis et al., 2017; Grimblat et al.,
2019), the process has undergone continuous improvements (Lodewyk et al., 2012a; Grimblat
and Sarotti, 2016; Lauro and Bifulco, 2020; Marcarino et al., 2020; Costa et al., 2021; Marcarino
et al., 2022). Among them, perhaps one of the most disruptive has been the implementation of
machine learning (ML), which has undoubtedly revolutionized molecular simulation (Noé
et al., 2020). Application of machine learning to computational NMR in the context of
structural elucidation can be roughly divided into 2 main categories, namely, prediction
and correlation (Figure 1). In the first, ML is used to obtain quantum-quality NMR
chemical shifts at a remarkably lower computational cost. In the second category, ML
facilitates the correlation between experimental and calculated data in order to determine
the most likely structures. In this minireview, the latest developments in both approaches are
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discussed, focusing on methods that combine MLwith quantumNMR
calculations. For other applications of ML to NMR, including
molecular phenotyping and clustering (Peng et al., 2020a; Peng,
2021; dos Santos et al., 2022; Peng et al., 2020b), among others, we
refer the interested reader to other recent reviews on the subject
(Cobas, 2019; Jonas et al., 2022). We begin here with a description of
the most important ML procedures for NMR prediction (Section 2)
and then discuss exciting examples of ML in data correlation (Section
3). A final conclusion and future perspectives are also provided
(Section 4).

2 NMR prediction

There are many reasons to calculate NMR chemical shifts with
high accuracy. For example, NMR simulations can be helpful during
spectroscopic assignment; that is, to determine which NMR signal
belongs to which nucleus in the molecule. They can also provide
insightful information in mechanistic and biogenetic studies (Cen-
Pacheco et al., 2021; Li et al., 2021; Simonetti et al., 2021),
conformational analysis (Domínguez et al., 2014a; Nguyen et al.,
2018; Li et al., 2020; Sosa-Rueda et al., 2021), structural revisions
(Lodewyk et al., 2012b; Cen-Pacheco et al., 2012; Sarotti, 2020), and
structural elucidation (perhaps one of the most widely used
applications today) (Napolitano et al., 2009; Cen-Pacheco et al.,
2013; Domínguez et al., 2014b; Cen-Pacheco et al., 2014;
Marcarino et al., 2020; Wang et al., 2020; Domínguez et al., 2021;
Zanardi and Sarotti, 2021; Marcarino et al., 2022). Empirical
approaches present the fastest alternatives, such as additive
methods based on the cumulative effect of substituents (Fürst and
Pretsch, 1990). However, the quality of those predictions can be
insufficient for some applications. More refined methods have been
developed to enhance predictive performance. For instance,
hierarchically ordered spherical description of environments
(HOSE) encodes the neighborhood of each atom from a 2D
representation of the molecule (Bremser, 1978; Jonas et al., 2022),
achieving good predictive accuracies (mean absolute errors, MAE,
1.7 ppm for 13C and 0.2 ppm for 1H) (Smurnyy et al., 2008). Using
graph neural networks (GNN), Jonas and Kuhn developed ML based
on 2D molecular connectivity with good results (1.43 ppm 13C and
0.28 ppm 1H) (Jonas and Kuhn, 2019). In spite of these excellent
results, stereochemical and conformational effects are often ignored by
most empirical approaches, being limited to accounting for the impact
of geometrical factors on chemical shifts. At this point, it is important

to highlight that highly accurate predictions are required to
differentiate between similar structures, such as that provided by
NMR at density functional theory (DFT) level. The main drawback
of such approaches is their high computational cost, in terms of
resources and time. The latter rapidly becomes longer with a greater
number of atoms, so description of large systems often becomes
prohibitive. One of the best ways to reduce computational cost
while maintaining predictive capacity is to employ ML-based
schemes. This will be discussed with the following methods as
typical examples.

2.1 ShiftML

Paruzzo et al. (2018) Solid-state NMR is a powerful tool for
analyzing powdered and amorphous solids at the atomic level, with
great utility in pharmaceutical sciences. The discipline has been
revolutionized by the advent of quantum methods to calculate
chemical shifts with high accuracy. Chemical shift-based NMR
crystallography has therefore become a popular strategy to identify
polymorphs, and also for de novo determination of crystal structures
from powders (Facelli and Grant, 1993). This has been enabled by
plane wave DFT methods developed for periodic systems based on
gauge, including projected augmented wave (GIPAW), which
provides good accuracy to emulate the local atomic environments
(Blöchl, 1994). However, computational cost is again prohibitive for
large systems and/or for higher levels of theory. In this seminal work,
Paruzzo and co-workers developed a local environment-ML based
method to predict chemical shifts of molecular solids with an accuracy
comparable to DFT (Paruzzo et al., 2018). Due to limitations in
experimental databases for NMR of solids, the authors decided to
train and validate their ML using GIPAW DFT-calculated chemical
shifts of a wide variety of structures taken from the Cambridge
Structural Database (CSD) (Groom et al., 2016). Bypassing the
experimental information has several advantages, which include
avoiding biased or incorrectly reported data, as well as offering an
unlimited number of virtual structures. In fact, this interesting
practical idea has been replicated by other subsequent studies, as
detailed below. From an initial database of 61,000 structures, the
authors selected 2,000 diverse molecules for training, and 500 for
validation. The first subset was selected using the farthest point
sampling algorithm (FPS), and the second one randomly. The
NMR properties of the resulting structures were calculated at the
GIPAWDFT level, the local environments being based on the smooth

FIGURE 1
Schematic representation of the use of ML in computational NMR-aided structural elucidation.
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overlap of atomic positions (SOAP) kernel (Bartók et al., 2013; De
et al., 2016). This approach is based on encoding the atomic
environment by a 3D neighborhood density defined by a
superimposition of Gaussians, one centered at each atom located
within a spherical boundary from the core atom. The ML was trained
using the Gaussian process regression (GPR) framework, which
previously performed well when coupled with SOAP (Figure 2).
(Bartók et al., 2022) Once trained, ShiftML was highly accurate,
particularly for 1H (MAE 0.49 ppm). The other nuclei showed
larger errors relative to DFT (4.3 ppm for 13C, 13.3 ppm for 15N,
and 17.7 ppm for 17O). According to the authors, this was due to the
significantly fewer training environments for heteronuclei than for 1H.
However, the reduction in computational cost is remarkable (less than
1 min vs. 62–150 CPU hours), demonstrating its amazing predictive
ability in short periods of time.

2.2 IMPRESSION

Gerrard et al. (2020) A few years after ShiftML, Craig Butts and co-
workers developed their first generation solution-state NMR
prediction machines entitled IMPRESSION (Intelligent Machine
PREdiction of Shift and Scalar Information Of Nuclei). Inspired by
ShiftML, the training and validation was done using DFT-predicted
values rather than scarce and potentially misassigned experimental
data. The key step of selecting the example molecules followed an
interesting adaptive sampling procedure starting from a superset of
75,382 structures taken from CSD, with the boundary condition of
only comprising C, H, N, O, and F atoms. The active learning sampling
took 100 randomly selected structures, and then the trained ML
predicted the NMR shifts of the remaining structures in the
superset. The 100 with the highest variance (after a 5-fold cross
validation) were added to the training set, and the procedure was
iterated, leading to 882 final structures. Each structure was submitted
to geometry optimizations at the mPW1PW91/6-311G** level, for
further NMR calculations at the wB97XD/6-311G** level. The training
procedure applied KRR (Kernel Ridge Regression) (Vu et al., 2015),
with three different methods to encode similarity between atomic

environments: CM (Coulomb Matrixes) (Rupp et al., 2015), aSLATM,
and FCHL (Faber et al., 2018). As expected, better results were
obtained with aSLATM and FCHL (which involve 3-body
interactions) than CM (2-body interactions). The FCHL method
was selected for its minimal computational cost. After
optimization, IMPRESSION achieved MAE of 0.23 ppm/2.45 ppm/
0.87 Hz for 1H/13C/1JCH predictions and a root mean squared error
(RMSE) of 0.35 ppm/3.88 ppm/1.39 Hz against the validation set.
These results were considerably better than with ShiftML (Paruzzo
et al., 2018), confirming that selection of environments and training
models are fundamental elements in the ML process. Nevertheless, the
authors detected some chemical environments in the test set (around
2.5% of the total) that were not successfully emulated by
IMPRESSION, with errors up to 11 ppm (1H), 63 ppm (13C) and
25 Hz (J). To overcome this problem, an “prediction variance filter”
was applied to improve the quality of the results by removing poorly
described environments that show high variance across a 5-fold cross
validation. With this modification, IMPRESSION achieved an
improvement in accuracy relative to DFT comparable with that of
DFT relative to experiment. However, note that this version of
IMPRESSION only accelerated NMR prediction, it still required
DFT-optimized structures that demand from hours to days,
depending on the system. The authors recognized that this could
be improved by using 3D structures derived directly from the
molecular mechanics, with a resultant time saving. When
IMPRESSION was re-trained under this modification, the average
errors increased ~30%–50% for 1H and J data, whereas 13C data
remained almost insensitive. The method was successfully tested in
the prediction of experimental NMR data, and in structural
discrimination.

2.3 CASCADE

Guan et al. (2021) Paton’s group developed a ML model to tackle
the usual difficulties in predicting 1H and 13C chemical shifts, namely:
computation time demand and reaching the required accuracy to
select the correct structure from among several candidates. For this

FIGURE 2
Scheme of the ML model used in ShiftML. Reproduced from Ref (Paruzzo et al., 2018).
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purpose, a huge amount of experimental data is necessary, but are not
always easily accessible, complete, well assigned or parseable.
Therefore, to surpass these problems the authors decided to use
their own dataset obtained from DFT calculations to train a neural
network (NN). However, such an approach is restricted by the DFT
methodology used (basis set and solvation model, among others).
Therefore, to solve these limitations, they used a Transfer Learning
(TL) approach (Taylor and Stone, 2009). In that direction, they
developed three GNN models (St. John et al., 2019), namely:
DFTNN, ExpNN-dft and ExpNN-ff. Software architectures and
hyper-parameters are identical for all of these, but they were
developed using different input structures (Figures 3A,B). DFTNN
used a vast array of structurally diverse organic molecules from the
DFT8K dataset. Their NMR chemical shifts were calculated at the
mPW1PW91/6-311+G(d,p) level of theory, implementing optimized
geometries at the M06-2X/def2-TZVP level, which were subsequently
used to train the GNN (1H and 13C separately). However, a weak point
of this first approach was that the neural network was only trained
against DFT-calculated data. To face this problem, the authors used
TL to retrain the DFTNNmodel against experimental NMR data from

the Exp5K dataset, creating a newmodel named ExpNN-dft. However,
this model also needed structure optimization that caused a
performance bottleneck. The authors’ final answer was the ExpNN-
ff model, where ExpNN-dft was retrained replacing the starting
geometries with those directly obtained from molecular mechanics
conformational searches using the MMFF94 force field. This
replacement drastically reduced CPU time. The ExpNN-ff model
was tested with good results in three different applications: i)
structure elucidation by comparison between predicted and
experimental NMR data, ii) NMR data reassignment and iii)
forecast of regioselectivity of electrophilic aromatic substitution
sites using simulated NMR data as descriptors. Moreover, the
model differentiated between stereoisomers and even showed
distinct predictions for different conformations of the same
molecule. Differences between GNN predicted NMR chemical
shifts and those obtained from DFT calculations resulted in mean
average errors (MAE) of 1.26 ppm for 13C and 0.16 ppm for 1H.
Importantly, ExpNN-ff showed a comparable accuracy to normal DFT
calculations but with a 6000-fold reduction in CPU time. Therefore,
this model can perform NMR data predictions for large flexible

FIGURE 3
Scheme of the ML model used in CASCADE. Reproduced from Ref (Guan et al., 2021). With permission from the Royal Society of Chemistry.
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structures that are unfeasible for DFT calculations (Daranas and
Sarotti, 2021). According to the authors, there is still room for
improvement in its results. Their main concern is regarding
dependency of the outcome on the quality of the input candidate
3D structures obtained in the molecular mechanics conformational
search step. Recent work on this issue confirms the importance of this
stage (Cuadrado et al., 2022). Thus, the authors suggest the use of
semi-empirical structures as an alternative. It is worth noting that they
make this analysis tool easily available in a webpage (http://nova.chem.
colostate.edu/cascade/) to perform chemical shift predictions.

2.4 ML-J-DP4

(Tsai et al., 2022) In 2019, Hernández Daranas, Sarotti, and co-
workers reported J-DP4 (Grimblat et al., 2019), an updated version of
DP4 (10) that incorporates J values into the method´s architecture in
2 different ways. First, the J values are used to restrict conformational
sampling, keeping only those structures with dihedral angles in
agreement with the experimental data. This not only reduces
computational cost considerably, but also improves the
conformational landscape description by neglecting spurious
conformations that otherwise might make high Boltzmann
contributions. Next, the remaining shapes are submitted to
chemical shifts and J calculations at DFT level. The J calculations
include the Fermi contact term (FC), being correlated with the
experimental values by using an additional Bayesian component to
account for the probability term, given by 3JHH. Despite the excellent
results obtained, J-DP4 was computationally costly. We accelerated it
with a new workflow in 2022, involving fast Karplus-type J calculations
(Navarro-Vázquez et al., 2018). These were coupled with NMR
chemical shift predictions at the cheapest HF/STO-3G level,
enhanced by machine learning (ML). The decision to use a hybrid
representation of the molecular environments was inspired in the
work of Beran and co-workers (Unzueta et al., 2021). This
representation included the isotropic shielding constants computed
at the very fast HF/STO-3G//MMFF level coupled with local

descriptors. The research demonstrated that a Δ-ML approach can
be highly accurate. In Δ-ML, the chemical shifts calculated at a lower
level (PBE0/6-31G//ωB97XD) can be improved to PBE0/6-311+G
(2d,p)//ωB97XD (high level) through artificial neural networks
using the AEV (atomic environment vector) to encode the
geometric data of the atoms. Based on this background, we
hypothesized that the negligible additional cost involved in running
NMR calculations at a fast quantum level would be justified by the
quality of the NMR predictions, suitable for stereochemical
discrimination. The workflow (Figure 4) involved selecting
27,000 diverse structures by computing the Morgan fingerprint
(Rogers and Hahn, 2010) of the 170,000 original structures taken
from COCONUT (Sorokina et al., 2021) and then using the MinMax
algorithm to pick the most diverse of them. The data were randomly
divided into 17,000 molecules for training (232,560 13C and
280,446 1H values, T17k set) and 10,000 molecules for validation
(150,760 13C and 183,612 1H values, V10k set). In this hybrid
approach, the GIAO NMR shielding constants computed at the
HF/STO-3G//MMFF level were complemented with different
geometric and electronic descriptors that capture the local
environments, including charges, hybridizations, distances, angles,
long-range interactions (Coulomb and tensorial matrices, etc). As
in IMPRESSION (Gerrard et al., 2020), KRR was the data correlation
strategy that afforded the best results. However, the main difference
was that the adaptive training used the individual environments
(rather than individual molecules) that maximized the predictive
capacity of the ML. This was supported by the fact that NMR
properties are local in nature, so it is not considered mandatory to
use all environments from a test molecule, but rather the most
important ones. After selecting the most influential descriptors,
adaptive learning was conducted to select the best set of
environments based on a 25-step iterative incorporation of the
1,000 worst-predicted environments provided by the previous
training set. The hyperparameters of the resulting machines
(composed of 25 K selected 13C and 1H environments) were further
optimized using a 5-fold approach, and the optimal machines were
tested against the independent test set (V10k, 150,760 13C and

FIGURE 4
Scheme of the ML model used in ML-J-DP4. Reprinted with permission from (Tsai et al., 2022). Copyright (2022) American Chemical Society.
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183,612 1H values). The predictions were highly satisfactory, with
MAE of 1.21/0.14 ppm, RMS of 1.63/0.19 ppm, and MaxErr of 20.74/
1.89 ppm for 13C and 1H data, respectively. These results were
excellent compared to those obtained with other recent ML
approaches discussed above. It is true that ML requires quantum
computation of isotropic shielding values, but we consider that the
quality of the results justifies that extremely low additional cost. The
entire process was automated in the form of a Python script and
released under an open-source MIT license available at https://github.
com/Sarotti-Lab/ML_J_DP4.

2.5 DU8ML

Novitskiy and Kutateladze (2022a) In this paper, Novitskiy and
Kutateladze started from their previously developed DU8+ hybrid
DFT-parametric method (Kutateladze and Reddy, 2017). DU8+
incorporates binomial correction functions to improve the
calculation of NMR parameters of carbons attached to heavy
atoms. According to the authors, their approach was the seed of
what was later called ML-augmented DFT (Gao et al., 2020). Thus,
adding ML methods they developed a DU8+ augmented method
called DU8ML, which calculates NMR chemical shifts and spin-
spin coupling constants (SSCC) of large natural products with high
accuracy, in short computational times. The RMSD deviations
calculated from correct structures were 0.95 ppm for 13C

(11.000 values were used as training set) and 0.28 Hz for SSCC
(from 4,000 experimental values). To enhance accuracy, molecular
fragments from these datasets showing the highest deviations were
selected as the ML training set (using experimental chemical shifts
and SSCC) to identify and correct any inconsistencies. Specifically,
a first step of optimization and calculations was nuclear magnetic
shieldings at ωB97XD/6-31G (d) PCM and Fermi contact at
B3LYP/DU8 under Gaussian computations. This step was
followed by the necessary ML-derived corrections for both NMR
parameters. The authors present several examples to demonstrate
the applicability of DU8ML. In most cases, 13C chemical shift
RMSD values were chosen to detect misassignments. In this
field, the selected examples illustrate problems related to bad
atom connectivities, the type of substituents selected or those
associated with flipped fused rings. However, not only were
incorrect 2D assignments confronted, but also stereochemical
ones. The later are much more challenging and continue to be
the most usual source of errors in structural elucidation. Thus,
inversion of stereoconfigurations (including an N-oxide), fused
rings, and the tricky epoxide rings were tackled. Moreover, the
authors also show the usefulness of the method in detecting wrong
assignments due to molecule protonation by NMR solvents, SSCC
and disagreements between NMR and X-ray or mass spectroscopy
data. They also introduce a novel application of DU8ML that
amends a previously proposed reaction mechanism, by
correcting the assignment of structures involved in the process

FIGURE 5
Schematic representation of the ANN-PRAmethod. Adaptedwith permission fromMarcarino et al. (2020). Copyright (2020) American Chemical Society.
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(Novitskiy and Kutateladze, 2022b). Some aspects that could
improve the workflow—discussed in the paper—were the design
of a fully automated program for every kind of molecule and the
addition of a probability calculation for each candidate structure.

3 Data correlation

The accuracy of quantum NMR calculations using affordable
levels of theory can be more than enough to differentiate very
different structures, as in the case of constitutional isomers.
However, for stereoisomers the situation becomes more challenging
because of their spectroscopic resemblance. For that reason, in
addition to the advances made in improving and accelerating NMR
predictions, the development of robust data correlation methods is
essential (Grimblat and Sarotti, 2016). To date, a wide variety of
methods have been reported (Grimblat and Sarotti, 2016; Lauro and
Bifulco, 2020; Marcarino et al., 2020; Costa et al., 2021; Marcarino
et al., 2022). In this section, state-of-the-art ML-based methods will be
discussed.

3.1 ANN-PRA

Sarotti (2013), Zanardi and Sarotti, 2015) These methods were
developed by Sarotti´s group to tackle the structural validation
problem. That is, to decide the correctness of structural proposals
based on the correlation of the experimental NMR data collected for a
given molecule and the theoretical chemical shifts calculated for it. By
that time, the leading strategy in DFT-based structural elucidation was
based on a direct comparison between potential candidates (for
example, CP3 or DP4) (Smith and Goodman, 2009; Smith and
Goodman, 2010). Regardless of the performance of each method,

the underlying hypothesis assumes that the correct structure is
included within the candidate set. The approach followed to
determine a potential structural misassignment using one set of
experimental and calculated data was based on the use of pattern
recognition analysis (PRA), with the aid of artificial neural networks
(ANNs). The latter are mathematical models in which interconnected
artificial neurons emulate the function of a biological brain able to
learn from the data. The proof-of-concept was based on
monodimensional 13C NMR data correlation with the aid of two-
layer feed-forward ANNs, using a test set of 200 structures. Different
descriptors were assessed as reference standards, including R2, MAE,
maximum error (MaxErr), each computed using TMS and MSTD
(multi-standard approach) (Sarotti and Pellegrinet, 2009; Sarotti and
Pellegrinet, 2012). A large number of ANNs featuring different
numbers of input and hidden layers were built and trained, then
those with optimal classification ability were kept for validation using a
set of 26 natural products originally misassigned, with their respective
revised structures. This first generation of ANNs performed
excellently in identifying connectivity mistakes (such as
constitutional isomerism), though they were not conceived to
tackle subtler differences like stereoisomerism (Sarotti, 2013). This
motivated development of a new generation of ANNs by merging
mono-dimensional 1H and 13C NMR data with 2D HSQC correlations
(Figures 5A,B). Hundreds of different ANNs were trained using the
standard correlation parameters described above, as well as 18 new
descriptors accounting for the global correlation between
experimental and simulated HSQC data. The training set was
composed of 200 structures (100 correct and 100 artificially-made
incorrect ones). The most efficient ANNs were validated using a set of
32 originally misassigned natural products, along with their revised
structures. The performance achieved was noteworthy, identifying
subtle structural errors in an efficient and simple manner (Zanardi and
Sarotti, 2015).

FIGURE 6
Schematic representation of DP5. Reproduced from Ref (Howarth and Goodman, 2022). with permission from the Royal Society of Chemistry.
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3.2 DP4-AI

Howarth et al. (2020) A common feature of structure
elucidation of small molecules assisted by computational
methods is that they all need candidate structures, as well as
user-assigned 1H and/or 13C NMR experimental data as input
(Smith and Goodman, 2010; Grimblat et al., 2015; Lauro and
Bifulco, 2020; Marcarino et al., 2020; Zanardi and Sarotti, 2021).
These data are then used in different ways to find the best match
between measured and computed values. Currently, the most
human-time consuming stage within this workflow is NMR
data assignment. DP4-AI is an attempt to solve this by means
of an automatic interpretation of NMR spectra, coupled to a
standard DP4 calculation (Smith and Goodman, 2010). This is
a complex task that involves several stages, where the result of each
affects subsequent steps (Cobas, 2019). Therefore, after Fourier
transformation of NMR data, a hybrid method to phase the
resulting spectra was selected. The resulting baseline distortions
are corrected, and peaks are picked using first and second
derivative methods. Next, the detected peaks are grouped into
multiples and integrated (Chen et al., 2002; Wang et al., 2013;
Zorin et al., 2017), following similar procedures for both 1H and
13C spectra. However, the core of DP4-AI is the assignment
algorithm (AA) that is responsible for assigning the atoms in
each candidate structure, according to the previously detected
experimental peaks. The system also predicts chemical shift values
by means of DFT GIAO methods. Using these values, the AA
calculates the assignment probability matrix M to find the most
likely identity of each experimental peak (Kuhn, 1955). The M
derives from a statistical model that considers error distribution of
DFT-predicted values at the selected computational settings. DP4-
AI was evaluated using 47 molecules with an average of
3.49 asymmetric centers each, and a diversity of carbon
backbones. Their NMR spectra were recorded in different
solvents, adding other analytical difficulties such as low signal
to noise ratio spectra or even using mixtures of compounds. Four
different statistical models were tested. The best results were found
for a single region three Gaussian model, fitted to an empirical
prediction error distribution obtained from the same test set.
Importantly, the efficacy of this tool depends greatly on the
level of theory, since accuracy of the chemical shift calculation
underpins both the assignments and the subsequent
DP4 calculation. As expected, the best overall results were
obtained with the most accurate chemical shift predictions
tested, after geometry optimization by the B3LYP functional
followed by chemical shift prediction using the previous
structures utilizing PCM/mPW1PW91/6-311G(d) and single
point energies calculated at the M06-2X/def2-TZVP levels of
theory (Ermanis et al., 2019). At this level, the probability of
obtaining the results by chance was about 3 × 10–8, indicating high
performance. The authors provide DP4-AI as an open-source
software with a GUI. The capability of this system to greatly
increase processing speed with minimal human intervention
enables high-throughput data analysis. It was estimated that
one molecule per minute can be processed. Therefore, DP4-AI
facilitates exploration of large data sets and the discovery of new
structural information via machine learning techniques. This
software tool also could be potentially used to support CASE
software.

3.3 DP5 probability

Howarth and Goodman (2022) The DP5 probability is a new
methodology complemented by a software package that draws on
DP4-AI sources (Howarth et al., 2020). DP5 goes conceptually
further than other methods such as CP3 or DP4, since it faces the
important challenge of assessing the probability of a single
structure being correct (Figure 6). This is a very important step
forward because previous methods must assume that the correct
structure has been included within the panel of candidate
structures. In other words, in earlier approaches, if all the
proposed structures are erroneous they cannot be applied
because they are designed to necessary select one of them.
Whereas ANN-PRA (Sarotti, 2013; Zanardi and Sarotti, 2015)
categorizes candidate structures in a binary fashion either as
correct or incorrect, DP5 estimates normalized stand-alone
probabilities without assuming that one of the possibilities must
necessarily be correct. To do this, DP5 considers the spatial
geometry for each atom, to calculate the probability of a DFT
prediction error individually. This advance solves the problem that
the associated errors vary in complex ways depending on their
atomic environments. DFT calculations were undertaken using the
same levels of theory employed in DP4-AI. It must be noted that
the CASCADE training data were the source of the optimized
geometries and NMR data predictions (Guan et al., 2021).
Interestingly, a single conformation was selected for each
molecule. At the core of this method there is a prediction error
distribution for each atom that was found empirically by a Kernel
Density Estimation, using a test-set of 5,140 molecules obtained
from NMRShiftDB. Importantly, DP5 was developed using only
13C NMR data. DP5 global efficacy was evaluated using all
molecules in a leave-one-out cross validation experimental
design. The system works well even when tested using incorrect
proposals with errors comparable to those obtained for DFT
predictions derived from the correct structures. This is because
the statistical model applied considers the proposed structure,
something not possible in previous error analysis. A very
interesting feature of this study was the maximum possible
DP5 probability. Thus, a maximum confidence of 72% was
found that a proposed structure is correct. On the other hand,
the user can sometimes be 100% sure that a certain proposal is
erroneous if further data is available. The DP5 workflow was
further tested with 13 examples of reassigned molecular
structures obtained from the literature. Notably in all of them,
this methodology showed an average 41% more confidence in the
correct structures than in the rejected ones. Moreover, 42 examples
of stereochemical problems were faced and the results were almost
equal to those using DP4.

4 Conclusion and future perspectives

On assessing the evolution of ML applied in the field of NMR, one
can be totally optimistic towards the results that will certainly appear
in the coming years. The development of new ML procedures,
augmented with more powerful computers, will surely improve the
capabilities of current methods. However, as stated by Cobas (Cobas,
2019), one of the most important challenges to overcome is the
enormously immense diversity of molecular environments, coupled
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with the lack of massive and reliable experimental NMR data sets. This
is the main reason why most ML-NMR methods use DFT NMR
chemical shifts as the output layer, which might be good for some
applications but will not provide the ultimate solution to the problem.
After all, it has been well documented that in many cases DFT
predictions can be poor for certain systems (Zanardi et al., 2020).
Based on the above, perhaps a next stage in this discipline would be
merging the two so far disconnected approaches discussed in this
article (prediction and correlation). That is, a fully based and
automated ML method that predicts, at real time, the NMR data
with high accuracy (relative to the experimental NMR data) and
simultaneously correlates it with the experimental information to
facilitate the assignment. To achieve that goal, it is critically
important to improve the predictive levels of current ML
approaches, as well as to solve the calculation of the right
Boltzmann amplitudes of flexible molecules. If we ever achieve that,
many problems in structural elucidation will be solved. Perhaps this may
sound utopian, but as the Uruguayan writer Eduardo Galeano said
“Utopia is on the horizon. I move two steps closer; she moves two
steps further away. I walk ten steps and the horizon runs ten steps further
away. No matter how much I walk, I´ll never reach her. So, what´s the
point of utopia? The point is this: to keep walking”.
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