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Drug combination therapies have shown effective performance in treating cancer
through increased efficacy and circumvention of drug resistance through
synergy. Two avenues can be used to discover drug combinations: a novel
approach that utilizes natural products compared with the textbook approach
of utilizing existing chemotherapy drug combinations. Many natural products
achieve efficacy due to synergistic interactions between the active ingredients.
Therefore, the pharmacophore relationships in herbal compounds which
synergize can potentially be applied to chemotherapy drugs to drive
combination discovery. Machine learning approaches have been developed to
identify drug combinations, especially deep neural networks (DNN), which have
achieved state-of-the-art performance in many drug discovery tasks. Here, a
drug protein interaction (DPI) prediction DNN, DeepDPI, was developed to
employ DPI drug representations and achieved state-of-the-art performance
using the DrugBank database. Two DNNs were also developed to predict novel
drug combinations: DeepNPD, which predicts combinations in natural products,
and DeepCombo, which predicts synergy in chemotherapy drugs, using the
HERB and DrugCombDB databases respectively. An ensemble architecture
enhanced with a novel similarity based weight adjustment (SBWA) approach
was used and both models accurately predicted drug combinations for both
known and unknown drugs. Lastly, a screening was conducted using each model
where DeepNPD predicted combinations where drugs had similar targets, while
DeepCombo predicted combinations where one agent potentiated the other,
with bothmodels’ predicted combinations investigated through a network-based
analysis and identifying as a synergistic combinations in literature. DeepNPD
notably identified Thioguanine and Hydroxyurea and DeepCombo discovered
Vinblastine and Dasatinib as hits for potential new anticancer drug combinations.
DeepNPD illustrates how natural products are a novel path where new drug
combinations can be discovered.
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Introduction

In 2020, there were an estimated 19.3 million new cancer cases
and 10.0 million deaths (Ferlay et al., 2021). It is also estimated that
there is a 20% chance of getting cancer and a 10% chance of dying
from cancer before age 75 (Ferlay et al., 2021). The “one drug, one
target, one disease” strategy for drugs has been the dominating
principle in pharmaceutical approaches and drug treatments (Zhou
et al., 2016). However, there has been a shift in the past decade to
combination therapies involving the use of several drugs to achieve
greater therapeutic effects in treating complex diseases such as
cancer (Chen et al., 2015; Zhou et al., 2016). The advantages of
combinations are largely attributed to synergy, in that a combination
of drugs results in a significantly stronger than additive effect (Chen
et al., 2015). Synergy is typically a result of complex pharmacokinetic
interactions between drugs affecting different pathways in the body
(Bulusu et al., 2016). Various studies have shown that
multicomponent therapies have greater efficacy in treating
cancer. Thus, discovery of these multicomponent drug
combinations is crucial to continue fighting cancer (Bulusu et al.,
2016; Zhang et al., 2019).

Natural products have been shown to effectively treatmany diseases
and thus may provide an avenue for discovering new, effective drug
combinations (Caesar and Cech, 2019; Sharma et al., 2023). Recently,
natural products such asOpuntia ficus-indica and Ganoderma lucidum
have been investigated and found to be effective against various cancers
(Liu et al., 2021;Wang et al., 2023).Medicine systems such as traditional
Chinese medicine (TCM) similarly provide extensive sets of natural
products, many of which have been used as pharmaceutical drugs
including berberine, capsaicin, and icariin (Zhu et al., 2022). Natural
products are able to achieve good efficacy while reducing side effects
through its active ingredients (Li, 2009; Atanasov et al., 2021). With
natural products often containingmany active ingredients, their efficacy
is partly attributed to the effect of the natural compounds’ complex
synergistic interactions (Zhou et al., 2016; Caesar and Cech, 2019). 5-
Demethylnobiletin, an active ingredient found in orange peel, was
found to synergize with Paclitaxel and greatly reduced the dosage to
achieve effective anticancer properties (Tan et al., 2019). Furthermore,
curcumin and hinokitiol, two natural products, were found to display
synergistic anticancer properties at proportional low dosages, with
limited cytotoxicity against normal fibroblast (Lee et al., 2018).

In fact, efforts to isolate a single active ingredient in natural
products are often unsuccessful due to the removal of synergy
(Caesar and Cech, 2019) and the complex organic matrices
involved with the development of the natural product (Bucar
et al., 2013). Compounds isolated from Rauwolfia serpentina,
Hypericum perforatum, and Passiflora incarnata were unable to
replicate activity of the plants’ crude extracts (Gilbert and Alves,
2003). Specifically, in Hypericum perforatum, hypericin’s oral
bioavailability improved significantly when combined with several
other H. perforatum active compounds such as procyanidin B2 and
hyperocide (Caesar and Cech, 2019). Furthermore, the Artemisia
annua herb’s antimalarial properties were significantly enhanced
when using an herb extract compared to only its primary active
ingredient, artemisinin (Rasoanaivo et al., 2011).

There is also increasing evidence that natural products display
synergistic effects based on experiments conducted between active
ingredients of herbs (Lin et al., 2007; Xu et al., 2014). In a study

conducted by Lin et al. (2007), the compounds inWedelia chinensis
including indole-3-carboxaldehyde, wedelolactone, luteolin and
apigenin were found to synergize with one another towards
suppressing androgen activity. Certain plant metabolites of the
Dorstenia family of herbs initially lacked trypanocidal activity
when administered separately, yet became active when
administered in a combination (Sandjo et al., 2016). Specifically,
4-hydroxylonchocarpine and 6,8-deprenyl eriodictyol displayed
significant trypanocidal synergy, especially when administered in
a 1:3 ratio (Sandjo et al., 2016).

There is also evidence that each component in a natural product
contributes to the overall synergistic effect (Xu et al., 2014).
Therefore, learning from this “combination rule” in which active
ingredients combine in natural products can lead to discovery of
new synergistic combinations. Over 60% of currently existing
chemotherapy drugs are either natural products or derivatives of
natural products, with natural products continuing to be useful for
modern chemotherapy drug development (Demain and Vaishnav,
2011; Zhang et al., 2020). Therefore, natural products may have large
applicability to modern pharmaceutical medicine.

In vitro investigations of drug synergism are typically
conducted through high throughput screening (HTS), a
method that can test a large number of combinations in a
reasonable amount of time (He et al., 2018). However, HTS
still cannot completely explore the large synergistic space of
all existing drugs and potential combinations (Preuer et al.,
2018). Therefore, computational methods of predicting
synergism between drugs have appeal in completely exploring
the synergistic space and identifying hits for new drug
combinations (Preuer et al., 2018). Machine learning models
built to predict synergy have already been employed effectively in
several applications, including support vector machines (SVM)
and random forest (RF) classifiers (Li et al., 2015). With the rise
in computational models, many large datasets of HTS screenings
of synergistic drug combinations have also been developed for
use, making the development of such models much easier
(Holbeck et al., 2017). Furthermore, deep neural networks
(DNN), which are machine learning models designed after the
human neuron network, can be utilized to achieve greater
performance. Deep learning models are neural networks with
multiple hidden layers, which serve to allow the model to create
more complex relationships. Deep learning has affected many
areas of science with its superior learning capacity (LeCun et al.,
2015). Deep learning has also been applied to synergy predictions
with better success than traditional machine learning models
(Preuer et al., 2018). With synergy relationships being a complex
subject, deep learning is able to learn better due to its superior
ability to understand complex relationships than traditional
machine learning methods. With the massive amount of
natural products and compounds within those natural
products, there is a large amount of data that can be used in
the DNN, which benefits from large datasets (LeCun et al., 2015).

Beyond Preuer et al. (2018)’s DNN implementation using
chemical structure, Liu and Xie (2021) also incorporated protein
target information. Yang et al. (2021) developed a synergy
prediction model using graph neural networks (GNN) to
represent molecules, and Li et al. (2023) incorporated a novel
siamese network and random matrix projection model to predict
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synergy. Liu et al. (2022) also developed a network based approach
by representing the interaction network as a hypergraph, with drug-
drug-cell edges. However, these models struggle with predicting for
“unseen” drugs, or drugs that do not appear in the training data
(Preuer et al., 2018; Yang et al., 2021; Li et al., 2023). This issue is
problematic when employing models for newly developed drugs, or
drugs that do not have adequate literature covering them. To
mediate this issue, I implemented a novel ensemble and
similarity based framework to allow for the proposed model to
be broadcasted to completely novel drugs.

If the patterns of combinations in natural products can be
discovered, they can potentially be applied to chemotherapy
drugs to identify new and powerful synergistic drug
combinations in treating cancer. Currently, the main issue with
natural compounds is that they are often large, complex molecules
which are difficult to isolate and produce for mass pharmaceutical
uses (Chan, 1995; Meng et al., 2009). Due to the Nagoya Protocol
and potential conflicts with countries where the natural compound
originates from, researching natural products is difficult and their
mass production is unrealistic (Atanasov et al., 2015). However, if
the synergistic mechanisms of these natural compounds can be
applied to chemotherapy drugs, which are easy to mass produce for
pharmaceutical uses, there is potential to achieve both lower drug
toxicity and effective synergistic interactions achieved by natural
products on a mass pharmaceutical scale (Kong et al., 2008). Natural
products and modern pharmaceutical medicines already have
structural similarities and overlaps, with many natural
compounds appearing in and used in pharmaceutical medicine
(Kong et al., 2008). For example, galangal rhizome, a natural
analgesic, appears in medicine as the eugenol drug which has
analgesic properties (Kong et al., 2008).

Machine learning approaches can also be used to predict
compound combination patterns in natural products. Preuer
et al. (2018) have conducted a similar approach to predict
synergy in chemotherapy drugs using chemical structure
information, achieving good results. Compound chemical
information along with protein targets were incorporated into
the model. Protein targets play a key role in synergistic
mechanisms in drugs, and models involving target proteins
have also displayed positive results (Liu and Xie, 2021). Due to
lack of reliable information for natural compound DPIs, a feature
based machine learning approach was developed to predict DPIs
in natural compounds. In addition, the downstream protein-
protein interactions (PPI) of compounds were also simulated
through a random walk with restart (RWR) algorithm to
account for complex downstream protein pathways that affect
synergistic interactions.

DeepNPD, a model to predict drug combinations within natural
products, and DeepCombo, a model to predict synergy in
chemotherapy drugs, were developed to explore a novel avenue
of combination discovery and a more textbook avenue of
combination discovery using the HERB and DrugCombDB
databases respectively (Fang et al., 2018; Liu et al., 2020). A
screening was run on a dataset of chemotherapy drugs to identify
synergistic hits based on natural product combination principles.
These hits were then investigated through literature review and a
network based analysis to determine the validity of the new
combinations.

Methods

Chemical structure representation

To represent compounds’ chemical structure, each compound’s
digital structural representation (SMILES) was obtained from their
respective databases. Data of natural compounds was obtained from
the HERB database, which contains 7,263 TCM natural product
herbs and 49,258 of the compoundsmaking up the herbs (Fang et al.,
2018). Conversely, data of chemotherapy drugs was obtained from
the DrugCombDB databases, which contains 2,887 unique
chemotherapy drugs (Liu et al., 2020).

Using the SMILES key, each drug was encoded using the
Mordred molecular descriptor calculator, a diverse and efficient
descriptor calculator (Moriwaki et al., 2018). Molecular descriptors
are mathematical representations of various properties of a
compound, ranging from simple representation such as the
number of acids and bases to more complex calculations such as
lipophilicity and autocorrelation (Moriwaki et al., 2018). In total,
1613 2D descriptors were calculated using Mordred for
representation of molecules.

Molecular fingerprints were also used for representation of
molecules. Molecular fingerprints are a list of specific
substructures and a fingerprint determines if each substructure is
present in the molecule (Morgan, 1965). The Morgan fingerprint
was implemented using the RDKit module in Python (Morgan,
1965; Landrum, 2010; Capecchi et al., 2020). In total, the Morgan
fingerprint resulted in 2048 bits, which combined with the Mordred
descriptors, resulted in 3661 features for each molecule
representation.

Deep neural networks

Each DNN was engineered using a conic structure of neurons,
with the first layer having n number of neurons, a second layer with
n neurons, the third layer having n/2 number of neurons, and a final
softmax output layer. Different optimizers were tested, including
stochastic gradient descent (SGD), momentum boosted SGD, and
the Adam optimizer, along with ReLU and Tanh initializers and
dropout layers.

DeepDPI: DPI prediction model

Additionally, a DPI based compound representation for
combination prediction was developed. Since many natural
compounds lack reliable DPI information, I developed DeepDPI,
a DPI prediction model using the DrugBank database, a gold
standard database with over 30,000 DPIs (Knox et al., 2023).
DeepDPI followed a feature based approach, with the drug
representation being concatenated with the protein
representation. Deep learning has shown great success in many
DPI prediction applications, including a compound’s binding
affinity to a protein, therefore it was used to build the model (Yu
et al., 2012; Mayr et al., 2018).

The drug representation consisted of the chemical
representation described in the earlier section. The protein
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representation was calculated using PyDPI, a descriptor calculator
capable of predicting descriptors for target proteins such as amino
acid composition, autocorrelation, and quasi-sequence order (Cao
et al., 2013). The protein sequences of each target gene were obtained
from the STRING database to then input into PyDPI (Cao et al.,
2013). With PyDPI calculating a total of 2049 protein descriptors
concatenated with the 3661 features of the compound
representation, there were a total of 5710 features.

Random walk with restart

After calculation of target proteins, the DPI representation also
included downstream effects of target proteins and PPIs. Data of
PPIs was obtained from the STRING database, a state-of-the-art
database consisting of over one million human PPIs (Szklarczyk
et al., 2021). To predict downstream effects, a random walk with
restart algorithm was implemented to determine the relationship
between the target protein and its PPIs based on a graph network
with proteins as the nodes, PPIs as the edges, and the STRING
confidence scores as the edge weight (Tong et al., 2008). Liu and Xie
(2021) have implemented a similar RWR algorithm to good success.

DeepNPD: natural product combination
prediction

I constructed a DNN, DeepNPD, to predict combinations within
natural products. Data of natural products and their ingredients was
obtained from the HERB database, with each drug combination
being two compounds that appear in the same natural product (Fang
et al., 2021). By following this method of obtaining drug
combinations, millions of potential drug combinations are
available to train DNNs, rather than just a couple thousand
unique combinations from chemotherapy drug datasets.

Additionally, a screening was conducted to remove non-druglike
molecules. For a drug to be druglike, it must fulfill aspects such as
bioavailability. A method to assess if a drug is druglike is quantitative
estimate of drug-likeness (QED), which has shown major advantages
over typical assessments of drug-likeness (Bickerton et al., 2012).

Out of the products from the HERB database, there were over
three million possible herb ingredient pairs. Since it is unrealistic to
fit that much data in a single model, it was elected to choose subsets
of ingredients and include all the possible pairs involving the subset
of ingredients. By limiting the number of unique compounds, the
model can focus on predicting patterns for a smaller set. The set of
positive drug combinations consisted of all possible pairs in a set of
1000 herb compounds. The set of negative drug combinations
consisted of two randomly selected drugs that do not appear in
the same herb together in a 1:1 ratio with the number of positive
combinations. In the dataset, a representation of a drug combination
consisted of the features of Drug 1 and the features of Drug
2 concatenated together (Drug 1 + Drug 2). The inverted
combination was also integrated (Drug 2 + Drug 1) to ensure
that drug order does not play a role in the resulting prediction.

Two representations of drugs were tested: one solely using the
chemical structure representation and another using the combined
representation with chemical structure and DPI information to

determine if DPIs can provide a boost to performance. The DPI
representation consisted of the DPIs predicted by DeepDPI
enhanced with the RWR algorithm.

Additionally, ensemble approaches were used to optimize the
model to unseen drugs, or drugs that do not appear in the model’s
training data. Ensemble approaches increase the number of unique
models to consider a novel drug, which can therefore reduce the
overfitting that merely a single model may bring. After a set of
2,688 natural products linked to treat cancer resulting in
15,149 ingredients were isolated and reduced to 6,148 druglike
structures, those druglike structures were divided into six sets of
approximately 1,000 structures in a bootstrapping approach. Each
dataset then included all possible positive combinations of appearing
in the same herb and an equal number of negative combinations of
not appearing in the same herb, resulting in approximately
80,000 samples per model. Isolating one dataset for validation on
unseen drugs, five models were trained and ensembled together by
averaging the DNN confidence scores with one another.

Similarity based weight adjustment

I developed a novel similarity based weight adjustment (SBWA),
which involves increasing the weights of the models which are
trained on an ingredient similar to the drugs that are being
predicted. In addition to the ensemble network, SBWA develops
a weighted average to emphasize the models which could potentially
predict better for a given novel drug, thereby resulting in better
unseen drug predictions. Tanimoto similarity is calculated between
the ingredients in each model and the drugs being predicted, which
judges similarity by the number of shared substructures. A
Tanimoto score of 0.7 or above is considered to be similar. If
similar, the model weights of the model containing the similar
drug were adjusted according to the following equation I developed:

Wi � �si
tni
di

( ) + 1
m

where i indicated the model whose weight is being determined,W is
the weight, s is the set of Tanimoto similarity scores of similar
ingredients in the model’s training data that are above 0.70, t is a
constant determined by how similar the predicted drug set is to the
training data in general (higher t = more similar, lower t = less
similar), n is the number of appearances of the similar drugs in the
dataset, d is the dataset size, and m is the number of ensemble
models in total. The equation not only takes into account whether
similar drugs exist, but also how well the model has learned from
those similar drugs. The more instances of the similar drugs in the
model’s dataset, the better the model has learned from those drugs,
therefore, the more weight that is assigned.

DeepCombo: synergistic combinations in
chemotherapy drugs

In addition to developing an herb predicting model, a model was
also developed that predicts synergism in chemotherapy drugs.
Using the same methods as DeepNPD, DeepCombo was
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developed using the DrugCombDB database, a publicly available
database which includes a large number of cancer drug
combinations tested on various cancer cell lines (Liu et al., 2020).
A drug combination was considered to be any two drugs which
synergized against a cancer cell line. The entire set of
2,887 chemotherapy drugs provided by DrugCombDB was used.

I also developed an ensemble approach for the chemotherapy
drugs. In this case, three models were developed using different
datasets: one model for the whole dataset, an ensemble of two
models for the halved dataset, and an ensemble of four models for
the quartered dataset. As the positive drug space is not as large for
chemotherapy drugs, a SBWA approach was unable to be utilized.

Confidence scores

It is useful to understand how confident the model is in its
predictions. In DNNs, a softmax output is used, which outputs two
decimals which indicate the model’s confidence in being a positive
and negative sample. However, these confidence scores outputted by
the softmax are often overconfident and not accurately representing.

Such an issue can be solved by calibrating the neural network
through a method called temperature scaling. Temperature scaling
involves dividing the logits of a classification neural network by a
variable T (Guo et al., 2017). T is calibrated using cross entropy loss
on a model’s validation dataset by comparing the predicted
confidence scores with the actual results.

qi � exp λi/T( )
∑n

j�1 exp λi/T( )
The equation is based off of the softmax equation in Gao et al.

(2017)‘s softmax function, where the i subscript indicates the
class being calibrated, q is the calibrated probability, λ is the logits
of a class, n is the number of classes (2), and T is the temperature.
In temperature scaling, a portion of the validation set is used to
calibrate the value of T, a number typically greater than 1 which
scales the softmax scores down to interpretable values. An
example of an unscaled softmax score is [0.95, 0.05], and
when scaled, the score is calibrated to a more useful value, for
example,: [0.75, 0.25].

Metrics

To evaluate the performance of the models, a variety of metrics
should be used in order to develop an accurate idea of the model’s
predictive capacity. For problems where class imbalance is not an
issue (number of positive = number of negative), accuracy can be
used which tells the proportion of predicted samples correct.
However, for problems where class imbalance is an issue,
F1 score, defined as the harmonic mean of precision and recall,
is preferred, where precision is the proportion of positive samples
predicted by the model which are correct and recall is the proportion
of total positive samples identified by the model. F1 score is defined
as the product of precision and recall divided by the sum.

Additionally, AUROC (area under receiving operator curve) and
AUPRC (area under precision-recall curve) are both metrics which

are built by measuring the area of respective curves (ROC plots true
positive rate and true negative rate, PRC plots precision and recall).
Beyond that, precision in itself is useful to report, as well as
sensitivity/recall and specificity (proportion of negative
samples identified).

Network based analysis

It is possible to trace the measure of overlap between two drugs
in a combination by mapping each drug’s DPIs onto a graph
network of PPIs used in the RWR algorithm. Cheng et al. (2019)
implemented the separation measure which was used in this study to
quantify the amount of overlap between two drugs using the
following equation:

SAB � 〈dAB〉 − 〈dAB〉 + 〈dBB〉
2

which compares the mean shortest difference within the protein
targets of each drug 〈dAA〉 and 〈dBB〉 to the mean shortest
difference between drug A and B, 〈dAB〉. If SAB < 0, there is
overlap between the protein targets of the two drugs, and if SAB >
0, the targets of the two drugs are inherently separate. For example,
Panobinostat and Vorinostat, two related histone deacetylase
inhibitors, obtained a separation score of −0.82. However, when
pairing Vorinostat with Irinotecan, a DNA enzyme inhibitor, a
score of 0.30 is obtained. Although separation score does not
linearly indicate if a drug pair is synergistic, it is a useful measure
when analyzing the relationships between predicted drug
combinations. When calculating separation score, a graph network
developed from STRING PPIs with confidence scores >0.3 was used.

Results

DeepDPI: DPI prediction model

In order to use a target protein based representation of drugs for
combination prediction, a DPI prediction model must first be
developed to predict DPI’s in natural compounds. DrugBank, a
verified, gold standard drug database was used (Knox et al., 2023). In
total, when considering each drug in which descriptors could be
calculated, I used a set of 5,651 drugs in the dataset. Additionally, a
list of 2,895 protein targets which appeared in the DrugBank data
and whose descriptors could be calculated were used. In total,
24,930 DPIs were collected from DrugBank to use for the model
creation. Those DPIs from DrugBank represented the positive
samples in the dataset. The negative samples were chosen by
randomly selecting a drug and a protein that it does not bind to,
resulting in a dataset size of 49,860.

A DeepDPI, a DNN, was engineered to accomplish this task. To
measure the performance of each model, five-fold cross validation
was conducted to get the best measurement of the model’s
performance. DeepDPI achieved an average accuracy of 0.84,
with an average recall/sensitivity (positive binding accuracy) of
0.84 and an average specificity (negative binding accuracy) of
0.87. DeepDPI also achieved an average AUROC of 0.92 and
AUPRC of 0.93 (Figure 1) These results indicate that the model
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was able to successfully learn from binding and also non-
binding patterns.

Since themodel’s intended use is for unknown herb ingredients, it is
important that the model is able to determine if unknown drugs would
bind to known proteins. Therefore, a modified dataset which set aside a
random sample of 1,000 drugs was created, including those 1,000 drugs’
binding proteins and randomly selected non-binding proteins. The rest
of theDPI’s not included in this validation dataset were used to train the
DNN model which would evaluate the modified dataset.

On the unseen drugs, DeepDPI achieved an accuracy of 0.77, an
AUROC of 0.85, and an AUPRC of 0.86 (Figure 1). Additionally, the
model achieved a high precision of 0.84 and also a high specificity of
0.87. Although there is a dropoff in performance, the model still
performs well for unseen drugs and seen proteins.

The deep learning approach to the DPI prediction outperformed
a similar feature based approach by Yu et al. (2012). Yu et al. utilized
a RF model to predict DPIs with the DrugBank dataset, in which
DeepDPI outperformed in most performance metrics (Table 1). Not
only does accuracy show that DeepDPI performed better, the
AUROC scores also show that DeepDPI’s confidence scores
yielded better results than Yu et al.‘s RF approach.

Additionally, a couple other models similarly trained on the
Drugbank dataset are compared to DeepDPI, including Ezzat et al.
(2016)’s ensemble learning approach and Sharma and Rani (2018)’s

active learning ensemble framework (BE-DTI’). DeepDPI
outperforms two of these state-of-the-art models while achieving
similar performance to themost recently developedmodel, BE-DTI’.

DeepNPD: natural product combination
prediction

To predict drug combinations within natural products, DeepNPD
was developed to predict if two ingredients appear in the same natural
product. DeepNPD represents the natural product avenue to
combination discovery. As the total ingredient list had a size of 6,148,
six models were developed and evaluated using 5-fold cross validation.
The results of these six splits for both representations were averaged and
can be found in Table 2. Overall, DeepNPD achieved excellent
performance, with the combined representation only providing a
small, nearly negligible boost in the overall performance of the model.

However, when evaluating performance for such models which
perform very well for drugs it has seen before, it is also crucial to
evaluate performance for sets of drugs in which the model has not
seen before. The above performance is based on validation sets
which include drugs the model has seen before.

Although this model performs with high accuracy for seen data,
it performs very poorly on unseen data. This is an issue seen in many

FIGURE 1
Left graphs (A, C) display AUROC curves, and right graphs (B, D) display AUPRC curves. Top graphs (A, B) display DeepDPI model performance
(AUROC of 0.92, AUPRC of 0.91) and bottom graphs (C, D) show DeepDPI performance on unseen drugs (AUROC of 0.85, AUPRC of 0.86).
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state-of-the-art drug combination prediction models (Preuer et al.,
2018). A novel way to remedy this issue lies in ensemble approaches.
The bootstrapped models used for evaluation can be combined to
form an ensemble model.

In the DNNs, ensemble approaches are conducted by averaging
the confidence scores of each model. Furthermore, the weights of the
ensemble model can be selectively changed to improve the model in
the novel SBWA approach.

Ensemble approaches are highly successful in increasing a
model’s precision, resulting in a more selective model (Table 3).
Precision is crucial in drug combination prediction models since
when the model predicts a positive sample, it is important that
the model is correct, as it may be evaluated in vitro. Additionally,
the SBWA applied models overall performed better than the
model with equal weights. Although the precision and specificity
dipped slightly, the recall saw large increases, indicating that the
model is able to identify more positive samples when models that
are familiar with the drugs at hand are given more weight.
Although overall, the recall is still rather low, a high precision
serves the purpose of screening new drug combinations for
combination “hits” to test.

DeepCombo: chemotherapy drug
combination prediction

The DrugCombDB drug combination database was used to
find synergistic chemotherapy drug combinations in vitro (Liu
et al., 2020). DeepCombo, a DNN, was developed to predict

synergistic combinations in chemotherapy drugs, in order to
investigate the avenue of drug combination discovery through
existing chemotherapy drug combinations. A drug combination
in DeepCombo was classified as any drug combination that
displays a synergistic effect for any cell line. The positive drug
combinations resulted in a set of 1925 drugs and
23,224 combinations. Since data of official cancer drug
combinations is limited, this approach of cancer cell line data
was opted for in order to gather more data.

Negative combinations were selected by randomly selecting
pairs of drugs from the 1925 drug set which do not appear in
the positive set in an equal ratio to the number of positive samples. A
5-fold cross-validation was conducted to evaluate the performance
of each representation of the model. The average performances of
the folds can be found in Table 4. Similar to DeepNPD, DeepCombo
achieved excellent performance, but the DPIs failed to significantly
increase performance.

Additionally, performance for unseen drugs must be tested in
order to determine how accurate the model can be during
deployment. In DeepCombo, SBWA approaches are not feasible
due to smaller datasets; however, an equal weighted ensemble
approach can still be conducted. Three different types of models
were tested against sets of unseen drugs: the model trained on the
whole dataset, an ensemble of two models each trained on half of the
dataset, and an ensemble of four models trained on a quarter of the
dataset. The results of a cross validation of four different sets of
500 drugs as unseen validation drugs are displayed in Table 5.
Generally, the four model ensembles did the best in balancing
precision and recall, therefore, it was used for eventual screening.

TABLE 1 DeepDPI model performance vs. other models. Bolded values indicate the best performing model in each metric.

Model Accuracy AUROC AUPRC Recall/Sensitivity Specificity

DeepDPI 0.849 0.922 0.929 0.834 0.860

Yu et al. RF 0.823 0.897 0.785 0.854

Ezzat et al. ensemble learning 0.900

BE-DTI’ 0.927 0.886 0.886 0.864

TABLE 2 DeepNPD average performance of bootstrapped models based on different representations.

Representation Accuracy AUROC AUPRC F1 score Precision Recall/Sensitivity Specificity

Chemical only 0.838 0.918 0.923 0.836 0.849 0.823 0.853

Chemical + DPI 0.836 0.923 0.928 0.849 0.852 0.842 0.851

TABLE 3 DeepNPD performance on unseen drugs for single model, no SBWA ensemble model, and SBWA applied model. Bolded values indicate the best
performing model in each metric.

Model type Accuracy AUROC AUPRC F1 score Precision Recall/Sensitivity Specificity

Single 0.614 0.675 0.674 0.512 0.700 0.405 0.823

No SBWA ensemble 0.641 0.760 0.759 0.500 0.830 0.354 0.928

SBWA 0.655 0.761 0.761 0.540 0.807 0.406 0.903
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Model integration

A straightforward way to understand the overlap between these
two medicine types is to run each model on the other model’s
dataset(s). It could potentially show how well natural product
combination properties fit to synergistic chemotherapy cancer
drug combinations.

When running DeepNPD on the chemotherapy drug dataset,
DeepNPD recorded a precision of 0.87 but a very low recall of just
0.05. This indicates that the drug pairs that fit the qualifications of a
natural product pair are synergistic 87% of the time; however, only 5%
of drugs manage to fulfill this criteria. This is likely due to the inherent
structural differences between many of the natural compounds vs.
chemotherapy compounds; natural compounds are much more
complex; therefore, descriptor values tend to follow different
patterns. However, when those patterns were picked out within the
chemotherapy drug pairs, the rate of being synergistic was very high.

Additionally, when running DeepCombo on the DeepNPD
datasets, DeepCombo recorded a precision of 0.65. DeepCombo
was much more accepting of the natural product data, predicting
22% of samples as synergistic and achieving a recall of 0.27.
Although DeepCombo is hardly a good overall predictor of
natural product combinations, such results show the overlap of
the chemotherapy combinations and natural product combinations.

Novel drug combination screening

Lastly, a screening for new drug combinations was conducted to
discover new potential drug combinations using each model. A list
of 488 anti-neoplastic agents was collected from DrugBank, and a
screening which tested all possible combinations of the drug set was
conducted using the chemical representation SBWA DeepNPD and
four model combined representation of DeepCombo. The resulting
screening tested the ability to use natural product combination
patterns to identify new drug combinations in chemotherapy
drugs that are easily mass produced. Resulting confidence scores
were calculated by averaging the scores of a combination scanned
twice with different orders of drug pairs (Drug 1 + Drug 2, Drug 2 +
Drug 1). First, a screening using DeepNPD was conducted and a list
of curated combinations appears in Table 6. Top DeepNPD

predictions do not have particularly high confidence scores; this
again results from the inherent structural differences resulting in
somewhat imperfect matches. Therefore, unsurprisingly, the model
largely favored natural compounds, or derivatives of natural
compounds. In an effort to discover fully chemotherapy drugs,
only a couple sets of these natural compounds were shown.
Additionally, DeepNPD also did manage to identify natural
product pairs, such as vinblastine and vincristine, which were
isolated from the periwinkle plant (Kumar, 2016).

Only two combinations of natural products were included (the
top two highest scores), both of which synergized. Among the
predicted results, hydroxyurea appeared very often due it being
an analog to urea, a natural compound. In the curated list, I
attempted to include a diverse set of drugs (more unique drugs)
and refrained from including too many natural products. Overall,
eight out of these ten predictions were found in literature, with five
of the combinations having synergized; two of these being natural
compounds, and three of these chemotherapy drug combinations.

Many of DeepNPD’s predictions seem to involve two drugs
which act on the same target through different pathways, termed
“specific” synergy by Cokol et al. (2011).

In the natural compound combination of Ginsenoside Rh2 and
Betulinic Acid, both agents’ anticancer effects are from direct
inducement of apoptosis, where Ginsenoside Rh2 targets the Bcl-
2 gene and Betulinic Acid targets a mitochondrial pathway (Li et al.,
2011). Within the chemotherapy drug combination of
Temozolomide and Hydroxyurea, both agents similarly target
different sections of DNA synthesis, resulting in their synergy.

The Nelarabine and Fludarabine combination has shown
promise in clinical trials, showing less toxicity and increased
efficacy despite lacking evidence of direct synergy (Gandhi et al.,
2008). Nelarabine and Fludarabine, when synthesized into ara-GTP
and F-ara-ATP respectively, act through different mechanisms to
inhibit DNA synthesis.

The combination of Hydroxyurea and Thioguanine similarly work
to inhibit DNA synthesis. Hydroxyurea disables the ribonucleotide
reductase enzyme, inhibiting DNA synthesis, whereas Thioguanine
competes to bind to the hypoxanthine-guanine
phosphoribosyltransferase enzyme. Thioguanine nucleotides
additionally link with DNA and RNA, contributing to cytotoxic
effects. Although the two drugs have not been tested for synergy,

TABLE 4 DeepCombo performance.

Representation Accuracy AUROC AUPRC F1 score Precision Recall/Sensitivity Specificity

Chemical only 0.920 0.968 0.954 0.924 0.886 0.965 0.876

Chemical + DPI 0.921 0.970 0.958 0.923 0.894 0.955 0.887

TABLE 5 DeepCombo performance on unseen drugs for single model, halved data ensemble model, and quartered data ensemble model. Bolded values
indicate the best performing model in each metric.

Representation Accuracy AUROC AUPRC F1 score Precision Recall/Sensitivity Specificity

Single 0.560 0.641 0.640 0.313 0.710 0.201 0.919

Two models 0.574 0.651 0.652 0.350 0.734 0.230 0.917

Four models 0.580 0.653 0.652 0.412 0.715 0.290 0.885
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they have displayed synergy with similar psoriasis therapies (Lebwohl
et al., 2004). Similarly, Mercaptopurine, which was also predicted in a
combination with Hydroxyurea, also competes to bind to
hypoxanthine-guanine phosphoribosyltransferase.

Additionally, a screening using DeepCombo using the same set
of drugs was conducted (Table 7).

Among the top DeepCombo predictions, eight of the ten
combinations were found in literature and seven of those were
shown to synergize against cancer cells in vitro. Interestingly, the
model heavily favored certain drugs, especially panobinostat and
temozolomide. Due to that occurrence, the number of appearances
of those drugs in the list was limited to focus on displaying other
drug combinations. In the curated list, I similarly attempted to
include a diverse drug set in the combination space.

Contrary to DeepNPD predictions, DeepCombo screening
results seem to indicate sets of drugs which potentiate the other,
rather than act on the same target. Foremost of the predictions
involve Temozolomide and Panobinostat, which are two drugs
which act on different pathways. Where Temozolomide is a
DNA inhibitor, Panobinostat is a histone deacetylase (HDAC)
inhibitor (Urdiciain et al., 2018). A study between the two drugs
found that Panobinostat had a limited effect on glioblastoma cells,
but greatly boosted the cytotoxic effects of Temozolomide against
the same cells. Similarly, Panobinostat also potentiates the effects of
Gefitinib by inhibiting a pathway which downregulates the
epidermal growth factor receptor, the primary target of Gefitinib
(Lee et al., 2017). Panobinostat is a common potentiating agent,
which was favored heavily by DeepCombo.

TABLE 6 Table of selected DeepNPD drug screening predictions.

Drug 1 Drug 2 Score Separation
score

Evidence in literature

Daidzein Genistein 0.89 Both natural compounds from soy, the combination exhibited synergistic activity against prostate
cancer cell lines Dong et al. (2013).

Ginsenoside Rh2 Betulinic Acid 0.78 Li et al. (2011) found synergy in the combination in lung, cervical, and liver cell lines.

Thioguanine Hydroxyurea 0.72 0 Kyritsis et al. (1996) found success in the combination with procarbazine and lomustine in a clinical
trial.

Vinblastine Vincristine 0.71 −0.62 Appear in the periwinkle plant together Kumar, (2016).

Temozolomide Hydroxyurea 0.69 0.04 Hydroxyurea sensitizes glioblastomas to Temozolomide Teng et al. (2018).

Nelarabine Fludarabine 0.67 −0.89

Mercaptopurine Hydroxyurea 0.65 0 Lea et al. (1970) found the combination to be effective against liver carcinoma in rats.

Thioguanine Temozolomide 0.64 0.04 Thioguanine was effective with Temozolomide for recurrent glioma Walbert et al. (2011).

Irinotecan Midostaurin 0.63 −0.33

Valproic Acid Hydroxyurea 0.61 Leitch et al. (2016) found that the combination synergized in leukemia cell lines. Tian et al. (2017)
also found that Valproic Acid sensitized breast cancer cells to hydroxyurea.

TABLE 7 Table of selected DeepCombo drug screening predictions.

Drug 1 Drug 2 Score Separation
score

Evidence in literature

Temozolomide Panobinostat 0.99 0.34 Panobinostat potentiates Temozolomide Urdiciain et al. (2018). The combination also
synergizes with a third component, DZ-Nep De La Rosa et al. (2020).

Panobinostat Gefitinib 0.99 0.17 Lee et al. (2017) found synergy in the combination in non small cell lung cancer.

Temozolomide Vinblastine 0.99 −0.20 The combination synergizes with vinblastine potentiating temozolomide Kipper et al. (2018).

Mitoxantrone Methotrexate 0.99 −0.10 Smith and Powles (1993) have found success with the combination in clinical trials.

Vinblastine Dasatinib 0.99 0.13

Ibrutinib Navitoclax 0.99 The combination synergizes in leukemia cell lines Aw and Brown, (2017).

Methotrexate Doxorubicin 0.98 −0.14 Synergy was found in a co-delivering mechanism Li et al. (2019).

Romidepsin Vinblastine 0.98 −0.38

Gefitinib Imatinib 0.98 −0.53 The combination synergized in a leukemia cell line Singh et al. (2017).

Fluorouracil Diethylnorsper-
mine

0.98 The combination synergized in colorectal cancer Choi et al. (2005).
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Regarding the Mitoxantrone and Methotrexate combination,
the two agents also act on different targets. Where Mitoxantrone
directly interferes with DNA, Methotrexate interferes with
nucleotide synthesis. The nature of the combination again differs
with the patterns seen in DeepNPD. The same differing mechanisms
are seen in Vinblastine and Dasatinib, with Vinblastine directly
interfering with mitosis and Dasatinib being a kinase inhibitor. Such
patterns suggest that if the combination does indeed synergize, it
would be due to potentiation.

Network-based analysis

Using the screening predictions from DeepNPD and DeepCombo,
the successful combinations were run through the PPI network and a
separation score calculated. DeepNPD’s positive predictions for drugs
with available protein target information resulted in an average
separation score of −0.03, while DeepCombo’s predictions resulted
in an average separation score of 0.15. A t-test of the two scores resulted
in a p-value<0.001. This result further confirms that DeepNPDpredicts
drugs withmore similar/overlapping targets while DeepCombo tends to
predict potentiation interactions where drugs target separate target
neighborhoods.

Discussion

In this study, DNNs were built to predict combinations within
natural products and chemotherapy drugs, exploring two avenues of
drug combination discovery. First, a DPI prediction DNN, termed
DeepDPI, was built to predict DPIs using the DrugBank database.
DeepDPI achieved state-of-the-art performance in DPI prediction
tasks. Then, DeepNPD, a model which predicts if a pair of
ingredients would appear in a natural product together, was
successfully developed using the HERB database (Fang et al.,
2018). Using an ensemble approach and SBWA techniques,
DeepNPD was optimized to predict combinations in unseen drug
combinations, helping to solve a problem seen in many past drug
combination prediction models, including DeepSynergy,
GraphSynergy, and TranSynergy (Preuer et al., 2018; Liu and
Xie, 2021; Yang et al., 2021). Similarly, DeepCombo, a model
which predicts synergistic chemotherapy drug combinations in
cancer cell lines, was also built successfully and optimized to
unseen drugs, using the DrugCombDB database (Liu et al., 2020).

In the model integration stage where DeepNPD was tested on
DeepCombo data and vice versa, both models achieved decent
precision scores. Most notably, DeepNPD had a very high
precision in DeepCombo data, which has implications in using
DeepNPD as a novel method to develop new drug combinations.
Although DeepNPD prefers natural products, the patterns that
DeepNPD identifies may lead to synergistic drug combinations in
chemotherapy drugs. In DeepNPD’s chemotherapy drug
combination screening, eight of the ten chemotherapy drug
combinations were found in literature, with five of them showing
evidence of synergy in cancer cell lines.

InDeepCombo’s chemotherapy drug combination screening, seven
of the ten drug combinations were found to display synergy in literature.
This potentially indicates the strength of DeepCombo to discover novel

drug combinations. Compared to other cancer drug combination
prediction models such as DeepSynergy and TranSynergy, which
predicts the strength of synergy in a regression format for a specific
cell line, DeepCombo follows amore general approach by indicating if a
drug synergizes in any cell line (Preuer et al., 2018; Liu et al., 2021).
Additionally, the classification format that DeepCombo follows may
also be beneficial, especially for screening new drugs. DeepSynergy and
TranSynergy, which are designed as regression tasks, have poor
performance for screening new drugs. However, DeepCombo,
designed as a classification task, shows a high precision for
screening new drugs. Therefore, by using a classification framework,
synergy prediction models can be more useful when screening unseen
drugs. Furthermore, when applying the ensemble structure and SBWA,
better optimization towards unseen drugs can potentially be achieved in
future drug combination predicting models.

Additionally, DeepNPD tends to predict drugs which have similar
targets but differing mechanisms of action. Synergy which occurs
through that mechanism was termed “specific” by Cokol et al.
(2011), and specific synergy is less common than “promiscuous”
synergy, where each drug acts on a different target, typically
synergizing through potentiation. It is important to note that
DeepNPD does not simply predict a drug pair which are similar
with one another, but rather differing drugs that act on a similar
target through different mechanisms. There may also be implications in
themechanisms of natural products, whichmay tend to have a group of
ingredients which act on a single target through differing mechanisms.

On the other hand, DeepCombo predictions tend to followmore
typical promiscuous synergy where one agent potentiates the other.
This is displayed in many of the screening predictions. Interestingly,
Panobinostat appeared very frequently with high confidence. HDAC
inhibitors like Panobinostat have been shown to potentiate various
DNA inhibitors while having a low anticancer effect itself (Maiso
et al., 2009). Such an occurrence may implicate the model’s
preference towards potentiation interactions. Additionally, many
of the other predicted combinations showed drugs with differing
targets, suggesting that if the combination indeed synergizes, then it
would be due to promiscuous synergy rather than specific synergy.

This pattern is further confirmed by the network-based analysis,
which ran separation scores on the resulting predictions.
DeepNPD’s predictions resulting in drugs with heavier target
protein overlap and lower separation scores than DeepCombo’s
predictions is further evidence of the differing patterns.

Due to this difference in synergy predictions, DeepNPD could
potentially predict combinations with less intense polypharmacological
properties due to specific synergy targeting a less widespread set of
targets. Interestingly, this contrasts with common ideas of natural
products promoting polypharmacological approaches (Fang et al.,
2018). Regardless, polypharmacology presents both benefits and
risks of increased efficacy and adverse side effects respectively
(Peters, 2013). However, natural products can often reduce toxicity
due to low active compound concentrations. In the future, it may be
more beneficial to characterize a natural product by a group of active
ingredients rather than a pair, to fully allow the network interactions to
be taken advantage of.

In vitro testing is still needed to fully determine the viability of
combination predictions, especially the DeepNPD predictions.
Although a general pattern was observed in DeepNPD, it is still
unclear whether such mechanisms would truly be effective.
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The weaknesses of DeepCombo lie in that it does not indicate
which cell lines a combination may synergize for. Many models such
as DeepSynergy and TranSynergy account for genomic expression
profiles of cell lines which relate to the drug representations (Preuer
et al., 2018; Liu et al., 2021). Although there are strengths to
DeepCombo’s approach, a selected combination must be further
tested in vitro against cell lines to determine where it may synergize
in DeepCombo, where in DeepSynergy, a combination could be
immediately tested against the cell line it was predicted to
synergize against.

The combined representation failed to increase accuracy in both
models. The boost was very small and almost negligible, possible
even due to random chance. Since the DPI representation is based
on the chemical representation, the model may have already learned
from much of the information provided by the DPI representation.
Overall, the added computational power to predict DPIs using
DeepDPI is not worth such a small boost in performance.

DeepNPD and DeepCombo both successfully identified
synergistic drug combinations, indicating the strength of both
avenues of natural products and existing synergistic drug
combinations. Using novel model architectures to optimize
models towards unseen drugs, DeepCombo displays an edge
against typical chemotherapy drug combination prediction
models, implying potential future usage in predicting for newer
drugs and discovering synergistic mechanisms faster and more
efficiently. Regarding the “combination rule” in natural products
there is potential to further investigate mechanisms of drug synergy
within natural products, and in utilizing the synergy patterns in
DeepNPD to drive modern drug discovery in chemotherapy drugs.
Despite the general difficulty of using natural products, there may be
deeper and more useful pharmacokinetic patterns inherent in them,
which can be utilized to advance modern drug discovery as a whole.
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