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The clustering of small molecules is of considerable importance for computer-
aided drug discovery and virtual screening applications. The structure of chemical
data in appropriate subspaces of the chemical space is relevant to sample
datasets in a representative manner, to generate small libraries with wide or
narrow chemical coverage (depending on the specific goals), and to guide the
selection of subsets of in silico hits that are submitted for experimental
confirmation. In the field of natural products, identifying regions of the
chemical space where bioactive compounds congregate and understanding
the relationship between biosynthetic gene clusters and the molecular
structure of secondary metabolites may have a direct impact on natural
product discovery and engineering. Here, we briefly discuss general
approximations and available resources for the clustering of small molecules,
and how the clustering of small molecules can be boosted by the application of
novel clustering approximations, namely subspace clustering and multi-view
clustering, which represent opposite philosophies of the clustering paradigm.
We present some specific applications of small molecule clustering in the field of
natural products, and analyze how a chemogenomic perspective may be
particularly embodied in the field of natural products.
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1 Introduction

Clustering (grouping a set of objects by different criteria of similarity and/or distance
within a spatial representation) is an inherent capacity of the human brain and a pre-
condition for complex thinking (Seger and Miller, 2010). The tendency of the human mind
to group things in classes or categories is clearly reflected in the structure of language itself:
common nouns refer to people, animals, or things of the same class or species, whereas
proper nouns distinguish specific objects from any other of the same class or species.
Perceptual grouping is performed according to principles of proximity, similarity (by shape,
size, color, texture, odor, or taste), continuity (when objects are arranged in continuous lines
or curves) and common fate (objects that move at the same speed or direction are perceived
as part of a continuous), among others (Brooks and Wagemans, 2014).

For example, if we present a series of chemical structures to a person, even if he or she
has not received any training in chemistry, it is possible that he or she will be able to identify
structural patterns and differentiate compounds from different chemical families. Although
perceptual grouping is performed at a remarkable speed, it is evident that it has limitations

OPEN ACCESS

EDITED BY

Marcus Scotti,
Federal University of Paraíba, Brazil

REVIEWED BY

Chun-Wei Tung,
National Health Research Institutes, Taiwan

*CORRESPONDENCE

Alan Talevi,
alantalevi@gmail.com

RECEIVED 08 January 2024
ACCEPTED 05 March 2024
PUBLISHED 15 March 2024

CITATION

Talevi A and Bellera CL (2024), Clustering of
small molecules: new perspectives and their
impact on natural product lead discovery.
Front. Nat. Produc. 3:1367537.
doi: 10.3389/fntpr.2024.1367537

COPYRIGHT

© 2024 Talevi and Bellera. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Natural Products frontiersin.org01

TYPE Perspective
PUBLISHED 15 March 2024
DOI 10.3389/fntpr.2024.1367537

https://www.frontiersin.org/articles/10.3389/fntpr.2024.1367537/full
https://www.frontiersin.org/articles/10.3389/fntpr.2024.1367537/full
https://www.frontiersin.org/articles/10.3389/fntpr.2024.1367537/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fntpr.2024.1367537&domain=pdf&date_stamp=2024-03-15
mailto:alantalevi@gmail.com
mailto:alantalevi@gmail.com
https://doi.org/10.3389/fntpr.2024.1367537
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/natural-products
https://www.frontiersin.org
https://www.frontiersin.org/journals/natural-products
https://www.frontiersin.org/journals/natural-products#editorial-board
https://www.frontiersin.org/journals/natural-products#editorial-board
https://doi.org/10.3389/fntpr.2024.1367537


when dealing with large-scale data, for example, big datasets, and
that it is often convenient to realize the clustering of small molecules
in an automated manner with the assistance of algorithms and
information technologies.

Therefore, clustering of small molecules is of great importance in
the field of computer-aided drug discovery and to guide virtual and
wet screening applications. The structure of chemical data in
appropriate subspaces of the chemical space is highly relevant to
sample datasets in a representative or biased manner, depending on
the pursued goals. This is useful for several tasks. First, stratified
splitting of datasets into representative training and validation sets is
routinely performed when building QSAR/cheminformatics
machine learning models. This practice may obey different
reasons: it ensures maximal coverage of the chemical space by
training data, which broadens the generalizability and
applicability domain of the models (Leonard and Roy, 2006;
Hadipour et al., 2022), and it can also be used to avoid
compound biases and overconfident validation results by
allocating extremely similar compounds in both the training and
validation sets (Mayr et al., 2018; Lopez-Del Rio et al., 2019). Second,
structuring data in the chemical space can be useful either to explore
unexplored regions for novel active compounds (Virshup et al.,
2013; Domingo-Fernández et al., 2023) or, conversely, to focus on
specific already-explored regions to generate preferred screening
collections or focused libraries (Böcker et al., 2005; Harris et al.,
2011). Third, small-molecule clustering can be used to guide the
selection of subsets of in silico hits submitted to experimental
confirmation (Prada Gori et al., 2022a). Because of budget
limitations, the number of in silico hits that emerge from a
virtual screening campaign frequently exceeds the number that
can be synthesized, isolated, or acquired and assayed
experimentally. Clustering and subsequent representative
sampling can ensure the coverage of as much chemical diversity
as possible with those relatively scarce predicted hits sent to wet
assays. Furthermore, the same principle may be used to expedite
structure-based virtual screening, without exhaustive docking of
every molecule in a large or ultra-large chemical library (Yang
et al., 2021).

2 Classification of clustering algorithms
and some frequent challenges

Broadly speaking, clustering approaches (including those used
to group small molecules) can be classified into hierarchical and
non-hierarchical algorithms.

In hierarchical clustering, the data are partitioned or grouped
serially (Everitt et al., 2011a): agglomerative (or bottom-up)
approximations proceed by a series of successive fusions of the N
objects into groups (eventually merging them all together in the last
step); divisive (or top-down) methods, in contrast, separate the N
objects successively into smaller groups (eventually resulting in
isolated elements in the last step). Hierarchical clustering is most
often represented as a hierarchical tree or dendrogram (various
leveled representations of clusters). A significant limitation of these
approaches is that once individuals have been merged or separated,
this cannot be revised or reverted in the subsequent steps of the
algorithms. Classic examples of hierarchical clustering methods

include single linkage, complete linkage, and Ward linkage, with
Ward linkage being commonly used in the context of chemical
library clustering (Murtagh and Contreras, 2017). Another example
is the Maximal Common Substructure (MCS) clustering approach,
which agglomerates compounds based on their common subgraph
of the greatest cardinality, and has been implemented at
Chemaxon’s Jchem (https://chemaxon.com/).

Non-hierarchical approaches, on the other hand, do not have a
tree-like, progressive structure and regularly (but not always) require
(pre)specification of the number of clusters to be obtained; in
optimization approaches, the clusters are refined in successive steps
by either minimizing or maximizing some numerical criterion, as in
the popular K-means approach (MacQueen et al., 1967). A common
incognita when using these approaches is how to decide on the number
of clusters that will be considered and what compounds will be used as
initial seeds to start the procedure. The first choice is often made in a
rather systematic way, by plotting the value of a “goodness of
clustering” criterion against the number of k groups: large changes
of levels in the plot, such as in the elbow method, are usually taken as
an indication of a particular number of groups (Everitt et al., 2011b), as
seen in recent examples in the field (Prada Gori et al., 2022a; Hadipour
et al., 2022). Butina clustering, a sphere-exclusion method based on
similarity coefficients, is another example of a frequently used classic
non-hierarchical approach (Butina, 1999).

Notably, small molecules are often represented by high-
dimensional feature representations (i.e., a large pool of global
and/or local molecular features), which, for the sake of visual
representation and/or reduction of computational cost, are often
pre-processed using dimensionality reduction techniques, such as
Principal Component Analysis (PCA) (Prada Gori et al., 2022a) or
the Uniform Manifold Approximation and Projection (UMAP)
approaches (Prada Gori et al., 2022a; Hernández-Hernández and
Ballester, 2023), which provide a low dimensional projection of the
data. Hadipour et al., 2022 recently reported an open-source deep
clustering approach, in which different dimensionality-reduction
techniques were concatenated. First, they resort to PCA on sets of
global and local molecular features, resulting in a representation
comprising 243 learned features, which was later subjected to further
dimensionality reduction using autoencoders.

It is noteworthy that the assessment of the quality of the clustering
is often omitted or performed informally, for example, by simple
visual inspection of the results, as in the elbowmethod. It is essential to
emphasize the importance of resorting to quantitative metrics to
assess the goodness of the clustering output. The silhouette coefficient
(Rousseeuw, 1987) and the Calinski–Harabasz score (Caliński and
Harabasz, 1974) are good examples of such metrics; they approach
optimal values when the clustering procedure results in compact
clusters (low within-cluster distances) that are well separated from
each other (high between-cluster distances).

Fortunately, there is currently a wide range of freely available
resources that offer hierarchical and/or non-hierarchical small
molecule clustering tools, either via web servers or code. Among
them, we may mention ChemBioServer Karatzas et al., 2021,
ChemMine Tools Backman et al., 2011, DeepClustering
(Hadipour et al., 2022), ChemmineR Cao et al., 2008, RDKit
(Hernández-Hernández and Ballester, 2023), IRaPCA (Prada
Gori et al. 2022b), SOMoC (Prada Gori et al. 2022b), and ChiCA
(Prada Gori et al. 2022a) (see Table 1 for additional details).
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TABLE 1 A selection of freely available resources to perform small molecule clustering. A subjective appraisal of their advantages and disadvantages of each
tool is included.

Name Clustering method(s) Availability Pros and cons Reference

ChemBioServer 2.0
(available as web app)

Hierarchical and affinity propagation
clustering

https://chembioserver.vi-seem.
eu/

Pros: Compound fingerprints can be
provided by the user or generated on
site using 166-bit MACCS Open
Babel fingerprint from.sdf or.mol
files. In the case of hierarchical
clustering, the user can select among
different distances, linkage
approaches, and thresholds. A
tutorial is available on site. Results are
stored for a week

Karatzas et al. (2020)

Cons: Despite the tutorial and the
availability of a supporting paper, the
information on the fundaments of the
affinity propagation clustering may
be a bit scarce

ChemMine Tools (available
as web app)

Hierarchical, binning and,
multidimensional scaling clustering

https://chemminetools.ucr.edu/ Pros: Compounds can be inputted
using SMILES notation, as.sdf or
using PubChem CIDs. They can also
be drawn online. The user can tune
different parameters. A tutorial is
available online. Depending on the
clustering methods, the output can be
exported graphically or as tables/.csv
file. Past jobs are accessible. Free
support available

Backman et al. (2011)

Cons: Even for small size datasets,
jobs run rather slowly. Despite the
tutorial and the availability of a
supporting paper, the details of the
procedures are a bit scarce, though
most of them use very well-
documented functions implemented
in R

ChemmineR (R package) Binning and, multidimensional
scaling clustering. The user can choose
to generate an all-against-all distance
matrix for clustering with many other
algorithms available in R, such as
hierarchical clustering or K-means

https://www.bioconductor.org/
packages/release/bioc/html/
ChemmineR.html

Pros: ChemmineR is a popular
cheminformatics package, with
plenty documentation and active
community forum and blog available
through their developers. The
developers welcome community
contributed resources

Cao et al. (2008)

Deep Clustering (available
as code)

Combination of PCA and deep
learning variational autoencoder-
based K-means clustering

https://github.com/
HamidHadipour/Deep-
clustering-of-small-molecules-
at-large-scale-via-variational-
autoencoder-embedding-and-K-
means

Pros: The clustering procedure
exploits both local and global
molecular features. It can be applied
to large-scale chemical libraries. The
supporting paper describes the
clustering procedure in detail

Hadipour et al. (2022)

Cons: Unavailability as web
application

hclust (R function) Different hierarchical clustering
methods (Ward, single, complete, and
average linkage, among others)

https://www.rdocumentation.
org/packages/stats/versions/3.6.
2/topics/hclust

Pros: This is a well-documented R
function to perform hierarchical
clustering based on different
combinations of distances and
linkage methods. In fact, it has been
used to build some other clustering
resources listed here

Voicu et al. (2020)

Cons: Whereas hierarchical
clustering approaches are often
advantageous in terms of
interpretability, they also imply long
run times for large-scale libraries

(Continued on following page)

Frontiers in Natural Products frontiersin.org03

Talevi and Bellera 10.3389/fntpr.2024.1367537

https://chembioserver.vi-seem.eu/
https://chembioserver.vi-seem.eu/
https://chemminetools.ucr.edu/about/
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://github.com/HamidHadipour/Deep-clustering-of-small-molecules-at-large-scale-via-variational-autoencoder-embedding-and-K-means
https://github.com/HamidHadipour/Deep-clustering-of-small-molecules-at-large-scale-via-variational-autoencoder-embedding-and-K-means
https://github.com/HamidHadipour/Deep-clustering-of-small-molecules-at-large-scale-via-variational-autoencoder-embedding-and-K-means
https://github.com/HamidHadipour/Deep-clustering-of-small-molecules-at-large-scale-via-variational-autoencoder-embedding-and-K-means
https://github.com/HamidHadipour/Deep-clustering-of-small-molecules-at-large-scale-via-variational-autoencoder-embedding-and-K-means
https://github.com/HamidHadipour/Deep-clustering-of-small-molecules-at-large-scale-via-variational-autoencoder-embedding-and-K-means
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust
https://www.frontiersin.org/journals/natural-products
https://www.frontiersin.org
https://doi.org/10.3389/fntpr.2024.1367537


3 Subspace clustering and multi-view
clustering: Is there a ground truth?

Let us say we have been given the (simple?) task of clustering the
following three objects: a human, a dolphin, and a shark. Some
people may argue that the dolphin and the shark should be grouped
together, based on criteria of shape, color, living environment,
external organs, etc. Other people may propose that dolphins are
more like humans based, for instance, on the similarities between
their internal organs. Both these arguments are valid. The example
illustrates that how things are clustered depends on the features that
are used for the clustering exercise: if we consider different sets of
features, we will obtain different results from the application of the
clustering algorithms. On the other hand, it is also evident that,
whereas multiple classifications of the data are possible depending

on the features used to represent such data, some classification
criteria are more useful than others. For instance, a classification of
books based on subject matter would be of much wider use than a
classification based on the color of the book’s binding (Everitt
et al., 2011c).

The former discussion brings about a fundamental question
related to clustering: does it exist a ground truth, that is to say, an
actual, natural, or absolute structure of the data? We believe it does
not (particularly if we intend to use clustering as an unsupervised
approximation, in which case no labelling of the data is considered a
priori). However, not all possible representations of the data are
equally useful, and their usefulness depends on the value judgment
of the user.

The precedent concepts are taken into consideration by
clustering approaches that incorporate feature-selection steps, and

TABLE 1 (Continued) A selection of freely available resources to perform small molecule clustering. A subjective appraisal of their advantages and
disadvantages of each tool is included.

Name Clustering method(s) Availability Pros and cons Reference

iRaPCA (available as
web app)

Iterative clustering based on a
combination of feature bagging, PCA
and K-means

https://lideb.biol.unlp.edu.ar/?
page_id=1076 and https://
github.com/LIDeB/iRaPCA-v1.0

Pros: The developers have validated
their approach across 29 datasets of
different sizes, obtained better
metrics than several classic
approximations. The user can tune
different parameters and input their
own molecular descriptor sets to
perform the clustering. Allows
iterative sub-clustering. Free support
available. The supporting paper
describes the clustering procedure in
detail

Prada Gori et al. (2022a)

Cons: Long run times for large-scale
libraries. Relatively low
interpretability

RDKit (a collection of
cheminformatics and
machine-learning software
written in C++ and Python)

Sphere exclusion and fuzzy clustering https://www.rdkit.org/ Pros: Large community of users.
Community forum available. Well-
documented

Hernández-Hernández
and Ballester (2023)

Cons: Time-consuming, these
methods can be slow to run and are
best used on small sets (no more than
a few hundred molecules) of small
molecules

SOMoC (available as
web app)

Acombination of molecular
fingerprinting, dimensionality
reduction by UMAP and clustering
with the Gaussian Mixture Model

https://lideb.biol.unlp.edu.ar/?
page_id=1076 and https://
github.com/LIDeB/SOMoC-v1.0

Pros: The developers have validated
their approach across 29 datasets of
different sizes, obtained better
metrics than several classic
approximations. The user can tune
different parameters. Free support
available. The supporting paper
describes the clustering procedure in
detail. Compatible with large-scale
libraries

Prada Gori et al. (2022a)

Cons: Relatively low interpretability

CHiCA (available as
web app)

Hierarchical clustering https://lideb.biol.unlp.edu.ar/?
page_id=1076

Pros: Implements diverse classical
hierarchical agglomerative clustering
approaches with interactive graphs as
output to help the user define the
threshold. Good interpretability. Free
support available

Prada Gori et al. (2022b)

Cons: Modest performance in
comparison with other resources
listed here
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by subspace clustering approximations, although these approaches
have been rarely applied in the field of small molecule clustering
(Rivera-Borroto et al., 2011). Subspace clustering represents an
extension of feature selection that attempts to find clusters in
different subspaces of the same dataset (as in the case of feature
selection, subspace clustering requires evaluation criteria to choose
relevant subspaces, which in the case of unsupervised clustering may
well be the previously mentioned silhouette coefficient and
Calinski–Harabasz score). For example, starting from descriptor
sets provided by the user, the iRaPCA approach (Prada Gori et al.,
2022a) randomly explores possible subspaces where adequate
clustering can be found, as judged by the silhouette coefficient or
other metric. Moreover, each resulting cluster may be further
explored iteratively to identify proper sub-clusters. Interestingly,
iRaPCA exhibited consistent and almost optimal behavior in
benchmarking exercises across 29 datasets of variable sizes, even
without iterations (Prada Gori et al., 2022a; Prada Gori et al., 2022b).

However, mainly in line with the idea of an underlying ideal
structure of the data (in which case any view of the data would
originate from an underlying latent space), multi-view clustering has
also attracted much attention recently (although it has been mostly
overlooked in the field of cheminformatics) (Zhang et al., 2020; Guo
et al., 2022; Cao and Xie, 2024). The idea here is that different views
or representations of data may be integrated or combined because of
their complementarity (which may be of particular interest in the
case of supervised clustering) or based on their consensus.

4 Representative sampling is of special
importance in the field of
natural products

It is well known that natural products display greater
chemical diversity and complexity (including grater
stereochemical content) than drugs from completely synthetic
origins (Stratton et al., 2015). This makes total synthesis of drugs
of natural origin particularly challenging and difficult to scale.
Furthermore, fractionation (e.g., to perform bioassay-guided
identification of promising compounds), isolation and
characterization of natural drug candidates is also time- and
resource-intensive (especially in the case of scarce natural
products with limited sample amount) (Kumarasamy, 2012;
Kuranaga et al., 2020) and crude extracts are comparatively
unfriendly to undertake high-throughput screening campaigns
due to assay interference and issues associated with
dereplication, reconstitution and liquid handling (Schmid
et al., 1999; Henrich and Beutler, 2013). Since only a fraction
of natural products can be practically explored in the short to
midterm, drug discovery efforts need to be prioritized towards
natural products with higher discovery potentials (Tao et al.,
2015). This may be accomplished by sampling a variety of
taxonomy or chemical diversity, by focusing on unexploited
chemical regions or, on the contrary, by submitting to
experimental assays samples that are congregated in regions
with high bioactivity potential (Henrich and Beutler, 2013). In
any case, the design of focused or privileged libraries and thereby
the use of small molecule clustering approaches is of special
interest in the field of natural products.

For instance, Tao et al., 2015 resorted to hierarchical clustering
(deriving molecular scaffold tress and molecular fingerprinting trees
based on the complete linkage approach) and found that natural
product leads corresponding to either approved drugs of natural
origin or natural drug candidates in clinical trials emerge from pre-
existing drug productive clusters, suggesting that focusing on
already known drug productive clusters could enhance drug
discovery potential. Hagan and Kell, in contrast, used a sphere
exclusion approach on about 196K compounds emerging from the
union of the UNPD database and the Dictionary of Natural Products
database (O’Hagan and Kell, 2018). After disregarding unusual
structures, they resorted to hierarchical K-Means clustering to
analyze what sizes should a subset library of the initial collection
have to provide representative coverage of the entire database.

5 Clustering, chemogenomics, and
natural products

Chemogenomics has been defined as the investigation of classes of
compounds or focused libraries against families of functionally related
proteins (Kubinyi, 2006). The three basic principles underlying
chemogenomic analysis are as follows: a) similar small molecules
are likely to bind to the same target; b) similar targets are likely to
share ligands; and c) ligands with a similar interaction signature are
likely to elicit similar phenotypic responses. In other words, known
and/or predicted associations between ligands (e.g., through small
molecule clustering) and targets (e.g., through sequence-, structure- or
binding site-matching tools) are used to reveal hidden associations.
Chemogenomics may have specific applications in the field of drug
discovery, from the search for bioactive analogs within a target family
to target deconvolution, from on-target drug repurposing to the
investigation of subtype selectivity. For instance, the last release of
TDR Targets integrated genomic data from diverse microorganisms
(with a focus on those that cause tropical infections) with information
on bioactive compounds (Urán Landaburu et al., 2020). Based on a
drug-target network, the database currently includes network-driven
target prioritizations and novel visualizations of network subgraphs
that display chemical- and target-similarity neighborhoods with
target-compound bioactivity links, which may be used to propose
novel druggable targets and explore new repurposing opportunities in
the field of neglected diseases. The Computational Analysis of Novel
Drug Opportunities (CANDO) is another good example of
chemogenomic analysis. It departs from a traditional reverse
docking approach but incorporates a systems pharmacology
perspective by considering both ligand similarity and the similarity
between the interaction signatures of two ligands against a large panel
of targets as a possible indication of similar phenotypic effects (Minie
et al., 2014). All this, of course, may find straightforward applications
in the field of natural product drug discovery.

However, there are possible exclusive implementations of
the chemogenomics approach in the field of natural products.
The key here is the increasing knowledge of biosynthetic gene
clusters and sub-clusters (the latter being responsible for the
biosynthesis of a specific chemical moiety in a natural product)
in plants and microorganisms (Polturak and Osbourn, 2021;
Louwen et al., 2023). In the same manner that inter-species
associations between biosynthetic genes can be used to guide the
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discovery of unnoticed bioactive natural products (Bauman
et al., 2021), clustering of secondary metabolites, for instance,
may provide clues on secondary metabolic pathways (based on a
“guilt by association” principle, similar secondary metabolites
are likely to emerge from similar biosynthetic pathways), which
are often transcriptionally silent under typical laboratory growth
conditions (Kwon et al., 2021). This can have immediate
applications in bioengineering oriented to obtention of
natural products in artificial settings.

6 Conclusion

Based on the results in other fields of knowledge, it is possible
that cheminformatics clustering tools will benefit, in the new few
years, from the implementation of feature selection, subspace
clustering, and multi-view clustering tools, which have been so
far scarcely applied (though with promising results) in the field
of small molecules.

Beyond their general applications in the field of
cheminformatics, small-molecule clustering tools hold
promise for the discovery of bioactive natural products,
which often exhibit intrinsic difficulties to achieve scalable
synthesis or purification that allow their characterization. The
laborious obtention of the isolated amounts of natural products
required for bioassays and the challenges presented by crude and
fractioned extracts in relation to screening technologies make
particularly relevant the obtention of small focused or privileged
libraries with high discovery potential. This task can be
efficiently addressed by use of small molecule clustering
approaches. Depending on the particular goal of the
investigation, research may focus on unexplored regions of
the natural product chemical space (if the focus is novelty) or
in already known productive regions where bioactive products
tend to converge.

The increasing knowledge on biosynthetic gene clusters and
sub-clusters and the fact that biosynthetic pathways may remain
silent in artificial/laboratory conditions suggest that small molecule
clustering may find specific applications in chemogenomics and
bioengineering, as similar molecules are often synthesized by similar
biosynthetic routes.
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