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The essential oil of rosemary (Rosmarinus officinalis) (EORO) is widely used in folk
medicine and has proven therapeutic effects. Our research evaluated high doses
of rosemary essential oil in 54 Wistar rats between 180 and 200 g. The study
consisted of three experiments: 1) behavioral monitoring of the animals after
administration of 500mg/kg i.p.; 2) electrocorticographic records after drug
administration; 3) anticonvulsant drug reaction, where phenytoin,
phenobarbital, and diazepam 10mg/kg i.p were applied. The results showed
that the application of EORO presented two phases. Phase 1 was characterized by
the appearance of myorelaxation and a reduction in the power of the
electrocorticogram in low-frequency cerebral oscillations. Phase 2 was
characterized by increased excitability, with the appearance of convulsions
and the increased power of electrocorticographic recordings in cerebral
oscillations up to 40 Hz. In this phase, three tracing patterns were observed.
Beta oscillations were the most prevalent and were better controlled by
diazepam, which demonstrates that the excitatory activity of EORO is related
to the reduction of GABAergic activity.

KEYWORDS

ethnopharmacology, electrocorticographic record, behavioral 7. characterization,
rosemary essential oil, Rosmarinus officinalis

1 Introduction

Essential oils and their constituents have been presented as possible modulators of the
central nervous system (CNS) (Figuêredo et al., 2019), and the presence of components such
as terpenes in their constitutions is known to have anxiolytic, antidepressant, analgesic, and
anticonvulsant activities, and to provoke excitability of the central nervous system (de Sousa
et al., 2015; Chen et al., 2020). Rosmarinus officinalis (rosemary), belonging to the
Lamiaceae botanical family, is an aromatic plant cultivated in different regions
worldwide, with the Mediterranean as its center of origin (Murata et al., 2013; Oliveira
et al., 2019). Rosemary is used to accelerate digestion, clear nasal passages, stimulate hair
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growth, and relieve rheumatic pain, as well as myalgias, neuralgias,
and physical and mental fatigue.

Essential oil of R. officinalis (EORO) is also used as a memory
and cognition stimulator, have antidiabetic, anti-inflammatory,
and hepatoprotective properties, relieve dyslipidemia, and
protect against glial cell tumors (Rašković et al., 2014;
Rodrigues et al., 2020; Olah et al., 2017; Ozdemir and Goktuk,
2018; Borges et al., 2019; Allegra et al., 2020; Bao et al., 2020;
Chen et al., 2020; Zappalà et al., 2021). According to Bellumori
et al. (2021), Ahmed and Babakir-Mina (2020) and Paixão and de
Carvalho (2021), rosemary has immunomodulatory and
antimicrobial activity against bacteria (Staphylococcus
epidermidis, S. aureus, Bacillus subtilis, Proteus vulgaris,
Pseudomonas aeruginosa, and Escherichia coli) and fungi
(Candida albicans and Aspergillus niger). Several studies have
demonstrated the interactive relationship of EORO with the
CNS, having activity in the cholinergic and dopaminergic
pathways (Park et al., 2010; Sasaki et al., 2012; Borrás-Linares
et al., 2014; Kayashima et al., 2020). Studies of stimulant effects
are related to the components 1,8-cineole (oxide) and α-pinene
(monoterpene) which, through sympathetic activity, stimulate
the autonomic nervous system and increase blood pressure and
respiratory rate measurements (Howes and Houghton, 2003;
Sasaki et al., 2012; Kayashima et al., 2020). In line with these
studies, Schriever et al., 2017 and DeGuzman et al., 2020 recorded
by electroencephalography a significant decrease in the power of
alpha waves in the bilateral middle frontal regions; they
associated this result with increased alertness they
clinically observed.

It is known that despite advances in the understanding of
epilepsy, the mechanisms responsible for the epileptic
phenomenon and its cellular bases are still not fully understood,
although existing studies indicate that EORO interacts with the
CNS. The behavioral and electrocorticographic characterization
during these interactions caused by EORO have never been
described and can help us understand the pathophysiological
mechanisms that underlie epilepsies.

2 Materials and methods

2.1 Animals

For this study, 54 heterogeneous male Wistar rats, aged
8–10 weeks and weighing 180–200 g were used. They
originated from the Central Animal Facility of the Federal
University of Pará ICB (UFPA) and accommodated in the
vivarium of its Laboratory of Pharmacology and Toxicology of
Natural Products (LFTPN/UFPA). The animals were
acclimatized to laboratory conditions 5 days before the
experimental manipulation in boxes measuring 50 cm ×
60 cm × 20 cm (height × width × depth) with wood shavings,
at a temperature adjusted to 25–28 °C, 12-h light/dark cycle,
receiving rodent food and filtered water during the tests. The
experimental procedures followed the guidelines of the Ethics
Committee in Research with Experimental Animals of the
Federal University of Pará – (CEPAE–UFPA) under CUS
approval number 6301260821.

2.2 Acquisition and composition of
essential oil

Essential oil of R. officinalis (EORO) was purchased from
Harmonie Aromatherapy (Florianópolis, SC, Brazil, CNPJ:
11.938.821/0001-90). It was extracted by steam distillation and
analyzed by high-performance gas chromatography on an
AGILENT 7820A Gas Chromatograph under the following
conditions. Column: RXi-5MS 30 m × 0.25 mm × 0.25 μm
(Restek). Temp.: column: 50 °C (0 min), 3° C/min at 200 °C;
injector: 200 °C split: 1/50; FID detector: 220 °C. Vol. injection:
1 µL (1% in ethyl acetate) (Figure 1). The phytoconstituents that
make up the oil are eucalyptol (47.5%), camphor (19.3%), α-
pinene (12.2%), β-pinene (7.8%), and β-caryophyllene
(4.6%) (Table 1).

2.3 Drugs used

The drugs were acquired as follows: ketamine hydrochloride
from König (Santana de Parnaíba, SP, Brazil);
xylazine hydrochloride from Vallée (Montes Claros, MG,
Brazil); phenobarbital anticonvulsant compounds from
Aventis-Pharma (Ribeirão Preto, SP, Brazil), and
phenytoin and diazepam from União Química (Embu-Guaçu,
SP, Brazil).

2.4 Experimental design

2.4.1 Experiment I: Behavioral characterization
The convulsant doses used were 300 mg/kg and 600 mg/kg

i.p; through linear regression, considering the behavior of clonic
seizure with partial loss of posture reflex, the indicated dose was
500 mg/kg. The drug was previously diluted in reconstituted
peanut oil at 10% (100 mg/mL). The control group just with
the injection of peanut oil in a volume equivalent did not present
any behavioral alterations. The animals were submitted to
behavioral analysis to evaluate the latency period of the
appearance of behaviors after the administration of 500 mg/kg
i.p. EORO forf 60 min (n = 9). Preliminary tests made it possible
to determine the effective dose (ED50) at 500 mg/kg to trigger
seizures with loss of postural reflex.

2.4.2 Experiment II: Electrocorticographic
characterization

Five days after electrode implantation, electrocorticograms
(ECoGs) were performed for 50 min after the injection of EORO
500 mg/kg i.p. This experiment was designed as follows. The control
group received i.p. of 0.9% saline solution in equivalent volume, then
ECoG recording was performed (n = 9). The animals in the EORO
group received an EORO injection of 500 mg/kg i.p., then ECoG
recording was performed (n = 9).

2.4.3 Experiment III: Action of anticonvulsants
EORO-induced seizures were attenuated with three different

anticonvulsants: phenytoin (PHT) 10 mg/kg i.p., phenobarbital
(PBT) 10 mg/kg i.p., and diazepam (DZP) 10 mg/kg i.p. The
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groups were organized as follows. a) EORO (500 mg/kg i.p.)
10 min before the application of phenytoin at a dose of
10 mg/kg i.p. followed by the ECoG recording for 30 min. b)
EORO (500 mg/kg i.p.) 10 min before application of
phenobarbital at a dose of 10 mg/kg i.p. followed by the ECoG
recording for 30 min. c) EORO (500 mg/kg i.p.) 10 min before the
application of diazepam at a dose of 10 mg/kg i.p. followed by the
ECoG recording for 30 min. To evaluate the seizure control by
anticonvulsants, the animals were submitted to the same
electrocorticographic recording protocol as step two and
received intraperitoneal EORO and 10 min later received
phenytoin, phenobarbital, and diazepam, followed by ECoG
recording for 30 min.

2.5 Surgery for electrode implantation

The animals were anesthetized by intraperitoneal injection
of an association of ketamine hydrochloride at a dose of
100 mg/kg and xylazine hydrochloride at a dose of 10 mg/kg.
The degree of anesthetic depth was evaluated. After anesthesia,
the animals were placed in a stereotaxic apparatus. Stainless steel
electrodes, with an exposed tip 1.0 mm in diameter, were placed
on the dura above the frontal cortex at the bregma
coordinates −0.96 mm and ±1.0 mm laterally (Hamoy et al.,
2018) in the motor cortex region. A screw was fixed in the
skull, and the electrodes were fixed with dental acrylic cement
(self-curing acrylic).

FIGURE 1
ChromatogramofR. officinalis essential oil sample Chromatography Laboratory, Department of Chemistry—Federal University ofMinas Gerais, Belo
Horizonte, 19 August 2019. 1 (alpha-pinene), 2 (camphene), 3 (beta-pinene), 4 (myrcene), 5 (para-cymene), 6 (limonene), 7 (eucalyptol), 8 (gamma), 9
(linalool), 10 (camphor), 11 (borneol), 12 (terpinen-4-ol), 13 (alpha terpineol), 14 (bornyl acetate), 15 (beta-caryophyllene), and 16 (humolene).

TABLE 1 Chemical composition of Rosmarinus officinalis essential oil.

Retention index Identification Percentage
(%)

Peak

1003 Eucalyptol 47.5 7

1121 Camphor 19.3 10

913 Alpha-pinene 12.2 1

950 Beta-pinene 7.8 3

1425 Beta-caryophyllene 4.6 15

1000 Limonene 2.3 6

925 Camphene 1.4 2

1073 Linalool 1.2 9

1174 Alpha terpineol 1.0 13

995 Para-cymene 0.7 5

963 Myrcene 0.5 4

1159 Terpinen-4-ol 0.3 12

1281 Bornyl acetate 0.2 14

1461 Humolene 0.2 16

1031 Gamma terpinene 0.1 8

1148 Borneol 0.1 11

Others 0.2
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2.6 Electrocorticography record

The recordings were obtained through a differential amplifier
with high impedance AC input (Grass Technologies, Model
P511) adjusted with 0.3 Hz and 0.3 KHz filtering, monitored
with an oscilloscope (Protek, Model 6510), and continuously
digitized at a 1 KHz rate by a computer equipped with a data
acquisition card (National Instruments, Austin, TX). The
analyses were performed using a tool built using the Python
programming language (version 5.0). The “Numpy” and “Scipy”
libraries were used for mathematical processing, and the
“matplolib” library was used to obtain graphs and plots. The
results were submitted to descriptive statistics as mean and
standard deviation. One-way analysis of variance (ANOVA)
was used, followed by the Tukey test. A significance index of
*p < 0.05, **p < 0.01, and ***p < 0.001 was adopted. Analyses were
performed at a frequency of up to 40 Hz, and divided into bands
according to Jalilifar et al. (2018) in beta (1–4 Hz), theta (4–8 Hz),
alpha (8–12), beta (12–28), and gamma (28–40 Hz) for the
interpretation of dynamics during the development of crises.

3 Results

3.1 Behavioral characterization

The behavioral observations obtained after the
administration of essential oil of R. officinalis (EORO) at a
dose of 500 mg/kg i.p, were characterized by two phases: CNS
depression (phase 1) followed by CNS excitability (phase 2)
(Table 2). In phase 1, it is possible to perceive two distinct
stages: immobility and myorelaxation. Immobility starts after
approximately 5 min, with a latency of 301.2 ± 42.78 s.
Myorelaxation, in turn, starts at approximately 8 min, with a
latency of 458.9 ± 62.20 s (Table 2). Phase 2 begins approximately
15 min after the application of EORO, characterized by
excitability and the appearance of generalized clonic
convulsion. The convulsion observed in animals demonstrated
four characteristics: head and neck spasms, clonic convulsion of
the thoracic limbs, generalized clonic convulsion with transient
loss of postural reflex, and generalized clonic convulsion with loss
of postural reflex (Table 2).

3.2 ECoG according to phases of depression
and cerebral excitability with different
tracing patterns caused by EORO

The animals in the control group walked normally, showed
ECoG characteristics with low tracing amplitude (Figure 2A,
left), and revealed a frequency spectrogram with energy intensity
concentrated at frequencies below 10 Hz (Figure 2A, right).
During phase 1, which occurred shortly after the application
of EORO, muscle relaxation was observed in behavioral analysis.
Furthermore, the ECoG recorded a decrease in the amplitude of
the trace (Figure 2B, left), with a slight reduction of the energy
level in the frequency oscillations up to 40 HZ (Figure 2B, right)
compared to the control spectrogram (Figure 2A, right). During
phase 2, much larger amplitude traces can be noticed (Figure 2C,
left) with signal intensification according to the frequency
spectrogram achieved (Figure 2C, right), contrasting with the
patterns observed in control and during phase 1. The behavioral
responses were in line with the two distinct phases observed in
the ECoG analysis (Figure 3). In phase 2, three tracing patterns
were observed: pattern A characterized by a change in the tracing
at the beginning of excitability with an amplitude below 0.5 mV;
pattern B characterized by a polypoint wave that repeats with an
amplitude of 2 mV but at a lower frequency than pattern A;
Pattern C that presents a high-frequency polypoint with a burst
firing pattern of potentials with an amplitude of 4 mV
(Figures 3A,B).

3.3 Analysis of brain oscillations during the
phases and tracing patterns observed in
phase 2

The linear power between control and phase 1 were similar
(p = 0.999). However, the control group was smaller than the
other groups in phase 2. Phase 2 of the registration was similar to
pattern B (=0.9551). Linear power was increased according to
patterns A, B, and C (Figure 4A). For linear power in delta
oscillations, the control group was similar to phase 1 (p = 0.9701)
and pattern A group (p = 0.9785). The phase 1 group was similar
to pattern A (p = 0.6673). Phase 2 was larger than pattern A and
smaller than patterns B and C (Figure 4B). For theta oscillations,
the animals in the control group were similar to phase 1 (p =
0.9988) and pattern A group (p = 0.5503). The phase 1 group and
firing pattern A were similar (p = 0.2806). The power of the
recordings in phase 2 was greater than the control, phase 1, and
standard A groups. The groups of patterns B and C presented the
highest powers recorded in theta oscillations (Figure 4C). For
alpha oscillations, the control group was similar to phase 1 (p =
0.999), and it was similar to standard group A (p = 0.5765). Phase
1 was similar to pattern A (0.5068), as was phase 2 (p = 0.3406).
Patterns A, B, and C showed an increase in alpha power
according to the evolution of the recording (Figure 4D). For
beta oscillations, recordings from animals that received EORO
showed greater beta wave power in phase 2 than the control and
phase 1 groups. Phase 2 was similar to standard group A (p =
0.0867). The control group showed oscillations in the beta band
similar to the group in phase 1 (p = 0.999). Standard groups B and

TABLE 2 Characterization of the phases and latency of the occurrence of
behaviors (60-min observation) (n = 9).

Phase Behavior Latency
(seconds)

Phase 1 1. Immobility 301.2 ± 42.78

2. Myorelaxation 458.9 ± 62.20

Phase 2 1. Head and neck spasms 974.0 ± 49.64

2. Clonic seizures of the forelimbs 1084 ± 68.71

3. Generalized clonic seizure with transient
loss of posture reflex

1213.0 ± 93.18

4. Generalized clonic seizure with loss of
posture reflex

1348.0 ± 49.92
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FIGURE 3
(A) Electrocorticographic recording (ECoG) obtained after application of EORO at 500 mg/kg i.p. showing phases 1 and 2. The black arrow indicates
the beginning of phase 2. Three ECOG tracing patterns were identified in the second phase, shown as red dots: pattern (A) (1,170–1,180 s), pattern (B)
(2,320–2,330 s), and pattern (C) (2,780–2,790 s). All with 10 s recording in phase 2.

FIGURE 2
Electrocorticographic (ECoG) tracings of Wistar rat after application of 500 mg/kg i.p. of EORO. (A) ECoG traces of the control group; (B) ECoG
registration during Phase 1; (C) seizure pattern in Phase 2. Corresponding records are shown on the central panels (10 s); frequency spectrograms are
shown on the right.
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C showed greater beta potency (Figure 4E). For gamma
oscillations, the phase 2 group showed greater power in
relation to the control and phase 1 groups. The control group

and phase 1 were similar (p = 0.999). Phase 2 was similar to
standard group A, (p = 0.0632). Groups B and C presented the
highest average power in gamma oscillations (Figure 4F).

FIGURE 4
Quantitative linear frequency distribution of brain waves: For oscillations of 0–40 Hz in phases 1 and 2 and patterns A, B, and C of the tracings (A);
delta oscillations (1–4 Hz) (B); theta oscillations (4–8 Hz) (C); alpha oscillations (8–13 Hz) (D); beta oscillations (13–28 Hz) (E); gamma oscillations
(28–40 Hz) (F). The test used was one-way ANOVA. Data expressed as mean ± SD (n = 9 animals per group; *p < 0.05, **p < 0.01, and ***p < 0.001).
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3.4 Evaluation of anticonvulsant drugs

To assess the control of the seizures observed in phase 2,
anticonvulsants were applied after EORO administration:
phenytoin (10 mg/kg i.p.), phenobarbital (10 mg/kg i.p.), and
diazepam (10 mg/kg i.p.). The recording patterns obtained with
the use of anticonvulsants are shown in Figure 5 A, B, and C.
Oscillations in the beta band showed an increase in phase
2 characterized by seizures; thus, the action of anticonvulsant
drugs has been tested for oscillations in beta (12–28 Hz). For the
control group, the fluctuations in beta were lower than the other
groups, except for the group treated with diazepam (p = 0.7758).
Registration in phase 2 was higher than the other groups. The
group treated with phenytoin was larger than the groups treated
with phenobarbital and diazepam. The diazepam-treated group
was similar to the phenobarbital-treated group (p =
0.0879) (Figure 5D).

4 Discussion

Many substances contained in essential oils have
anticonvulsant effects and may benefit people with epilepsy.
Compounds such as carvone, citral, eugenol, or linalool are
present as promising agents with antiepileptic activity.
However, some essential oils are proconvulsant or are even
present anticonvulsant and proconvulsant compounds in the
same essential oil (Filho et al., 2006; Lopes et al., 2008; Quintans-
Júnior et al., 2008; Sousa et al., 2008; Subhan et al., 2008; Bahr
et al., 2019; de Oliveira et al., 2020; Mathew et al., 2021; de
Oliveira et al., 2022; de Araújo et al., 2023). The behavior of the
animals after the application of EORO initially showed
depression of the central nervous system with the presence of
intense myorelaxation that characterized the first phase of the
behavior. However, a phase of excitability was revealed with the
appearance of convulsive crises in the second phase, which
demonstrated to the same components of the essential oil a
decrease of excitability in the initial period and then an increase
of excitability. A similar behavior was observed in the ethanolic
extract of Nerium oleander, but with different components—in
this case oleandrin, which corresponds to a digitaloid (de Melo
et al., 2020). Figuêredo et al. (2019) studied the effects of 1,8-
cineol (eucalyptol 50 mg/kg)—the key phytochemical
component of EORO—in the CNS of mice through the
analysis of a behavioral model, finding that the latency of
death was significantly prolonged in the groups which were
submitted to convulsion induced by PTZ, which is a power
stimulant of CNS due to its inhibitory capacity of the receptor
GABAA in the control group. This corroborates our phase
1 results that EORO seems to act as a depressor of CNS. A
study on the essential oil of Ocimum basilicum also suggested the
hypnotic and anticonvulsant activities of this oil in the presence
of terpene like the 1,8—cineole and linalool (Ismail, 2006).
Camphor, the second biggest key phytochemical component
of EORO, was studied by Ferreira et al. (2020) through
electrocardiographic analysis where moderate neuronal
hyperexcitability, fast evolution to tonic-clonic convulsion,
and alterations in the electrocardiographic registers presented

characters of epileptiform activity with an increase in the total
power of the wave, revealing an increase in the delta and theta
waves. This corroborated our phase 2 results that the EORO was
a CNS exciter, and therefore a proconvulsant. In the
phytochemical analysis of the oil used in the study, the
compound linalool was identified. This is an acyclic
monoterpene that is well-known for its potential in
aromatherapy and cosmetics. It is a compound that has
anxiolytic potential in animal models capable of potentiating
the function of GABA in the GABA A receptor (Milano et al.,
2017) and inhibiting the excitatory action of glutamate receptors
(Elisabetsky et al., 1999; Kessler et al., 2012, Ohkuma et al.,
2002). Linalool derivatives and metabolites including linalool
oxide, linalyl acetate, eight-oxolinalyl acetate, 8-carboxylinalyl
acetate, and 8-oxolinalool also increase GABAergic activity and
may have anticonvulsant effects (Linck et al., 2009; Vatanparast
et al., 2017; Bahr et al., 2019) (Table 1). Hydroxylation at C8 of
linalyl acetate led to reduced GABAergic responses (Granger
et al., 2005; Milanos et al., 2017). The possible oxidation of
linalool by P450 system oxidases may have contributed to the
formation of different oxygenated byproducts that express
distinct affinities and properties regarding the activation of
GABA receptors (Boachon et al., 2015). The hydrophobicity
of linalool favors greater allosteric interaction with GABA, since
these receptors are embedded in the hydrophobic lipid bilayer of
neurons (Khom et al., 2007). The oxidation of these compounds
results in reduced modulation of the GABAA receptor (Khom
et al., 2007). The linalool metabolism can thus directly
contribute to the onset of seizures, reducing its effects on
GABA, since other substances such as camphor and
eucalyptol are found in the essential oil. These are known to
promote epileptic events in humans, possibly due to their
significant presence (Teis and Koren, 1995; Zibrowski et al.,
1998; Pearce, 2008; Culić et al., 2009; Ferreira et al., 2020). This
context justifies the two antagonistic phases dependent on the
time of contact with the EORO, which can be observed in the
electrocorticogram. During phase 2, there are characteristic
peaks of asynchronous brain activity (Figure 2) with low
amplitude patterns and high frequency, low frequency and
high amplitude with polypoint wave, and high amplitude and
high frequency with similar morphographic elements between
shots with an increase in recorded power, demonstrating the
intensity of the convulsive condition (Figures 3A,B). The
evaluation of brain band oscillations during phase 1 showed a
decrease in delta oscillations (1–4 Hz) in relation to the control
group. For phase 2, all oscillations up to 40 Hz showed an
increase in potency, but beta oscillations showed greater
amplitude during seizures. According to Jalilifar et al. (2018)
and Hamoy et al. (2018), who studied different pro-convulsant
substances, there is an increased preponderance of beta
oscillations in the electrocorticogram . All anticonvulsants
tested reduced beta oscillations during seizures, although
phenobarbital and diazepam performed better, demonstrating
the inhibition of the GABAergic pathway by EORO. Research
has already described the ability of camphor to induce seizures
(Dubovsky, 1995; Pearce, 2008; Burkhard et al., 1999; Ferreira
et al., 2020). EORO has components capable of initially
depressing and subsequently causing excitability in the central
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nervous system with characteristic recording patterns that are
repeated during the ECoG tracing. The excitability phase is
related to the decrease in GABA activity, which can be
reversed more effectively with the use of diazepam. EORO
has antagonistic effects that can be observed depending on
the time of contact with the body.
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