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Marine algae are a rich and underexplored source of haloperoxidases, enzymes
with wide ranging applications in biocatalysis, pharmaceuticals, and
environmental bioremediation due to their ability to catalyze the halogenation
of organic compounds. This review focuses on the recent advancements in the
purification of haloperoxidases from marine algae, highlighting both traditional
and innovative methods. We discussed the limited exploration of green algal
haloperoxidases, and the potential for discovering novel enzymes with unique
properties. The review examines the advantages and disadvantages of
chromatographic techniques, such as ion-exchange, size exclusion, and
affinity chromatography, and explores emerging alternatives, including
aqueous two-phase systems (ATPS) and microfluidic systems, for improving
enzyme yield, purity, and stability. The use of ATPS to address challenges
posed by alginate-rich brown algae is emphasized, along with optimization
strategies for scaling up purification processes. The growing importance of
sustainable and green chemistry approaches to minimize environmental
impact while achieving high purification efficiency is also discussed. By
analyzing current purification techniques, identifying knowledge gaps, and
suggesting future research directions, this review aims to provide meaningful
insights into the purification and industrial applications of haloperoxidases,
thereby stimulating further exploration and innovation in this field.
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1 Introduction

Marine ecosystems host an exceptional variety of life forms, ranging from
microorganisms to complex organisms, thriving in diverse habitats (Chandna et al.,
2020; Griffin, 2020). This biodiversity is fundamental to sustaining ecosystem stability
and functionality (Chandna et al., 2020). Among these organisms, algae are particularly
significant as a rich source of bioactive compounds with substantial industrial importance
(Tripathi et al., 2024). Of the numerous enzymes derived from these organisms,
haloperoxidases have garnered increasing attention due to their unique ability to
catalyze the halogenation of organic compounds (Höfler et al., 2019). This catalytic
process, which involves the incorporation of halogens such as chlorine, bromine, or
iodine into various substrates, plays a critical role in the synthesis of biologically active
molecules and environmentally friendly chemical transformations (Franssen, 1994; Höfler
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et al., 2019). Consequently, haloperoxidases hold immense promise
for applications in biocatalysis, pharmaceuticals, and environmental
remediation due to their unique catalytic properties, such as regio-
and stereoselectivity, as well as their ability to catalyze halogenation
reactions (Ayala and Eduardo, 2015; Rebollar-Pérez et al., 2019). In
biocatalysis, they can be used to synthesize complex organic
compounds; in pharmaceuticals, they facilitate the production of
halogenated drugs with enhanced efficacy and bioavailability; and
in environmental remediation, they play a role in the degradation of
persistent organic pollutants. Despite this potential, haloperoxidases
from marine algae remain underutilized, partly due to challenges
associated with their extraction and purification (Wever et al., 2018).
Conventional purification methods often fall short in achieving the
required yield, purity, and stability for industrial applications,
highlighting the need for innovative approaches. Furthermore,
large-scale utilization of these enzymes has been limited by
difficulties in maintaining bioactivity and scalability. Therefore,
addressing these knowledge and technical gaps is essential to fully
exploit the potential of haloperoxidases and enable their efficient
integration into industrial applications. The objective of this review is
to provide an in-depth exploration of algal haloperoxidases, focusing
on their diversity, purification methodologies, and the associated
challenges. Special attention is given to underrepresented groups,
such as green algae, and to innovative techniques that could
overcome existing limitations. By identifying key knowledge gaps
and proposing strategies for optimizing purification, this review aims
to facilitate the broader application of haloperoxidases in industrial
and biotechnological fields.

2 Overview of haloperoxidases in
marine algae

Haloperoxidases are enzymes that catalyze the incorporation
of halogen atoms (such as chlorine, bromine, or iodine) into
organic compounds using hydrogen peroxide or other peroxides
as oxidants (Franssen, 1994; Gérard et al., 2023). This halogenation
process is highly selective, facilitating the synthesis of halogenated
compounds with significant biological and industrial value
(Sharma et al., 2024). Haloperoxidases are typically classified
based on the halogen they incorporate and their active site
composition, with the main types being chloroperoxidases
(CPOs), bromoperoxidases (BPOs), and iodoperoxidases (IPOs),
with only BPOs and IPOs are found in marine algae (Butler and
Baldwin, 1997; Pacios and Galvez, 2010; Fournier et al., 2014). In
marine algae, these enzymes play a critical role in the biosynthesis
of halogenated natural products that serve ecological functions

such as chemical defense and signaling (Butler and Carter-
Franklin, 2004; Baumgartner and Shaun, 2021).

Vanadium-dependent haloperoxidases, including
bromoperoxidases (V-BPOs) and iodoperoxidases (V-IPOs),
catalyze the oxidation of bromide (Br−) or iodide (I−) using
hydrogen peroxide (H2O2), producing halogenated organic
compounds and water (Figure 1). These enzymes activate
hydrogen peroxide to form a highly reactive intermediate,
facilitating regio- and stereoselective halogenation of organic
substrates (Aboelnga, 2022; Chen et al., 2022; Zhang and Liu,
2023). V-BPOs, primarily found in red and brown algae, exhibit
broad pH stability (4–10) and high thermal resistance, making them
valuable for industrial biocatalysis. In contrast, V-IPOs, mainly from
brown algae, function within a narrower pH range (5–7) and play
key roles in marine iodine metabolism (Tarakhovskaya et al., 2015;
Punitha et al., 2018; Ishikawa et al., 2022). In marine ecosystems,
halogenation mediated by these enzymes contributes to the
production of bioactive compounds involved in chemical defense,
microbial inhibition, and ecological interactions. Both V-BPOs and
V-IPOs have significant applications in green chemistry, particularly
in selective halogenation processes (La Barre et al., 2010; Cabrita
et al., 2010).

Marine algae, especially brown, red, and green algae, are notable
sources of haloperoxidases. Brown algae, such as Laminaria spp.,
Macrocystis pyrifera, and Ascophyllum nodosum, are rich in
vanadium-dependent haloperoxidases (V-HPOs), which are
involved in bromination and iodination processes (Küpper and
Kroneck, 2014; Tarakhovskaya et al., 2015; Punitha et al., 2018).
These enzymes are responsible for the production of brominated and
iodinated compounds for defense, tissue repair, and adhesion (La
Barre et al., 2010). Red algae, such as Laurencia spp. and Gracilaria
spp., produce haloperoxidases that generate halogenated phenols with
antimicrobial and antifouling properties, contributing to their
ecological success (Weinberger et al., 2007; Thapa et al., 2020;
Ishikawa et al., 2022). Green algae, such as Ulva spp. and Codium
spp., also harbor haloperoxidases (Rehder, 2014), although they are
less extensively studied, and these enzymes catalyze the halogenation
of fatty acids and terpenoids as part of the algae’s chemical defense
strategies (Carter-Franklin et al., 2003; Weinberger et al., 2007; Thapa
et al., 2020).

3 Industrial applications of
haloperoxidases

Haloperoxidases have garnered significant attention for their
versatility in various industrial applications due to their unique

FIGURE 1
Catalytic reaction of vanadium haloperoxidase. where X− represents a halide ion (Br−, or I−).
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ability to catalyze selective halogenation reactions (Höfler et al.,
2019; Sharma et al., 2024). These enzymes are proving invaluable in
biocatalysis, pharmaceuticals, environmental remediation, and
emerging innovative applications (Littlechild, 1999; García-

Zamora et al., 2018; Michail and Isupov, 2014; Höfler et al.,
2019; Rebollar-Pérez et al., 2019).

In biocatalysis, haloperoxidases catalyze the selective
halogenation of organic compounds using H2O2 as an oxidant, a

FIGURE 2
Catalytic mechanism of heme dependent haloperoxidase. where X− represents a halide ion (Br−, or I−).
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process visually depicted in their catalytic mechanisms. These
enzymes are broadly classified into heme-dependent and
vanadium-dependent haloperoxidases. In heme-dependent
haloperoxidases, the catalytic cycle begins with the activation of
the heme iron to form a highly reactive intermediate known as

Compound I, which facilitates the transfer of halide ions (X−) to the
substrate, leading to halogenation (Figure 2). In vanadium-
dependent haloperoxidases, the resting state involves a vanadate
cofactor bound to the active site, which is oxidized by H2O2 to
produce a peroxo vanadate species that mediates halogenation
(Figure 3). These mechanisms are highly regio- and
stereoselective, enabling precise chemical transformations that are
challenging to achieve using conventional chemical halogenation.
Additionally, the environmentally benign nature of this process,
with water as the only byproduct, underscores its sustainability.
Recent research by Sharma et al. (2024) highlighted the efficacy of
V-HPOs as biocatalysts for selective halogenation, specifically
facilitating the synthesis of 1,2,4-oxadiazole from substituted
benzamidine hydrochlorides. This compound is a cornerstone in
drug discovery, forming part of numerous experimental,
investigational, and approved drugs (Bostro€m et al., 2012;
Dhameliya et al., 2022). Oxadiazoles, acting as bioisosteres for
esters, hydroxamic acids, carboxamides, and carbamates, enhance
the metabolic stability of drugs such as ataluren, naldemedine,
amenamevir, ozanimod, azilsartan medoxomil, and opicapone,
thereby improving their therapeutic efficacy and prolonging their
action (Salahuddin et al., 2017; Baykov et al., 2023). Furthermore,
studies have shown that V-HPOs exhibit broad substrate specificity
and are capable of catalyzing complex reactions, including
epoxidation, hydroxylation, and halogenation, which are often
challenging to achieve with conventional chemical methods
(Bhandari et al., 2023; Gérard et al., 2023). Their diversity and
ability to construct greener synthesis routes match green chemistry
concepts, decreasing waste and the requirement for hazardous
chemicals. V-HPOs, have significant applications in green
chemistry due to their ability to catalyze halogenation and
oxidation reactions with high selectivity and stability. These
enzymes facilitate the biosynthesis of halogenated organic
compounds, widely used in pharmaceuticals and as synthetic
intermediates in chemical industries. Their enzymatic approach
offers an environmentally friendly alternative to using toxic and
corrosive reagents like molecular bromine (Wischang and Hartung,
2011). For instance, V-HPOs from A. nodosum have been
successfully applied to synthesize brominated pyrroles (Wischang
et al., 2011a) and terpenes (Carter-Franklin et al., 2003), as well as
optically pure sulfoxides, which are critical intermediates in
asymmetric synthesis and pharmaceutical formulations (Ten
Brink et al., 2001). Moreover, the immobilization of V-HPOs on
supports such as magnetic beads has enabled efficient recycling of
these biocatalysts (Wischang et al., 2011b). These applications
demonstrate the potential of V-HPOs to drive more sustainable
and selective chemical processes.

Despite extensive studies on V-HPOs, their application remains
poorly exploited, particularly from marine algae. Notably, most
research has focused exclusively on bromoperoxidases, neglecting
the abundant iodoperoxidases in brown algae such as Laminaria
digitata, A. nodosum, and Pelvetia canaliculate (Almeida et al., 2000;
Colin et al., 2005; Verhaeghe et al., 2008). These iodoperoxidases
hold significant potential for novel applications, yet their properties
and industrial relevance remain largely unexplored. Expanding the
study of V-HPOs to include these enzymes could open new avenues
for biotechnological advancements and further harness the
untapped potential of marine algae-derived biocatalysts.

FIGURE 3
Catalytic mechanism of vanadium dependent haloperoxidase.
where X− represents a halide ion (Br−, or I−).
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4 Purification techniques of
haloperoxidases from algae

Haloperoxidases were purified from algae using various
purification techniques. Supplementary Table S1 provides an
overview of haloperoxidases from various algal sources, focusing
on their purification techniques, prosthetic groups, and optimal
activity conditions. Algae are categorized into red, brown, and green
types, with red and brown algae being the most extensively studied.
Each algal group presents unique characteristics in terms of
haloperoxidase stability and adaptability, reflecting their potential
for diverse applications. In addition, the purification of
haloperoxidases varies across different algal types, with distinct
techniques influencing yield and purification fold (Table 1).

Red algae exhibit the highest yield (37.9%) but a moderate
purification fold (68.87), primarily using ammonium sulfate
precipitation, ion-exchange chromatography, and size-exclusion
chromatography (Itoh et al., 1985; Sheffield et al., 1992;
Kongkiattikajorn and Ruenwongsa, 2006). These algae are
prominently represented by species including Corallina spp and
Gracilaria spp (Itoh et al., 1985; Sheffield et al., 1992; Rush et al.,
1995; Coupe et al., 2007). Vanadium-dependent bromoperoxidases
(V-BPOs) exhibit impressive stability, functioning effectively across
a wide pH range of 4–10. They are also highly temperature-resistant,
with Gracilaria fisheri enzymes remaining stable up to 50°C
(Kongkiattikajorn and Pongdam, 2006) and Corallina officinalis
enzymes enduring temperatures as high as 80°C (Rush et al.,
1995). This makes red algae a valuable source for enzymes
suitable for industrial processes requiring robustness under varied
conditions (Littlechild and Isupov, 2014).

Brown algae dominate the literature due to their rich diversity,
including families like Laminariaceae, Fucaceae, and Phyllariaceae
(Wever et al., 2018). Despite having the lowest yield (3.8%), brown
algae achieve the highest purification fold (508), primarily using
aqueous two-phase systems, hydrophobic interaction
chromatography, and chromatofocusing chromatogramphy.
These algae primarily produce vanadium-dependent
iodoperoxidases (V-IPOs) and bromoperoxidases (V-BPOs),
characterized by their moderate pH and temperature stability
(pH 5–7, 20°C–60°C) (De Boer et al., 1986; Wever et al., 1985;
Almeida et al., 1998; Hara and Sakurai, 1998; Almeida et al., 2000;
Almeida et al., 2001; Colin et al., 2003; Verhaeghe et al., 2008;
Tarakhovskaya et al., 2015). Brown algae are abundant in alginates,
sulfated fucans, and polyphenolic compounds, which pose
significant challenges during the extraction and purification of

haloperoxidases (Wever et al., 2018). To address these
complications, several studies have employed aqueous salt/
polymer two-phase systems as an effective purification method
(Almeida et al., 1998; Hara and Sakurai, 1998; Almeida et al.,
2001; Colin et al., 2003; Verhaeghe et al., 2008; Tarakhovskaya
et al., 2015). Additionally, hydrophobic interaction chromatography
is frequently utilized, reflecting the complexity of haloperoxidases
derived from brown algae (Verhaeghe et al., 2008; Almeida et al.,
2001). While less commonly used, chromatofocusing
chromatography has proven effective in a study involving
Saccorhiza polyschides (Almeida et al., 1998).

Green algae remain underrepresented, with only Cladophora
glomerata. This species contains a heme-based haloperoxidase,
which is distinct from the vanadium prosthetic groups seen in
red and brown algae. Green algae demonstrate an intermediate
yield (20%) and purification fold (195), using ammonium sulfate
precipitation, ion-exchange chromatography, and size-exclusion
chromatography. The enzyme’s activity is optimal at an
unusually low pH of 3.1, making it unique among algal
haloperoxidases. This enzyme has been successfully purified from
C. glomerata using ammonium sulfate precipitation, ion-exchange
chromatography and size-exclusion chromatography. The limited
exploration of green algae suggests a potential area for further
investigation to uncover novel enzymes with unique properties
(Verdel et al., 2000).

5 Gaps and future directions in
haloperoxidase purification from algae

5.1 Limited exploration of green algal
haloperoxidases

Green algae are significantly underrepresented in
haloperoxidase studies, with only C. glomerata currently featured
in the literature (Verdel et al., 2000). This species stands out for its
heme-based haloperoxidase, distinct from the vanadium prosthetic
groups typically found in red and brown algae. Its enzymatic activity
is optimized at a unique pH of 3.1, which could indicate specialized
roles in its native environment. However, the limited exploration of
green algae represents a significant gap in the field. Given their
ecological diversity and abundance in freshwater and marine
ecosystems (Van der Loos et al., 2023; Darmawan et al., 2022),
green algae likely harbor novel haloperoxidases with unique
properties and applications yet to be uncovered. The challenges

TABLE 1 The most used purification techniques, yield, and purification fold of haloperoxidases from different algal types.

Algal types The most used purification techniques Yield (%) Purification fold

Red • Ammonium sulfate precipitation
• Ion exchange chromatography
• Size exclusion chromatography

37.9 68.87

Brown • Aqueous two-phase systems
• Hydrophobic interaction chromatography
• Chromatofocusing chromatography

3.8 508

Green • Ammonium sulfate precipitation
• Ion exchange chromatography
• Size exclusion chromatography

20 195
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in studying green algal haloperoxidases include difficulties in
identifying target species due to the immense biodiversity of
chlorophyta, the low abundance of haloperoxidases in some
species, and the instability of these enzymes during extraction
and purification processes. Increasingly, the diverse cellular
composition and presence of polysaccharides, secondary
metabolites, and rigid cell walls in green algae can complicate
enzyme isolation. To address these challenges, future research
should adopt innovative methodologies for green algae. Strategies
could include optimizing enzyme extraction protocols using specific
buffer systems and mild mechanical disruption to preserve enzyme
activity. In addition, advanced chromatographic techniques, such as
affinity chromatography combined with high-performance liquid
chromatography (HPLC), could enhance purification efficiency.
Moreover, genomic and transcriptomic analyses could also aid in
identifying haloperoxidase-encoding genes, enabling heterologous
expression in microbial hosts for scalable enzyme production.
Furthermore, comparative studies across diverse green algal
genera could provide insights into evolutionary adaptations and
enzymatic diversity. From an industrial perspective, green algal
haloperoxidases could hold significant promise due to their
potential for environmentally friendly applications. Their activity
at unique pH ranges, such as that observed in C. glomerata (Verdel
et al., 2000), could be advantageous in biocatalytic processes that
require extreme conditions. Additionally, these enzymes may be
leveraged to produce halogenated compounds with antimicrobial,
antifouling, or pharmaceutical properties. Hence, expanding the
study of green algal haloperoxidases could fill an important
knowledge gap and unlock new avenues for sustainable
biotechnological innovations.

5.2 Disadvantages of chromatographic
techniques in haloperoxidase purification

While traditional purification methods, including ammonium
sulfate precipitation, ion-exchange chromatography, and size
exclusion chromatography, are well-established, they dominate
the field, leaving room for incorporating innovative approaches.
However, affinity chromatography, which exploits specific ligand-
enzyme interactions, is a highly effective yet underutilized method
for isolating target molecules from complex mixtures due to its
exceptional specificity (Acikara et al., 2013; Lecas et al., 2021; Poddar
et al., 2021; Kalidas et al., 2023). Similarly, emerging microfluidic
systems could offer rapid and high-throughput separation
capabilities (Markin et al., 2021; Jain et al., 2024). These systems
rely on miniaturized fluid channels to manipulate small volumes of
liquids with high precision, allowing efficient and scalable
purification (Song et al., 2024; Patil et al., 2024). The key
advantages of microfluidic platforms include reduced sample and
reagent requirements, enhanced control over flow rates, and
minimized exposure to harsh conditions, which are particularly
beneficial for preserving the activity of sensitive enzymes like
haloperoxidases. Furthermore, the integration of microfluidic
devices with advanced detection methods, such as fluorescence or
mass spectrometry, can enable real-time monitoring of enzyme
activity and purity throughout the purification process (Patil
et al., 2023; Hu et al., 2023). Despite their potential, both

techniques have not yet been applied to the purification of
haloperoxidases from algae, highlighting an opportunity for
further exploration in this field. Such advancements could
streamline the purification process, enhance yield, and reduce
losses associated with enzyme degradation. These
chromatographic methods, while effective, present significant
challenges, primarily due to the numerous steps involved. Each
additional step increases the likelihood of product yield loss
(Mattrey et al., 2017; Pyka-Pająk, 2024). Moreover, scaling up
these techniques for industrial applications proves both complex
and costly (Wever et al., 2018).

5.3 Aqueous two-phase systems: an
alternative for purification of
haloperoxidases from algae

In brown algae rich in alginates which interfere purification
process of haloperoxidases (Wever et al., 2018), a promising
alternative involves using a two-phase system consisting of
polyethylene glycol (PEG 1550) and potassium carbonate
(K2CO3) was developed by Jordan and Vilter (1991) and Vilter
(1983). This method effectively addresses the challenge by taking
advantage of the unique properties of the two-phase system. The
alkaline solution dissolves the alginates in the cell walls, thereby
releasing haloperoxidases. Due to their hydrophobic nature, these
enzymes preferentially partition into the hydrophobic PEG-rich top
layer, while the alginates, retained in the aqueous phase due to the
high ionic strength of the solution, settle in the lower phase (Wever
et al., 2018). This technique has been successfully applied in studies
on several brown algae species, such as Laminaria saccharina,
Laminaria hyperborea, and Laminaria ochroleuca (Almeida et al.,
2001), as well as S. polyschides (Almeida et al., 2001), and L. digitata
(Colin et al., 2003). Moreover, it has been extended to members of
the Fucaceae family, including Fucus vesiculosus, Fucus serratus,
Fucus edentatus, Fucus distichus, A. nodosum, and Pelvetia
canaliculata (Verhaeghe et al., 2008; Tarakhovskaya et al., 2015).
However, the effectiveness of this method varies between studies,
likely due to differences in enzyme characteristics and alginate
composition specific to each species.

The purification of haloperoxidases using aqueous two-phase
systems (ATPS) presents additional challenges, as the partitioning of
these enzymes depends on their size, charge, and hydrophobicity
(Segaran and Chua, 2024). The variability in these haloperoxidase
characteristics across algal species further complicates the
partitioning process, necessitating careful optimization of the
system for each type. Key factors influencing ATPS efficiency
include the choice of system components and operational
parameters (González-Valdez and Mayolo-Deloisa, 2017;
Nontawong et al., 2023). For instance, polymer-salt systems such
as PEG-potassium carbonate play a pivotal role in achieving effective
phase separation while ensuring compatibility with the enzymes and
alginates (Wever et al., 2018). The type of salt used, such as
potassium phosphate or potassium citrate, affects ionic strength,
which is essential for dissolving alginates and stabilizing
haloperoxidases. The molecular weight of PEG is another critical
parameter, as it influences the hydrophobicity and partitioning
behavior of biomolecules (Wysoczanska and Macedo, 2016). For

Frontiers in Natural Products frontiersin.org06

Rahim et al. 10.3389/fntpr.2025.1537097

https://www.frontiersin.org/journals/natural-products
https://www.frontiersin.org
https://doi.org/10.3389/fntpr.2025.1537097


instance, PEG 1000 effectively purified phycocyanin from Spirulina
platensis obtained from Ocean University of China (Zhao et al.,
2014), while PEG 4000 was more efficient for S. platensis grown
under natural Moroccan conditions (Rahim et al., 2024). Similarly,
maintaining an appropriate pH is crucial for preserving enzyme
stability and ensuring optimal partitioning (Silvério et al., 2013).
Adjusting the phase volume ratio can further enhance the
concentration of haloperoxidases in the desired phase while
minimizing contamination. Additionally, the inclusion and
concentration of neutral salts can refine ionic strength and water
activity, contributing to improved separation efficiency. To
maximize the yield and purity of haloperoxidases, it is essential
to systematically optimize these parameters for each specific algal
species. These approaches can improve the reproducibility and
efficiency of ATPS, allowing better use of this technique for the
enzymatic purification of alginate-rich algae.

Scaling up the purification of haloperoxidases remains a critical
challenge, particularly when transitioning from laboratory-scale to
industrial-scale processes. While it was described as simple, cost-
effective, and efficient approach adaptable for large volumes
(Segaran and Chua, 2024; Zhang et al., 2024), several practical
challenges must be considered. Cost is a significant factor, as
large-scale production requires substantial quantities of PEG and
salts, which may not always be economically viable. Reproducibility
is another concern, as slight variations in component
concentrations, pH, or ionic strength can lead to inconsistencies
in phase separation and enzyme recovery. Moreover, enzyme
degradation is a potential issue during large-scale processing due
to prolonged exposure to the system’s components or suboptimal
conditions. Optimization strategies can mitigate these challenges.
For instance, incorporating stabilizing agents such as glycerol or
trehalose can reduce enzyme degradation during prolonged
processing (O’Neill et al., 2017; Dinu et al., 2020; Braham et al.,
2021). Additionally, fine-tuning PEG molecular weight and salt type
can balance cost-effectiveness with purification efficiency. Studies
have shown that the use of ATPS for industrial-scale protein
purification, such as for therapeutic enzymes, can achieve high
yields when operational parameters are carefully controlled
(Singla and Sit, 2023; González-Valdez and Mayolo-Deloisa, 2017).

6 Conclusion

Haloperoxidases from marine algae represent a valuable yet
underexplored class of enzymes with substantial potential in
industrial biocatalysis, pharmaceutical applications, and
environmental remediation. Despite the advancements in the
purification of these enzymes, challenges remain, particularly in
optimizing yield, purity, and bioactivity while scaling up the process
for industrial use. The review highlights the underrepresentation of
green algal species in haloperoxidase research, signaling a significant
gap in our understanding of their enzymatic properties and
applications. Additionally, while traditional chromatographic
techniques remain effective, the introduction of novel methods,
such as affinity chromatography, ATPS, and microfluidic
technologies, offers promising avenues to improve purification

efficiency and enzyme stability. Sustainable extraction methods
that align with green chemistry principles are gaining attention,
reflecting the increasing demand for environmentally friendly
practices in enzyme production. Moving forward, developing
robust, scalable purification techniques customized to the specific
biochemical properties of algal species will be essential for
maximizing the industrial potential of haloperoxidases. The
growing body of research on these enzymes underscores their
promise, but more comprehensive studies are needed to fully
unlock their diverse applications. Future work should focus on
expanding the range of algal species investigated, optimizing
purification systems, and addressing scalability issues to ensure
the successful commercialization of marine algal haloperoxidases.
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