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Natural product libraries are a source of diverse 3D molecular features furnishing
an array of biological functions in drug discovery research. In this paper we will
oversee the use of affinity selection mass spectrometry (AS-MS) for identifying
ligands to a variety of biological targets using natural products as the molecular
library. The assay modes used in solution or with the immobilized target and their
pros and cons will be presented. Additionally, the required experiments and
investigation for accurate chemical annotation of the disclosed ligands in a non-
target assay are discussed.
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1 Introduction

Natural product library is a source of diverse 3D-structural molecular features
furnishing an array of biological functions and are resourceful in furnishing scaffolds
for drug discovery research (Newman and Cragg, 2020; Qin et al., 2024). Due to its
complexity and broader chemical space, prospecting natural active molecules is classically
performed by bio-guided isolation, however, this is an over intensive work and can be
hampered by false positive results and loss of activity by multiple fractionation step and
repetitive bioassays (Nothias et al., 2018; Quiros-Guerrero et al., 2024). To this end, affinity
selection mass spectrometry (AS-MS), which is a consolidate high-throughput screening
(HTS) for synthetic libraries, has been efficiently used to disclose ligands from natural
products extracts (Muchiri and van Breemen, 2021b; Prudent et al., 2021; Almeida and
Cass, 2023).

AS-MS interrogates non-covalent target-ligand complex as a non-functional assay. A
variety of target has been used such as soluble or membrane protein, nucleic acid and
nucleic acid–protein complexes (Prudent et al., 2023). It is a label-free biophysical method,
and it discloses the binders solely by mass spectrometry data providing conditions for
chemical annotation of the identified ligands. Moreover, identifies several ligands exhibiting
multiple mechanisms of action against the same target, including orthosteric and allosteric
ligands (McLaren et al., 2021; de Oliveira et al., 2023).
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Despite a few recent reviews on AS-MS related to natural
products libraries (Muchiri and van Breemen, 2021a; 2021b; Guo
et al., 2023; Qin et al., 2024) the herein reported review will cover
broader aspects of this bioprospection technology especially
regarding the annotation of the disclosed ligands in a nontarget
metabolite assay. Meanwhile, we are going to start this review calling
attention to the many used notations and thus, to the difficulty in
accessing some of the seminal work due to their used terminology.

1.1 Notations

Different nomenclature has been used for AS-MS, mainly based
either if the biomolecular target is in-solution or immobilized on to a
carrier. It is named also based on how the ligands are dissociated
from the target complex. For the in-solution methods, the notations
are most of the time based on the dissociation process, such as: size

exclusion chromatography, ALLIS technology (for online SEC-LC-
MS), vacuum filtration, gel filtration, and ultrafiltration (O’Connell
et al., 2014; Almeida and Cass, 2023; Prudent et al., 2023). For
immobilized targets, ligand-fishing is probably the term most used
(de Moraes et al., 2014; Zhuo et al., 2016; Zhao et al., 2018; Qin et al.,
2024), but names such as, affinity capture MS (AC-MS), magnetic
microbeads affinity selection screening (MagMass) (Muchiri and
van Breemen, 2021a; Muchiri et al., 2022) and paper (Ablat et al.,
2024; Chen et al., 2024; Hu et al., 2024) are widely used. The diversity
of acronyms causes difficulties in searching for references; however,
the most intricate notation is when the term chromatography is used
to denote experiments of AS-MS. The term chromatography is used
in the case of some off-line devices (de Moraes et al., 2019), just
because it uses solid-supported proteins, i.e., “functional
chromatography” (Kang et al., 2014).

It should be said that although zonal and frontal bioaffinity
chromatography efficiently disclose ligands through retention times

FIGURE 1
Schematic representation of the AS-MS workflow (NIAID Visual and Medical Arts, 2024).
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or breakthrough curves, respectively, these approaches differ
fundamentally from the static incubation processes characteristic
of AS-MS set-ups (de Moraes et al., 2014; Ciesla et al., 2016). The
multiplicity of terms accentuates the need for standardization, as
inconsistencies complicate literature searches and data
interpretation.

1.2 Workflow of the AS-MS assay

As will be discussed herein, while the methods differ by a variety
of models, the assays are all based on a static incubation step (1) and
involves three other major stages (2–4) (Muchiri and van Breemen,
2021b; Almeida and Cass, 2023; Prudent et al., 2023) (Figure 1).

AS-MS is a biological target-based assay approach, and the
assay’s model is the first decision made. For each target and type
of molecular library, all stages of the AS-MS platform should be
carefully developed.

1. The equilibrium time represented by the incubation stage
needs to be investigated and clearly it is influenced by the
target type and by the molecular library. It is important to
pay attention to molecules with rapid off-rates since they
may be lost during stages 1–3. To avoid competition, usually
the target is used in molar excess of the small molecules in
the library (Almeida and Cass, 2023; Prudent et al., 2023),
what is a limiting factor when the library is a natural product
extract, since the concentrations of the molecules
varies immensely.

2. The separation from nonbinding mixture molecules is carried
out in accordance with the selected assay mode, and the
washing is also a condition to be tuned.

3. The dissociation step is usually adjusted in accordance with the
target. For the in-solution assays, denaturation of the target
(protein) is usually preferred (Prudent et al., 2021). When the
target is immobilized and thus, can be recycled, the dissociation
step can be obtained by displacement with a high affinity
ligand, with a change in pH or using organic solvent in a
percentage that does not cause denaturation (Vanzolini et al.,
2015; do Amaral et al., 2021).

4. For disclosing the ligands different mass spectrometer
instrumentation has been used. For that, data processing
and curation is necessary and can be done with open source
or proprietary software (Prudent et al., 2023). The ligands
are identified by affinity or index ratio that are calculated
by control experiments and for that the ligands are
identified by their mass-to-charge ratio (Wang et al.,
2019; Almeida and Cass, 2023). For synthetic libraries,
the correlation between the MS data and the molecular
structure of the disclosed ligand is direct. Moreover, the
singlets can be used to validate the ligands. However, to
infer the molecular structure of the disclosed ligands in
natural product libraries one needs fragmentation
experiments, spectral libraries and molecular networking
to deconvolute the obtained mass spectral data. When
possible, reference standard is used (Zhao et al., 2018;
do Amaral et al., 2021; Lima et al., 2021). These pitfalls
will all be discussed in detail in this review.

2 Solution-based AS-MS assays

2.1 Ultrafiltration

Ultrafiltration is a technique that separates molecules based on
size. In 1861, Schmidt observed that when solutions containing
proteins were passed through a natural bovine pericardium, the
resulting filtrate had a reduced concentration of macromolecules
compared to the initial solution. Later, in 1906, Bechhold formally
introduced the term “ultrafiltration” and developed specialized
membranes with controlled porosity by treating filter paper with
acetic acid collodion. His work highlighted the critical role of factors
like pore size and molecular adsorption in selective filtration
(Ferry, 1936).

Modern ultrafiltration membranes are generally designed to
retain molecules with hydraulic diameters between 1 and
100 nm, which correlates to molecular weights in the range of
500 to 500,000 Da (Lutz, 2015) – sufficient for most proteins, nucleic
acids, and macromolecular complexes. Depending on the setup,
separation can be driven by centrifugal force, vacuum, or applied
pressure. Through the process, careful control of the filtration rate
and pressure is essential to achieve optimal separation without
damaging the membrane.

Therefore, ultrafiltration membranes act as selective barriers,
allowing smaller molecules and solvents to pass through while
retaining larger solutes, such as protein-ligand complexes,
making ultrafiltration ideal for separating these complexes from
unbound molecules in solution-based AS-MS assays.

In a typical ultrafiltration-based AS-MS experiment, the ligand-
protein binding event is initiated by incubating a target protein with
a library of molecules. The incubation occurs at low micromolar
concentrations, which are optimal for detecting high-affinity ligands
while ensuring specific binding interactions. Once equilibrium is
reached, ultrafiltration is applied to separate the resulting ligand-
protein complexes from unbound molecules. Then, the ligands are
dissociated by employing denaturing conditions, such as adding an
organic solvent or altering the pH, to disrupt non-covalent bonds
between the ligand and protein. Methanol or acetonitrile with a
volatile organic acid like formic acid are commonly used for effective
dissociation while remaining compatible with subsequent mass
spectrometry analysis. If protein reuse is desired, non-denaturing
conditions may be preferred to maintain the protein’s structural
integrity. The dissociated ligands are then injected into a LC-MS
system for further separation and analysis.

Ultrafiltration AS-MS was applied to explore 5-lipoxygenase (5-
LOX) ligands in Inonotus obliquus, leading to the identification of
three promising molecules: botulin (2.1), lanosterol (2.2), and
quercetin (2.3) (Yun et al., 2024) (Figure 2). These potential
inhibitors were identified based on their binding affinity with 5-
LOX, a result further validated by molecular docking, which detailed
their interactions with the enzyme’s active site. Complementary
methods, including semi-preparative liquid chromatography and
high-speed countercurrent chromatography, were then applied to
isolate these molecules with high purity allowing complete chemical
characterization. This study demonstrates how ultrafiltration AS-
MS can speed up the identification of active molecules from complex
natural mixtures, improving efficiency in bioactive
molecules research.
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Hence, in this typical ultrafiltration AS-MS experimental
workflow, dissociated ligands are directly disclosed by LC-MS
analysis. An alternative approach, however, involves the indirect
ligand identification, in which ligand interactions with a target are
monitored by analyzing the unbound molecules that pass through
the ultrafiltration membrane. In this setup, the presence of an
affinity event is inferred by observing a significant reduction in
signal intensity for certain molecules in the LC-MS chromatograms
compared to a control where the target is denatured. Molecules
showing notable decreases in these chromatograms are flagged as
potential ligands for the target. While this approach can simplify
certain steps by focusing on unbound fractions, it requires careful

chromatogram comparison and statistical analysis to reliably
identify interactions (Wei et al., 2016).

An example illustrating this indirect ultrafiltration AS-MS assay
is the screening of phosphodiesterase (PDE) inhibitors from
Eucommia ulmoides bark (Shi et al., 2013). In this approach,
ligand interactions with the target enzyme were detected by
analyzing the unbound molecules that pass through the
ultrafiltration membrane, with ligands disclosed by a notable
decrease in their chromatographic peak areas when compared to
control assays. For instance, chromatograms in this study highlight
selective retention of several lignans (such as (+)-pinoresinol-4,4′-
di-O-β-D-glucopyranoside (2.4)) that exhibit a strong affinity for

FIGURE 2
Chemical structures of some ligands disclosed using AS-MS assays with biological targets in solution. These ligands, isolated from natural product
extracts, illustrate the applications of ultrafiltration and size-exclusion chromatography (SEC) as the affinity selection setup of the assay.
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PDE, while the control chromatogram shows evidence of non-
specific retention by the ultrafiltration setup itself. This
underscores the importance of carefully optimized conditions to
minimize background interactions, thereby enhancing the assay’s
selectivity and reliability in detecting true target-ligand
binding events.

When the incubation and ultrafiltration events are carried out
outside the chromatographic system, the assay is referred to as an
offline method. In contrast, the online approach, introduced by van
Breemen (1997), directly couples an ultrafiltration chamber to a LC-
MS system, allowing for continuous processing of ligand-protein
complexes. This system, commonly referred to as pulsed
ultrafiltration, employs a stirred flow-through chamber
constructed from non-binding materials such as polysulfone or
PEEK and uses a methylcellulose ultrafiltration membrane to
retain high-molecular-weight molecules and ligand-receptor
complexes while allowing smaller, unbound molecules to pass
through (van Breemen, 1997). This setup enables the chamber
contents to be monitored in real time by ESI-MS or LC-MS/MS,
facilitating rapid, automated screening of complex mixtures like
synthetic or natural libraries. Although this high-throughput,
automated approach offers significant advantages in efficiency
and selectivity, it requires specialized instrumentation and is
therefore currently used mainly within the pioneering research
group’s laboratory.

One notable application of online ultrafiltration in ligand
screening within natural products is the investigation of ginger
roots, which have long been recognized for their anti-
inflammatory properties. Ligands targeting cyclooxygenase-2
(COX-2) were screened in a chloroform extract derived from a
methanol infusion of ginger using online ultrafiltration-based AS-
MS (van Breemen et al., 2011). The study identified ten molecules
related to gingerol, including 10-gingerol (2.5), 8-shogaol (2.6), and
10-shogaol (2.7), which specifically bind to the active site of COX-2.
These molecules exhibited inhibitory activities against COX-2, with
IC50 values of 32 μM, 17.5 μM, and 7.5 μM, respectively, while
showing no significant inhibition of COX-1. This selective inhibition
is particularly relevant as COX-1 inhibition is often associated with
gastrointestinal side effects. The findings suggest that certain
gingerol-related molecules could contribute to the anti-
inflammatory effects of ginger and serve as marker molecules for
standardizing ginger-based dietary supplements.

Independently of the experimental AS-MS approach, a crucial
factor for effective and reproducible ultrafiltration separation is
choosing the appropriate membrane. The membrane must
selectively retain protein-ligand complexes while allowing
unbound molecules to pass through, minimizing nonspecific
binding and background interference. To ensure accuracy and
reduce background signal, control experiments without the
protein are often conducted to identify any nonspecifically
binding molecules. Additionally, replacing the membrane
periodically or after each assay can help reduce potential cross-
contamination and improve signal clarity, especially if significant
nonspecific binding is observed.

For instance, the ultrafiltration AS-MS approach was explored to
investigate Glucagon-like peptide-1 receptor (GLP-1R) agonists
from Panax ginseng (Wang et al., 2024). Through this method,
five ginsenosides were disclosed as GLP-1R agonists, such as 20(R)-

ginsenoside Rh2 (2.8), suggesting a new hypoglycemic mechanism
for the anti-diabetic effects of P. ginseng by activating GLP-1R.
Notably, the study presented total ion chromatograms (TICs) for
both the sample and control analysis (i.e., with and without the
target receptor), revealing substantial nonspecific retention of
molecules in the control, likely due to interactions with the
ultrafiltration device. This highlights the critical importance of
carefully selecting experimental conditions in UF AS-MS
workflows to minimize nonspecific interactions and improve
selectivity for target ligands.

The majority of the ligands identified by ultrafiltration AS-MS
are flavonoids (Choi et al., 2011; Wang et al., 2014; Xiao et al., 2015;
Li et al., 2016; Chen and Guo, 2017a; 2017b; Liu et al., 2017; Dong
et al., 2021; Huang et al., 2024; Ma et al., 2024; Wei et al., 2024), but
other classes such as polyphenols (Tian et al., 2022; Ma et al., 2024;
Quan et al., 2024), glycosides (Quan et al., 2024), saponins (Chen
and Guo, 2017a; Xie et al., 2020; Wei et al., 2024), coumarins (Liang
et al., 2019; Tian et al., 2022; Ma et al., 2024), alkaloids (Chen and
Guo, 2017a; Li et al., 2019), phenolic acids (Zhang et al., 2017; Huang
et al., 2024), and carotenoids (Wang et al., 2018) also have been
identified as ligands of various biological targets. These includes
proteins like pancreatic lipase (Xiao et al., 2015; Quan et al., 2024;
Wei et al., 2024), neuraminidase (Tian et al., 2022; Ma et al., 2024),
xanthine oxidase (Liu et al., 2017; Dong et al., 2021; Zhuang et al.,
2024), 5-lipoxygenase (Xie et al., 2020), cyclooxygenase-2 (Li et al.,
2019; Xie et al., 2020; Huang et al., 2024), thrombin (Zhang et al.,
2017), hepatic mitochondria (Liang et al., 2019), α-glucosidase
(Wang et al., 2014; Chen and Guo, 2017a), quinone reductase-2
(Choi et al., 2011), hyaluronidase (Huang et al., 2024),
topoisomerases I (Chen and Guo, 2017b), lactate dehydrogenase
(Li et al., 2016), myeloperoxidase (Wang et al., 2018), among others.
By enabling the efficient screening and isolation of bioactive
molecules, ultrafiltration AS-MS not only enhances our
understanding of the interactions between ligands and their
respective targets but also facilitates the discovery of potential
therapeutic agents from complex natural libraries.

2.2 Size-exclusion chromatography

Size-exclusion chromatography (SEC) is a well-established
technique that exploits differences in the sizes of solute molecules
to achieve separation. The primary objectives of SEC include the
purification of target molecules from natural sources, as well as the
determination of molecular sizes and mass distributions for
macromolecules (Štulík et al., 2003). The technique relies on the
principle that larger molecules are excluded from the porous
stationary phase, allowing them to elute first, while smaller
molecules are retained and elute later. This characteristic makes
SEC particularly valuable for separating protein-ligand complexes
from unbound molecules in analytical workflows.

In SEC-based AS-MS assays, similar to ultrafiltration
approaches, the process begins with the incubation of the target
with the molecular library. SEC then separates target-ligand
complexes from unbound molecules, with the complexes eluting
first. To minimize ligand loss from complex dissociation, SEC
separations should be performed rapidly and at low
temperatures. The protein-ligand complexes are subsequently
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dissociated using denaturing conditions such as organic solvents,
elevated temperatures, or pH adjustments.

SEC was first used in 1997 to isolate protein-ligand complexes
from unbound molecules in an AS-MS assay designed to evaluate a
synthetic library (Kaur et al., 1997). Following SEC separation, an
aliquot of the protein-ligand complex was analyzed by ESI-MS for
online desalting and concentration using a reversed-phase cartridge.
Chromatographic conditions during elution facilitated the
dissociation of the complex, allowing for ligand identification
based on its m/z. To confirm the specificity of binding, the assay
was repeated with a known high-affinity ligand; specific ligands were
displaced by the competitor and thus did not appear in the ESI-MS
analysis. Ligands detected in both the absence and presence of the
known ligand were interpreted as binding nonspecifically through
hydrophobic interactions at sites distinct from the primary
binding site.

Beyond its initial applications, the SEC-AS-MS platform has
been applied for identifying bioactive molecules in natural products.
Methanolic extracts of Allium lusitanicum were screened for ligands
of peroxisome proliferator-activated receptors (PPARs) (De
Soricellis et al., 2024). Initially, the SEC coupled to LC-MS
platform was validated using known PPARα and PPARγ
ligands–WY-14643 and rosiglitazone, respectively. Allium
lusitanicum extracts are rich in saponins, which are recognized
for their metabolic activity and known as PPAR ligands. Saponins
are particularly challenging to isolate from natural products due to
their amphiphilic structure, which can lead to aggregation and
interactions with other compounds in the plant. Despite these
challenges, the SEC method effectively isolated saponins as PPAR
ligands from the extract.

The SEC column can also be directly connected to a reverse-
phase (RP) column, integrating both chromatographic dimensions
to create a high-throughput, automated screening assay. In this
configuration, a valve directs the excluded protein-ligand complex to
the RP column, where the mobile phase, containing organic solvents
and acids, dissociates the complex. For instance, an SEC-RP-MS
platform was used to disclose parafungins (such as 2.9) as
polyadenosine polymerase ligands in acetone extracts from
fermentation broths from several fungal strains, including
Fusarium larvarum (Adam et al., 2008). UV-based detection
monitored the elution of the protein-ligand complex from the
SEC column, diverting it to the RP column, where dissociation
was achieved using 5% ACN and 0.2% formic acid, followed by
gradient elution to separate the parafungins for MS detection.

However, in the SEC-RP-MS setup, directing the protein-ligand
complex to the RP column may increase backpressure due to
denatured protein accumulation, necessitating periodic column
regeneration or replacement. Currently, SEC-based AS-MS assays
have predominantly been applied to synthetic libraries, with limited
studies focusing on natural products. This highlights a gap and
potential area for further research in natural product screening using
SEC-AS-MS.

2.3 Collision-induced AS-MS

The collision-induced dissociation affinity selection mass
spectrometry (CIAS-MS) technique was recently developed to

simplify the AS-MS workflow (Mak et al., 2022). In CIAS-MS,
electrospray ionization is used to preserve protein-ligand
complexes in their native state. Then, the ionized samples are
transferred to the quadrupole for mass selection, effectively
trapping protein-ligand complexes and excluding unbound
molecules. The complexes then undergo collision-induced
dissociation (CID) within the collision cell, releasing the ligands.
Subsequently, only the small dissociated ligands reach the mass
analyzer, as an ion cyclotron resonance (ICR) cell, for detection. This
method eliminates the need for external washing steps, thus
reducing the loss of low-affinity ligands or those prone to
dissociation during filtration or SEC steps (Gu et al., 2022).

As a proof of concept, CIAS-MS was first employed to
investigate known ligands of the SARS-CoV-2 Nsp9 protein
(Mak et al., 2022). This method demonstrated its versatility by
subsequently screening ligands present in extracts from Rabdosia
rubescens, a plant known for its rich content of oridonin (2.10), a
known ligand with antiviral activity that has been shown to reduce
the viral load of SARS-CoV-2 in Calu-3 cells. The identification of
oridonin was further validated through native MS by analyzing the
ligand-protein complex.

CIAS-MS has been also applied in recognizing transient receptor
potential melastatin 2 (TRPM2) ligands (Gu et al., 2024). This
method allowed for the direct visualization of clotrimazole
dissociating from its complex with TRPM2. Additionally, the
study demonstrated the ability of CIAS-MS to screen a natural
library, resulting in the identification of ginsenoside F3 (2.11), a
saponin known for its antioxidative properties. By providing
insights into the binding dynamics and concentration-dependent
effects of ligands, this work highlights the potential of CIAS-MS as a
tool for advancing drug discovery efforts.

Despite the promise of CIAS-MS in ligand screening, few studies
have explored its full potential, and none so far have reported the
disclosure of a novel ligand directly from a crude natural product
extract, with its chemical structure annotation. A key challenge in
this approach lies in controlling experimental conditions to ensure
reliable detection of the dissociated ligand–a task complicated by the
vast structural diversity of natural products. Achieving this level of
control becomes even more complex when dealing with unknown
ligands, as it requires carefully optimized dissociation, and detection
settings to capture low-affinity or structurally unique molecules
effectively.

3 Immobilized-based AS-MS assays

Immobilized target methods refer to any technique in which the
target is immobilized on a solid support, such as silica, magnetic
beads, microfluidic chips, or other materials (Jonker et al., 2011).
Early developments focused on ligand-target and protein-protein
interactions, especially for protein purification (Cuatrecasas et al.,
1968). Immobilization of targets offers several advantages over
methodologies that use targets in solution, including easy
recovery, its continuous or repeated reuse. When enzymes are
used it has been noticed improved enzyme activity, enhanced
stability against organic solvents, pH and temperature variations,
and increased selectivity (Mateo et al., 2007). Over the years,
numerous experimental methods have been developed for

Frontiers in Natural Products frontiersin.org06

do Amaral et al. 10.3389/fntpr.2025.1562501

https://www.frontiersin.org/journals/natural-products
https://www.frontiersin.org
https://doi.org/10.3389/fntpr.2025.1562501


immobilizing biological targets, primarily based on physical or
chemical binding to an insoluble support. Both covalent and
non-covalent immobilization methods can be used (Trindade
Ximenes et al., 2021). Compared to solution-based AS-MS,
immobilized-based AS-MS requires an additional step: target
immobilization. This step involves selecting the appropriate
support, choosing the immobilization method, and evaluating the
effects of immobilization on kinetic activity when enzymes are used
as targets. The most common immobilization modes are adsorption,
entrapment, covalent coupling, and cross-linking (Cao, 2006;
Hanefeld et al., 2013).

After immobilization process, the biological target-MBs are
incubated with complex samples followed by the separation of
the supernatant containing molecules that have no affinity for
the target. An advantage of using MBs is that the separation step
is simplified by employing small external magnets. For other
supports, e.g., filter paper, this step involves taken out the paper
disk-immobilized target with a tweezer from the solution, followed
by washes step (Li et al., 2022). For porous solid supports a filtration
step could be used. The ligands are dissociated from the bioreactor in
the extraction step and the desorbate analyzed by LC-MS (Zhuo
et al., 2016). Control experiments using denatured enzymes
(negative control) are used to calculate the affinity or index ratio
(Almeida and Cass, 2023; Lima et al., 2021; Wang et al., 2019). A
competition assay using a high affinity known orthosteric ligand can
determine whether a disclosed ligand is orthosteric or allosteric.
Orthosteric ligands will cause a change in binding by competing
with the reference ligand, while no change in binding will be
observed if the ligand is allosteric (Muchiri and van Breemen,
2021a; Muchiri et al., 2022; Yan et al., 2022).

3.1 Covalent immobilization methods

Protein immobilization methods that rely on the formation of
covalent bonds are among the most widely used approaches. This
process involves two chemical steps: (1) the activation of the functional
groups on the support using specific reagents, such as glutaraldehyde,
and (2) the reaction of the activated functional groups with the
functional groups on the biomolecule. The functional groups
typically involved in this bond include amino, epoxy, carboxyl, diol,
and phenolic groups. These functional groups can participate in a
variety of reactions, such as diazotization, amide bond formation,
arylation, and Schiff’s base formation. The most frequently involved
amino acid side chains are lysine (ε-amino group), cysteine (thiol
group), and aspartic and glutamic acids (carboxyl groups) (Girelli
and Mattei, 2005). The immobilization of biological targets on solid
supports is widely used in various fields, including themanufacturing of
industrial products in the pharmaceutical, chemical, and food industries
(Basso and Serban, 2019). Several solid-support and their applications
have been described in the literature (deMoraes et al., 2019; De Simone
et al., 2019).

3.2 Magnetic beads as solid support

Magnetic beads (MBs) are a versatile solid support for target
immobilization (Bilal et al., 2018; Trindade Ximenes et al., 2021) and

were originally developed for protein isolation and purification
(Safarik and Safarikova, 2004). The immobilization of human
serum albumin (HSA) on MB was first reported in 2007 by
(Moaddel et al., 2007) to “fish out” known binders (warfarin
(3.1), AZT (3.2), and naproxen (3.3) from nonbinders (nicotine
(3.4), fenoterol (3.5), and labetalol (3.6)) using both manual and
automated approaches. The assay was referred as ligand fishing. In
2008, Choi and van Breemen reported a magnetic microbead affinity
selection screening (MagMASS) followed by LC-MS analysis. They
immobilized estrogen receptors (ERs) onto chemically
functionalized magnetic particles by covalent and non-covalent
immobilization, and screened extracts of Trifolium pratense L.
(red clover) or Humulus lupulus L. (hops) for ligands to ER-β.
The phytoestrogens genistein (3.7) and daidzein (3.8) were
identified in the red clover extract, and the estrogen-like 8-
prenylnaringenin (3.9) was identified in the hop extract.

Immobilized protein on MB surfaces has been successfully
applied for ligand fishing assays allowing for direct identification
of active ligands from natural products (Zhuo et al., 2016; Lima et al.,
2021; Muchiri and van Breemen, 2021a; Chi et al., 2022; de Faria
et al., 2022; Guo et al., 2024; van Breemen and Muchiri, 2024) and
synthetic libraries (Zhao et al., 2018). The versatility of applications
of MBs is specially based on significant characteristics such as their
high surface-area-to-volume ratios, which provide efficient
interactions with analytes and allow for high immobilization
yields. MBs also enable simple functionalization of their surfaces
with different functional groups and exhibit superparamagnetism,
which allows them to be separated from aqueous solutions or
complex mixtures using external magnetic field (Bilal et al.,
2018). They can be commercially acquired or synthesized with
varied properties, such as different sizes (from micrometer-to
nanometer-sized), surface modifications, coatings, and core
compositions. The most used MBs are iron oxide-based particles,
such as magnetite (Fe3O4) and maghemite (γ-Fe2O3). Although
there are various methods for synthesizing and coating MBs, the
most used MBs for ligand fishing assays are those prepared by co-
precipitation and coated with silane derivatives (de Lima et al.,
2020). Studies have been conducted to understand the role of these
properties for ligand fishing assays. For example, the effect of MB
size on the ligand fishing assay for acetylcholinesterase (AChE) from
Electrophorus electricus was evaluated comparing four commercially
available amine-terminated magnetic particles with diameters
ranging from 4.5 nm to 106 μm (MB1 to MB4) to fish out
galantamine (a standard AChE inhibitor), from an aqueous
solution (de Lima et al., 2020). All MBs covalently immobilized
the enzyme via glutaraldehyde bonding. The particles with
diameters of about 1 μm (small microparticles) presented a
higher protein mass capacity per milligram of particle than did
those with diameters of about 4.5 nm (nanoparticles) and those with
diameters of about 25–106 μm (large microparticles). The results
provided evidence that for activity-based assays, nanoparticles
(4.5 nm, MB4) offer an advantage, showing the highest specific
activity. This could be explained by the greater average surface area
of these nanoparticles, resulting in higher catalytic capacity and
dispersion. On the other hand, for AS-MS assays, a limiting factor
for achieving a successful assay is the amount of immobilized
protein, as previously noted by Cieśla and Moaddel (2016). This
was corroborated by the low affinity ratio (1.8 ± 0.1) observed when
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MB4, containing ~3 µg of protein, was used. For large microparticles
(1 μm, MB1 and MB2) and MB3 (25–106 µm), containing ~70 µg of
protein, the affinity ratios were 23 ± 1.5, 7.0 ± 0.7, and 6.0 ± 1.3,
respectively. Additionally, this study observed how the undesirable

higher interaction of AChE control MB2 with galantamine
negatively affected the assay, stressing the importance of the
control assay. In another study, the immobilization efficiency of
two commonly available MBs, amine- and carboxyl-terminated

FIGURE 3
Chemical structures characterized by immobilized-based AS-MS assays.
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MBs, was comparatively evaluated based on the activity and amount
of the immobilized monoamine oxidase A (MAOA). The specific
binding and nonspecific adsorption on these MBs were also
investigated using a model mixture. The results showed that
carboxyl-terminated MBs with immobilized MAOA (MBs@
COOH@MAOA) were the better approach, as they were
successfully used to fish out ligands from the alkaloid extract of
Hunteria zeylanica (Liu et al., 2024).

3.3 AS-MS based magnetic beads and in
other supports

In the context of COVID-19, immobilized-based AS-MS assays
have been used to identify natural ligands to SARS-CoV-2 proteins.
Yonamine et al. (2023) reported the expression and purification of
SARS-CoV-2 Nsp4, which is involved in the replication/
transcription complex (RTC) within double-membrane vesicles
(DMVs). Inhibition of Nsp4 disrupts the virus’s infectious cycle.
SARS-CoV-2 Nsp4 were covalently immobilized on magnetic
particles (Nsp4-MB) to screen an ethanolic extract of
Hippeastrum aulicum, identifying three alkaloid ligands:
haemanthamine (3.10), albomaculine (3.11), and aulicine (3.12).
The identification was based on comparison with LC-MS data
from standard alkaloids. Additionally, from a mixture of
10 alkaloids, four were identified as ligands: specifically, 2-α-7-
dimethoxyhomolycorine (3.13), haemanthamine (3.10),
albomaculine (3.11), and tazettine (3.14) (Figure 3). A control
assay was performed, and affinity ratios (>1.89) suggested the
presence of strong ligands. From an extract of Glycyrrhiza
inflata. Muchiri et al. (2022) identified licochalcone A (3.15) as a
ligand for SARS-CoV-2 spike protein Subunit 1 (S1) though
dereplication and comparison with standards. In another study of
Cannabis sativa (van Breemen et al., 2022) the authors identified
and ranked several cannabinoid ligands by their affinity for the spike
protein (S1). Two of these, cannabinoid acid (CBDA) (3.16) and
cannabigerolic acid (CBGA) (3.17) showed the highest affinities for
the spike protein and were confirmed to block infection of the
original alive SARSCO-Cov-2 virus variants of concern, including
the B.1.1.7 (Alpha, first detected in the United Kingdom) and
B.1.351 (Beta, first detected in South Africa).

AS-MS assays have been successfully used to identify natural
ligands for monoamine oxidases isoforms MAO-A (Zhang et al.,
2019) and MAO-B (Jiang et al., 2019; Wu et al., 2019). For example,
Liu et al. (2024) reported, for the first time, the inhibition of MAO-A
by monoterpene indoles alkaloids, which were isolated from H.
zeylanica. They covalently immobilized MAO-A on amine- and
carboxyl-terminated MBs. The carboxyl-terminated MBs-MAOA
were used for screening the alkaloid extract of H. zeylanica. Twelve
monoterpene indoles alkaloids were identified as MAO-A ligands,
and nine of them were annotated by standards data, as a target
strategy. To structure characterize these ligands the authors
compared their retention times with those of the reference
standards, analyzing their MS and MS/MS data, and referring to
relevant literature for proposed patterns. To investigate their
potential inhibitory activity, IC50 values for 10 structurally
characterized ligands were calculated. Six of these ligands
exhibited IC50 values a little higher than positive standard

toloxatone (IC50 = 3.26 μM): geissoschizol (3.18) (15.55 ± 5.73),
vobasinol (3.19), (17.65 ± 3.53), yohimbol (3.20) (24.58 ± 5.31),
dihydrocorynanthenol (3.21) (13.82 ± 1.93), eburnamine (3.22)
(14.85 ± 4.99) and (+)-isoeburnamine (3.23) (9.67 ± 1.47 μM).
The mechanism of action was determined and docking studies
corroborated the observed activity. These results provided
insights for future investigations into tryptophan-derived
alkaloids as potential drug candidates for MAO-A inhibition.

MAO-B was immobilized on cellulose filter paper to identify
ligands in a fractionated n-BuOH extract of Tibetan strawberry
(Fragaria nubicola), a plant known for various health benefits, such
as neuroprotection and antioxidant properties (Hu et al., 2024). In
this study, three newMAO-B inhibitors were isolated and identified,
including two known compounds, turrillioside A (3.24) and 2′-O-
acetylplantamajoside (3.25), as well as one new compound,
nubicolosides A (3.26). This study represents an “nontarget
strategy,” since only limited chemical information was available,
and the active compounds were isolated for activity evaluation. The
inhibitors showed IC50 values of 16.95 ± 0.93, 24.69 ± 0.20, and
46.77 ± 0.78 μM, respectively. Of particular interest, the metabolite
3.24 exhibited neuroprotective effects against 6-OHDA-induced
injury in PC12 cells. Notably, the method demonstrates rapidity
and effectiveness in screening of MAO-B inhibitors from complex
matrices. Similarly, AChE was immobilized on cellulose filter paper
for fishing out ligands from Terminalia chebula extracts (Li
et al., 2022).

Diabetes is a chronic metabolic disease characterized by
insufficient insulin secretion and insulin resistance. A review on
the identification of anti-diabetic components from natural products
such as Ginkgo biloba, Morus alba, lotus leaves, Pueraria lobata,
Prunella vulgaris, and Magnolia cortex using ligand fishing
approaches has been published (Guo et al., 2023). These
approaches involve various immobilization methods, including
entrapment, physical adsorption, covalent binding, affinity
immobilization, multienzyme systems, and carrier-free
immobilization, utilizing different carriers such as hollow fibers,
magnetic materials, microreactors, and metal-organic frameworks.

A paper-based ligand fishing method was also developed to screen
for α-glucosidase (GAA) inhibitors from Chinese herbs (Chen et al.,
2024). Firstly, by using the same paper immobilized enzyme approach
fourteen plants were screened, and the four most active extracts were
selected for the ligand fishing approach. The best results were found
with the leaves of Quercus variabilis Blume, which resulted in eighteen
peaks, most of which were acylated flavonol glycosides. Five
compounds named: kaempferol-3-O-(2″,6″-di-O-(Z)-p-coumaroyl)-
β-glucopyranoside (3.27) kaempferol-3-O-(3″,4″-di-O-acetyl-2″,6″-
di-O-(E)-p-coumaroyl)-β-glucopyranoside (3.28), kaempferol-3-O-
(3″,4″-di-O-acetyl-2″-O-(E)-p-coumaroyl-6″-O-(Z)-p-coumaroyl)-β-
glucopyranoside (3.29), kaempferol-3-O-(3″,4″-di-O-acetyl-2″-O-(Z)-
p-coumaroyl-6″-O-(E)-p-coumaroyl)-β-glucopyranoside (3.30) and
kaempferol-3-O-(3″,4″-di-O-acetyl-2″,6″-di-O-(Z)-p-coumaroyl)-β-
glucopyranoside (3.31) were successfully isolated for complete
characterization and further verification, with their structures
elucidated by NMR. The IC50 values of these ligands ranged
in 20–70 µM.

In a rapid screening for AChE inhibitors from Selaginella
doederleinii Hieron using functionalized magnetic Fe3O4

nanoparticles, four compounds were confirmed to be potent
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AChE inhibitors. Among these, amentoflavone (3.32) exhibited a
stronger AChE inhibitory effect than tacrine (positive control) with
an IC50 of 0.73 ± 0.009 μM. Here, the authors (Zhang et al., 2022)
used the targeted strategy, identifying the compounds by comparing
MS data with standards.

AS-MS-based on immobilized enzyme is a fast, selective and
widely used method with many unique features and huge
application potentials and has been successfully used as a tool to
identify ligands in natural extracts for several biological targets,
including cancer related targets (Duarte-Filho et al., 2023), enzymes
AChE (Vanzolini et al., 2013; 2015; 2018a; 2018b; Lima et al., 2021),
α-glucosidase (Guo et al., 2023; Zhu et al., 2024), cyclooxygenase-2
(van Breemen et al., 2011), 15-lipoxygenase (Rush et al., 2016), and
angiotensin (Luo et al., 2022).

AS-MS-based methods have been explored to investigate
neurodegenerative diseases associated with misfolded proteins,
such as prion diseases. These pathologies result from the
conversion of the cellular prion protein (PrPC) into its
pathogenic form (PrPSc), leading to progressive and fatal
neurodegeneration. In the absence of effective therapies, a recent
study has, for the first time, applied AS-MS assays to identify protein
aggregation modulators in natural products (Amorim et al., 2025).
Using this approach, a hydroethanolic extract fromMoringa oleifera
leaves was analyzed, resulting in the identification of chlorogenic
(3.33) and neochlorogenic acids (3.34) as potent inhibitors of PrP
aggregation. These compounds demonstrated significant antiprion
activity, with IC50 values of 64.41 ± 12.12 μM and 35.34 ± 7.09 μM,
respectively, and were able to inhibit PrPC-to-PrPSc conversion as
well as disaggregate preformed PrPSc

fibrils in vitro. This study
highlights the potential of AS-MS assays to expedite the
development of targeted therapies for prion diseases and other
amyloid-related disorders.

3.4 Immobilization by streptavidin-biotin
interaction

Another widely used approach in immobilized biomolecule
assays leverages the streptavidin-biotin interaction. This method
allows the biomolecule to remain structurally free to interact with
screening molecular library due to its immobilization via the biotin
tag. Compared to direct binding methods, this approach better
preserves the biomolecule’s structure. The streptavidin-biotin
system exhibits an affinity (KD = 10–15) comparable to covalent
bond strength (Ozawa et al., 2017), ensuring stable immobilization.
In this context, Xu et al. (2012) employed a AS-MS assay to screen
triplex DNA binders. The triplex consisted of the sequences d
(CCTTCCTCTTCTCT) (T1), AGAGAAGAGGAAGG (T2), and
the biotinylated strand biotin-(dT)5-d (TCTCTTCTCCTTCC)
(T3). The biotinylated oligonucleotide T3 was immobilized on
streptavidin-agarose beads, followed by the addition of T1 and
T2 to form triplex DNA. As a control, beads with only the
T3 oligonucleotide were used. The DNA-beads were incubated
with an ethanolic-aqueous extract of Phellodendron chinense
Schneid cortex (phellodendron), washed to remove unbound
compounds, and analyzed by LC-MS. This approach identified
two alkaloids, berberine (3.35) and palmatine (3.36), as binders
based on retention time and MS data compared with authentic

standards. Similarly, Yang et al. (2017) immobilized biotinylated
triplex DNA (CCTTCCTCTTCTCT (T1), AGAGAAGAGGAAGG
(T2), and biotin-(dT)5-d (TCTCTTCTCCTTCC) (T3)) on
streptavidin-coated 96-well plates, using the single
oligonucleotide (T3) as a control. Parameters for triplex DNA
formation, such as incubation time, temperature, and buffer
conditions, were optimized using four known binders: coralyne,
ethidium bromide, vitexin, and formononetin. The ligand fishing
assay was then applied to a Rhizoma Coptidis extract, which was
analyzed by LC-MS. Sevenmetabolites were identified as ligands and
ranked by affinity ratio as follows: columbamine > palmatine ≈
epiberberine > an unknown compound at m/z 322.10 > coptisine ≈
jatrorrhizine > berberine.

Despite the vast applications, the identification of new
compounds and nontarget approaches remains a challenge. Most
of the work reported in the literature uses metabolite targeted
approaches, employing standards to define the structural identity
of the disclosed ligands from natural products.

4 Dereplication tools and their role in
AS-MS for natural product research

The nontarget exploration of natural products extracts by
affinity techniques presents a more complex challenge than the
screening of synthetic libraries. Natural products, derived from
biological sources such as plants, fungi, and marine organisms,
tend to exhibit unique, complex scaffolds that often extended
beyond the chemical space covered by synthetic libraries (Silva
and Emery, 2018; Conrado et al., 2024). This structural diversity
is a key reason why natural products continue to play a significant
role in bioactive compounds discovery (Newman and Cragg, 2020;
Conrado et al., 2024).

In the scope of AS-MS applied to natural products, dereplication
has become an essential step for efficiently navigating complex
extracts and prioritizing novel bioactive compounds for further
isolation. Dereplication is an identification of known molecules
and helps to avoid unnecessary re-isolation of already
characterized metabolites, allowing researchers to focus on novel
compounds (Gaudêncio and Pereira, 2015). One of the most
powerful tools for dereplication in natural products research is
liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS), which allows for the analysis of complex mixtures
by separating the metabolites based on their physical chemical
properties, providing detailed molecular weight information and
fragmentation patterns which can be compared with a diversity of
MS/MS libraries (Gaudêncio et al., 2023) that possesses thousands of
chemical structures, such as Global Natural Products Social
Molecular Networking (GNPS) (Wang et al., 2016), LipidMaps
(Conroy et al., 2024), Metlin (Guijas et al., 2018), MassBank
(Horai et al., 2010), and Human Metabolome Database (HMDB)
(Wishart et al., 2022), MetaboLights (Yurekten et al., 2024), NIST
Mass Spectral Library, etc.

In studies where dereplication is employed before AS-MS,
researchers generally aim to characterize the metabolite profile of
an extract to reduce the complexity of subsequent affinity-based
screening. In contrast, studies that do not use dereplication before
AS-MS rely solely on affinity screening to identify ligands. This
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approach can be advantageous when the primary goal is to discover
novel interactions between natural products and macromolecular
targets. For example, Jiao et al. (2019) investigated an ethanolic-
aqueous extract of Andrographis paniculata for its activity against
COX-2 without prior dereplication, using ultrafiltration to identify
five affinity-bound compounds, in which andrographidine E
demonstrated an IC50 of 19 µM.

Dereplication methods can use manual approach, semi-
automated or automated tools such as GNPS (Wang et al., 2016).
While all these methods aim to efficiently identify known
compounds within complex extracts, they differ in terms of
efficiency, accuracy, and the required expertise. Preliminary
dereplication of extracts, while valuable, does not ensure that the
annotated molecules will match those specifically disclosed by
affinity during AS-MS experiments. This mismatch can lead to
significant time and effort expended on dereplicating molecules
that ultimately lack the desired affinity, highlighting an apparent
inefficiency within the workflow. Nonetheless, profiling the extract
remains highly informative. This practice not only enriches our
understanding of the extract’s chemical landscape but also
contributes broadly to the natural products field, where
knowledge of the complex and often unique metabolite
compositions can guide future explorations and facilitate the
discovery of novel bioactive molecules and analogues. While
dereplication facilitates the annotation of metabolites within
complex extracts, AS-MS distinguishes itself by focusing on
molecular annotation of the ligands, emphasizing the importance
of distinguishing between metabolite annotation and ligand
identification.

Lima et al. (2021) investigated alkaloid extracts from Annona
salzmannii bark to identify ligands for AChE. Through dereplication
and molecular networking by GNPS, 34 isoquinoline alkaloids were
annotated, including 26 compounds newly reported for A.
salzmannii and the novel alkaloid N,O-dimethylcoclaurine
N-oxide. However, only eight of these were disclosed as AChE
ligands. Three other disclosed ligands, due to their lower
intensity spectra, were not annotated and only their class was
inferred. This was achieved using AChE immobilized onto
magnetic beads, with ligand affinity determined by an affinity
ratio. Comparisons between active and inactive enzyme
bioreactors revealed compounds with affinity ratios exceeding
that of the known inhibitor galantamine. The study underscores
the meticulous alignment needed between metabolite annotation
and affinity-based ligand assay, emphasizing the detailed
experimental workflow required.

4.1 Manual dereplication

Manual dereplication can be a challenging and time-consuming
process that demands extensive expertise. Researchers need to
compare the spectral and chromatographic properties of the
metabolites against known data from literature or in-house
libraries, requiring a detailed understanding of mass
fragmentation patterns, particularly when working with
structurally complex natural molecules. For instance, Hsu et al.
(2021) investigated xanthine oxidase (XOD) ligands in alfalfa
(Medicago sativa) for potential hyperuricemia prevention. Using

UHPLC-ESI-Q-TOF-MS/MS to profile the extract, they employed a
subtraction method on the XO-incubated extract, enabling manual
dereplication of twelve compounds. Molecular docking showed high
XO affinity for nine compounds, including salicylic acid, tricin 7-O-
glucuronopyranoside, chrysoeriol-7-glucoside, ferulic acid, apigenin
7-O-β-glucuronopyranoside, apigenin, tricin, chrysoeriol, and
liquiritigenin. In vitro bioassays confirmed potent XO inhibitory
activities for apigenin, chrysoeriol, and liquiritigenin, with IC50

values of 0.25, 0.5, and 1 μM, respectively, surpassing the
standard XO inhibitor allopurinol (IC50 = 1.41 µM).

The limitations of manual dereplication become apparent in
high-throughput settings, where a lack of automation may result in
slower processing times and, occasionally, ambiguous annotation.
Despite its challenges, manual dereplication is still employed,
particularly in cases where computational tools may not have
sufficient reference data for the specific class of compounds
under investigation. However, the growing availability of spectral
databases and automated tools has led to a decline in the use of
purely manual methods.

4.2 GNPS: a collaborative platform for
natural product research

The GNPS (Wang et al., 2016) is a powerful platform for natural
product dereplication using LC-MS/MS data. GNPS allows
researchers to upload MS/MS spectra (in mzXML, mzML, and
mgf formats) to identify known metabolites by comparing them
with a vast database of public spectra. Compounds are grouped by
structural similarities, highlighting chemical relationships through
fragmentation patterns in a feature-based molecular network
(FBMN). In addition to the classic FBMN workflow, the
platform’s flexibility includes integration of FBMN with MZmine,
MS-DIAL, XCMS, and OpenMS, Menoscabos, and Progenesis QI.
Each tool impacts peak alignment, annotation accuracy, and feature
detection sensitivity, offering distinct advantages for specific
experimental needs, with GNPS providing access to over
100,000 MS/MS spectra for comparison.

Dai et al. (2024) constructed a GNPS-based molecular network
from the bark of Cinnamomum cassia, analyzed by LC-MS/MS,
categorizing this extract as having significant α-glucosidase
inhibitory and antioxidant activities. To disclose the ligands,
affinity-based ultrafiltration was employed, resulting in the
identification of nine procyanidins with notable antioxidant and
enzyme inhibition properties. Among these, procyanidins A1, A2,
B1, and C1 were isolated, with their activity validated through
functional assays, underscoring their potential as dual inhibitors
of α-glucosidase and pancreatic lipase.

Recent advances in machine learning and artificial intelligence
have driven the development of tools that enhance prediction,
classification, and evaluation in dereplication. Within the GNPS
platform, these tools support more efficient metabolite annotation
for natural libraries, which is transformative for nontarget
metabolomics and AS-MS applications. For instance,
DEREPLICATOR+ (Mohimani et al., 2018) specializes in
identifying peptides and other complex secondary metabolites
from MS/MS spectra through in silico fragmentation, enhancing
the annotation of molecular structures. Similarly, MolDiscovery
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(Cao et al., 2021) is optimized for smaller molecules, improving on
DEREPLICATOR+ by leveraging machine learning algorithms to
increase the accuracy of identifying novel metabolites in
natural products.

Network Annotation Propagation (NAP) (da Silva et al., 2018)
further aids in assigning annotations across molecular networks by
propagating known information to structurally related but
uncharacterized molecules by in silico fragmentation, offering an
effective approach to understanding compound analogies within
complex mixtures. MS2LDA (Wandy et al., 2018), employing
probabilistic modeling, identifies “fragmentation motifs” from
conserved fragment and neutral loss features in spectral data,
offering an effective classification method for compound families
in natural product extracts. TheMolNetEnhancer (Ernst et al., 2019)
tool enhances molecular networks by integrating MS2LDA and in
silico fragmentation (i.g. DEREPLICATOR+) combine with the
automated chemical taxonomy classification by ClassyFire
(Djoumbou Feunang et al., 2016).

The Mass Spectrometry Search Tool (MASST) (Wang et al., 2020)
allows direct MS/MS spectral searches against public datasets to
determine the contexts in which a molecule has been previously
identified. Recently, MASST has evolved with specialized versions
like foodMASST, microbeMASST, plantMASST, and
personalcareMASST. Such functionality is particularly valuable for
natural product research, as it aids in validating whether a
compound annotated in a dereplication workflow genuinely aligns
with natural origins or biosynthetic pathways specific to its source.

An already well-established tool is SIRIUS (Dührkop et al., 2019), a
suite designed for structural elucidation of small molecules from
tandem mass spectrometry data. In combination with CSI:FingerID
(Dührkop et al., 2015), SIRIUS generates accurate molecular formula
predictions and provides structure elucidation through predicted
molecular fingerprints. In the GNPS platform, SIRIUS works
synergistically with the ZODIAC (Ludwig et al., 2020) algorithm,
which enables the de novo annotation of molecular formulas in
complex samples by refining the molecular formula prediction
process. CSI:FingerID facilitates high-confidence structural
assignments, and CANOPUS (Dührkop et al., 2021) enables the
classification of compounds into broader chemical classes, expediting
dereplication in natural product libraries by helping researchers identify
and categorize unknown compounds more precisely.

Collectively, these GNPS-integrated tools streamline natural
product research by facilitating the analysis of complex datasets
and accelerating the discovery of bioactive compounds. In AS-MS,
this suite enables more efficient identification of specific ligands,
such as enzyme inhibitors or other protein-binding metabolites,
enhancing dereplication, structural elucidation, and the discovery of
bioactivity in natural product extracts.

With the recent launch of GNPS2, the field of AS-MS and
natural product dereplication is poised for further advancements.
GNPS2 incorporates machine-learning algorithms, improving
spectral matching precision and allowing users to upload and
search larger datasets. This platform not only builds on the
foundational GNPS framework but also enhances data sharing
and collaboration among researchers. Additionally, GNPS2 now
includes an integrated statistical tool specifically designed to support
FBMN for nontarget metabolomics including facilitates data
cleaning, normalization, and uni- and multivariate statistical

analyses of FBMN outputs, with further visualization support
through Cytoscape integration (Pakkir Shah et al., 2024). The
option for blank removal is particularly valuable for AS-MS
when working with immobilized biological targets. This feature
can help address nonspecific interactions, as some compounds
may bind to the support itself rather than to the target,
potentially leading to misleading results. As more natural
products are characterized and entered the GNPS2 database, the
tool’s predictive capabilities will become more comprehensive, thus
improving dereplication accuracy (Nothias et al., 2020) for AS-MS
applications. The integration of advanced algorithms in GNPS2 also
points to an era where dereplication can approach near-real-time
processing, offering significant advantages in high-throughput AS-
MS studies.

4.3 Limitations of dereplication in AS-MS

While automated tools vastly improve dereplication efficiency,
their limitations remain, particularly in cases of stereoisomers and
when library data for rare or novel compounds is lacking. Manual
validation is often necessary to confirm structural accuracy. Despite
modern advancements in instrumentation, software, and databases
that facilitate high-throughput metabolite annotation, the
conclusive identification of ligands often requires the isolation of
individual compounds or the use of authentic standards. This
challenge becomes particularly pronounced when dealing with
stereoisomers. do Amaral et al. (2021) immobilized
phosphoenolpyruvate carboxykinase from Trypanosoma cruzi
onto magnetic particles to carried out nontarget AS-MS on
ethanolic extracts of Brazilian cerrado plants, identifying
11 ligands. Among these, catechin or its epimer, epicatechin, was
detected in the Byrsonima coccolobifolia extract. Since both
compounds are present in the extract and share identical mass
fragmentation patterns, they could not be distinguished by mass
spectrometry alone. To allow correct characterization of the ligand,
authentic standards were analyzed under the same LC-MS
conditions used for the AS-MS desorbate analysis. Retention time
comparison confirmed catechin as the ligand. This study underlines
the importance of affinity-based interaction specificity between the
targets and ligands, as both catechin and epicatechin were present in
the extract, but only catechin was selectively fished out.

Native MS were employed to screen for chymotrypsin inhibitors in
a marine cyanobacterium Rivularia sp. (Reher et al., 2022), identifying
30 potential cyclodepsipeptide-protease complexes in methanolic
extracts. Using tools as SIRIUS, ZODIAC and MS/MS spectrum as
indicative of a “cyclic depsipeptide” based on the classification with
CANOPUS, they isolated and carried out a complete characterization
(1D/2D NMR experiments and manual MS/MS interpretation) of
rivulariapeptolides 1185 (4.1), 1155 (4.2), 1121 (4.3), and 989 (4.4),
molassamide (4.5) and the novel molassamide B (4.6) (Figure 4).
Chymotrypsin inhibition assays showed high efficacy (IC50 <
100 nM) for rivulariapeptolides and molassamide B. These findings
prompted further evaluation of the six peptides against two additional
serine proteases, elastase and proteinase K, ranking them as some of the
most potent Ahp-cyclodepsipeptides reported to date. Remarkably, the
authors shared in GNPS the spectral data to collaborate with
future studies.
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Moreover, critically evaluating the annotation of suggested
metabolites by automated tools is essential. Researchers must
assess whether the proposed structures are truly natural products
and if they could feasibly be biosynthesized by the species under
study, ensuring that the annotation findings are relevant and
biologically accurate. XOD has been investigated for inhibitors in
Pterocladiella capillacea, an edible seaweed, using affinity
ultrafiltration combined with feature-based molecular networking
analysis facilitated by MS-DIAL and MS-FINDER (Wang et al.,
2023).While 20 compounds were initially identified as XOD ligands,
manual verification revealed that many lacked taxonomic
alignments with the seaweed’s lineage, either at the Order or
Phylum level. Finally, eight compounds were confirmed as
seaweed-derived, with seven unreported for anti-gout activity.
Molecular docking studies further suggested these compounds
exhibit strong affinity for XOD, highlighting their
therapeutic potential.

The use of automated dereplication tools and molecular
networking followed by manual validation combines the speed of
computational methods with the accuracy of traditional structural
elucidation, optimizing AS-MS workflows for comprehensive
natural product discovery. Additionally, orthogonal assays are

necessary for accurate ligand annotation, especially in the context
of structurally similar metabolites and stereoisomers prevalent in
natural product extracts. Important to stress that the
stereochemistry of annotated ligands cannot be confidently
assigned solely through AS-MS workflows and requires further
characterization using chiral analytical methods or comparison
with well-characterized standards. Accurate stereochemical
assignments are essential to ensure biological relevance, as
stereoisomers often exhibit distinct binding affinities, activities,
and pharmacological properties.

4.4 Target ligand applications of AS-MS

Despite the potential application of AS-MS for nontarget natural
products extracts exploration its application frequently mirrors the
focused approach of synthetic libraries, in targeted workflows, where
predefined known ligands or metabolite classes drive experimental
design. This target strategy can simplify assay setups, reducing the
complexity of control and facilitating hit elucidation, and enables the
validation of specific hypotheses when a well-characterized extract
or a natural product library are available. For example, Munigunti

FIGURE 4
Structures and potency of the isolated rivulariapeptolides and molassamides from an environmental cyanobacteria community for three
serine proteases.
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et al. (2011) used ultrafiltration and LC-MS to screen
133 structurally diverse natural products from a commercial
library against Plasmodium falciparum thioredoxin reductase,
identifying nine ligands with binding affinities below 1 µM.
Similarly, Vu et al. (2018) investigated 62 Plasmodium proteins
potential for malaria drugs using native MS (ESI-FT-ICR-MS) to
screen a natural product fragment library containing
643 fragments (most of them compliant with the rule of three),
in which 96 fragments were identified as ligands for 32 proteins,
with 79 of these demonstrating growth inhibition against P.
falciparum.

In addition to using libraries, other works leverage the known
bioactivities of extracts to guide ligand identification. van Breemen et al.
(2011) applied a chloroform partition of amethanol extract from ginger
roots (Zingiber officinale) to detect COX-2 ligands using ultrafiltration
and LC-MS justly because ginger presents anti-inflammatory
properties, including COX inhibition. The study identified
19 metabolites, being primarily gingerol-related compounds. Among
these, 10 were confirmed as COX-2 ligands, with IC50 values
determined for 10-gingerol, 8-shogaol, and 10-shogaol, all exhibiting
selective COX-2 inhibition. Similarly, Li et al. (2009) investigated a
flavonoid extract from hawthorn (Crataegus oxyacantha L.), a plant
known for its medicinal properties and rich flavonoid content. An
affinity assay combining ultrafiltration and LC-DAD-MS disclosed four
flavonoids as ligands for α-glucosidase, including quercetin derivatives
and vitexin glycosides. Since three flavonoids are C-glycosylated, other
ones were tested (vitexin, isovitexin, orientin, isooriention and their
aglycones apigenin and luteolin). Further testing confirmed their
inhibitory activity, validating the bioactivity of the extract.

Studies on Traditional Chinese Medicine (TCM) often adopt a
similar approach, aiming known bioactive compounds within herbal
mixtures. AS-MS techniques have been employed to investigate
interactions between TCM components and specific targets, such as
enzymes or receptors. For instance, affinity-based methods have
revealed interactions of chlorogenic acids, coumarins, and flavonoids
with proteins like plasma albumin and G protein-coupled receptors,
aligning traditional knowledge with scientific validation (Jiao et al.,
2018; Zhang et al., 2024). Such works illustrate the value of targeted AS-
MS in bridging ethnopharmacological insights with molecular
mechanisms.

5 Concluding remarks

AS-MS has gained prominence in target-based drug discovery
programs and is widely used by the industry to search for small
molecules in synthetic libraries. Despite its versatility and broad
applications, AS-MS remains underexplored for ligand prospecting
in natural product libraries. The complexity of the chemical space,
with high concentrations of one class of molecules present alongside
others at lower concentrations, can hinder both the formation of
ligand complexes and the annotation of ligands present in low
concentrations. Additionally, nonselective interactions with the
target, such as those caused by Pan-assay interference compounds
(PAINS), pose a significant challenge when assaying natural libraries.
To fully exploit the potential of AS-MS, future efforts should focus on
developing more robust methods for annotating ligands from natural
libraries, including enhanced data analysis workflows. As in

dereplication workflows, stereoisomers and positional isomers must
not be overlooked.

Most AS-MS applications using natural product libraries are
still focused on enzyme targets, followed by other protein types,
with relatively few studies involving diverse biological targets.
Expanding AS-MS to underexplored target types and leveraging
its compatibility with natural product libraries could unlock new
opportunities in drug discovery. Furthermore, broadening the
diversity of biological targets and improving the integration of
AS-MS with complementary techniques, such as structural
biology and structure-based virtual screening, could further
enhance its utility. By addressing these challenges, AS-MS has
the potential to bridge the gap between the chemical diversity of
natural products and biological function, thus significantly
advancing drug discovery.
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