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Macrocyclic compounds have emerged in the 21st century, among which cyclic
peptides are of particular interest. Cyanobactins are ribosomally synthesized and
post-translationally modified peptides (RiPPs), many of which exist as cyclic
peptides with a prenyl moiety, and prenylation can improve their structural
stability and biological activity. This mini-review highlights the recently
discovered cyanobactins and cyanobactin prenyltransferases from 2021 to
2024. Cyanobactin prenyltransferases will allow access to unique prenylated
natural products for applications in drug discovery.
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1 Introduction

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a
rapidly growing class of natural products defined by their post-translational
modifications, with approximately 20 classes of RiPPs reported in 2013 and 40 classes
in 2021 (Arnison et al., 2013; Montalbán-López et al., 2021). Cyanobactins are diverse RiPPs
isolated from symbiotic and free-living cyanobacteria and possess diverse biological
activities such as antimalarial, cytotoxicity and antimicrobial properties (Martins and
Vasconcelos, 2015; Gu et al., 2019). The typical biosynthetic gene clusters of
cyanobactin contain seven genes encoding precursor peptide (E protein), subtilisin-like
serine protease (A/G protein), unknown function short protein (B/C protein), YcaO
cyclodehydratase (D protein) and prenyltransferase (F protein) (Gu et al., 2019). The
key features of cyanobactin include macrocyclization, heterocyclization (thiazole, oxazole,
thiazoline and oxazoline), and prenylation (Gu et al., 2019). Only a few linear cyanobactins
reported (Leikoski et al., 2013), most of them exist in the form of macrocyclic peptides.

Cyanobactin prenyltransferases are ABBA-type prenyltransferases that displace
pyrophosphate group in the prenyl donor by a carbon, nitrogen or oxygen atom from the
prenylated amino acid (Zheng et al., 2022; Zhang et al., 2023a). Cyanobactin prenyltransferases
are highly selective for isoprenyl donors and amino acids involved in prenylation, but are
relatively less selective for amino acids in macrocyclic peptides that are not involved in
prenylation (Zheng et al., 2022; Zhang et al., 2023a). This feature has attracted a lot of
attention from researchers because it can offer a versatile toolkit for peptide prenylation. To date,
14 cyanobactin prenyltransferases have been biochemically characterized, and one cyanobactin
prenyltransferaseMonF has been characterized based on genome analysis and the identification
of its prenylated product, resulting in a total of 15 cyanobactin prenyltransferases (Figure 1A),
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LynF from Lyngbya aestuarii (McIntosh et al., 2011; McIntosh et al.,
2013), PatF from Prochloron didemni (Bent et al., 2013; Tianero et al.,
2016), TruF from Lissoclinum patella (Tianero et al., 2016), KgpF from
Microcystis aeruginosaNIES-88 (Parajuli et al., 2016; Inoue et al., 2024),
PagF from Oscillatoria agardhii (Hao et al., 2016), AgeMTPT fromM.

aeruginosa PCC 9432 (Sardar et al., 2017), PirF from M. aeruginosa
PCC 7005 (Estrada et al., 2018; Morita et al., 2018), SphF from
Sphaerospermopsis sp. LEGE 00249 (Martins et al., 2018), AcyF
from Anabaena sp. UHCC-0232 (Dalponte et al., 2018), MusF1/
2 from Nostoc spp. PCC 7906 and UHCC 0398 (Mattila et al.,

FIGURE 1
(A) Discovery timeline of cyanobactin prenyltransferases and their chemical transformations. (B) Structures of cyanobactins from 2021 to 2024.
Prenyl groups are colored in red. Prenylated residues are colored in blue. cis amide bonds between Pro/Pro and Pro/X residues are colored in purple.
d-amino acids are colored in green.
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2019), TolF from Tolypothrix sp. PCC 7601 (Purushothaman et al.,
2021), AgcF from M. aeruginosa NIES-88 (Phan et al., 2021), AutF
from Phormidium autumnale CCAP1446/10 (Clemente et al., 2022),
LimF from Limnothrix sp. CACIAM 69days (Zhang et al., 2022), and
MonF from Microcoleaceae cyanobacterium LEGE 16532 (Castelo-
Branco et al., 2025). The cyanobactin prenyltransferases including (1)
biosynthesis of cyanobactins and (2) discovery, biochemical
characterization and bioengineering of cyanobactin
prenyltransferases have been extensively reviewed elsewhere (Zheng
et al., 2022; Zhang et al., 2023a). While this mini-review highlights the
recently discovered prenylated cyanobactins and cyanobactin
prenyltransferases from 2021 to 2024.

2 Discovery of cyanobactins and
cyanobactin prenyltransferases from
2021 to 2024

A review published a decade ago reported a total of 57 cyanobactins
(Martins and Vasconcelos, 2015), this number has not been updated
since then, but a rough estimate is between 80 and 100 cyanobactins
today. In 2021, a genome mining approach was used to prioritize
cyanobacterial strains containing cyanobactin prenyltransferase from
uncharacterized cluster in sequence-function space. This led to the
isolation of tolypamide (1) and biochemical characterization of
cyanobactin prenyltransferase TolF from Tolypothrix sp. PCC 7601
(Figure 1B) (Purushothaman et al., 2021). Tolypamide (1) showed no
activity against six cancer cell lines (DU145, A549, HeLa CCL2, HepG2,
and MDA-MB 231) or three bacterial strains (Escherichia coli ATCC
25922, Staphylococcus aureus ATCC 29737 and Pseudomonas
aeruginosa ATCC 9027). The substrate scope of TolF showed a
certain degree of tolerant towards non-native peptide substrates of
different lengths, sequence compositions and ring sizes. In the same
year, two natural products studies reported cyanobactin-like structures
without identifying their biosynthetic gene clusters. Three Trp-
prenylated cyanobactins, trikoramides B-D (2–4) were isolated from
Symploca hydnoides collected at Bintan Island, Indonesia (Phyo et al.,
2021). Trikoramides B-D (2–4) possessed unique structures with
additional hydroxylation or/and bromination on prenylated Trp
residue (Figure 1B), but the enzymes involved in this chemical
transformation are remains unknown. Trikoramides B (2) and D
(4) showed cytotoxicity against acute lymphoblastic leukemia cell
line (MOLT-4) with IC50 5.2 and 4.7 µM, respectively. One Trp-
prenylated cyanobactin, motobamide (5) was isolated from
Leptolyngbya sp. collected at Okinawa, Japan (Takahashi et al.,
2021). In cyclic peptides, the peptide bond geometry between two
adjacent Pro residues was orientated in a cis conformation (Figure 1B),
as observed in motobamide (5) where the cis amide bond was
determined based on the (1) 13C nuclear magnetic resonance
(NMR) chemical shift differences between the Cβ and Cγ positions,
and (2) NOESY correlations. Interestingly, two non-adjacent Pro
residues in trikoramides (2–4) were assigned as cis in a similar
manner. Motobamide (5) showed inhibitory activity against
Trypanosoma brucei rhodesiense at IC50 2.3 μM.

In the same year, LC-MS approach was used to search for prenylated
cyanobactins by targeting a mass difference of 68 Da (isoprene), as this
represented the mass difference between non-prenylated and prenylated
cyanobactins. This led to the discovery of bis-prenylated, mono-

prenylated and non-prenylated cyanobactins, argicyclamides A-C
(6–8) and biochemical characterization of cyanobactin
prenyltransferase AgcF from Microcystis aeruginosa NIES-88
(Figure 1B) (Phan et al., 2021). Previously, a cyanobactin
prenyltransferase KgpF involved in the biosynthesis of Trp-prenylated
cyanobactin, kawaguchipeptin A was characterized from the same strain
(Parajuli et al., 2016). However, the putative precursor peptide AgcE was
not found in the genome of M. aeruginosa NIES-88 (ASM157807v1),
although the strain could produce both argicyclamides and
kawaguchipeptins. Combining long-read and short-read re-sequencing
of M. aeruginosa NIES-88 (ASM1970427v1) revealed argicyclamide
biosynthetic gene clusters. Argicyclamides A-C (6–8) showed no
activity against two cancer cell lines (P388 and MCF-7) but
interestingly, their antibacterial activity was significantly improved
based on the number of prenyl groups at Arg residue, argicyclamide
A (6) has a MIC of 3.12–6.25 µM against S. aureus ATCC 12600,
methicillin-resistant S. aureus ATCC 43300 and Bacillus subtilis ATCC
6051. For the substrate scope study of AgcF, several non-native peptide
substrates were designed by exchanging the prenylated residue Arg to
Trp, Tyr, Ser, Thr and Lys, but no prenylation activity was detected,
indicating that AgcF is selective for Arg prenylation. A year later, a study
involved solving the structure of the enzyme-substrate complex of LimF
proposed that His167 in AgcF correlated to His172 in LimF is the
catalytic residue for Arg-Nω prenylation (Zhang et al., 2022). The
discovery of cyanobactin prenyltransferase AgcF expands the
biocatalytic toolbox of this protein family, enabling them to catalyze
prenylation on the amino acid with charged side chain. Prior to the
discovery of AgcF, prenylation of this protein family are restricted to only
amino acids with hydrophobic (Tyr and Trp) and uncharged side chains
(Ser and Thr). The patent application onAgcF has been published (PCT/
JP 2022/004501).

In 2022, cyanobactin prenyltransferase AutF was biochemical
characterized from P. autumnale CCAP1446/10 (Clemente et al.,
2022), a producer of autumnalamides A and B (9 and 10) (Figure 1B)
(Sánchez et al., 2017). In the same year, a genome mining approach
was used to explore sequence-function space of cyanobactin
prenyltransferases and found an uncharacterized cyanobactin
prenyltransferase LimF from Limnothrix sp. CACIAM 69d (Zhang
et al., 2022). The NMR characterization of the in vitro generated
product, limnothamide (11) confirmed a His-prenylated cyanobactin
(Figure 1B). Limnothrix sp. CACIAM 69d was not used for the
isolation of limnothamide (11). Among the cyanobactin
prenyltransferases discovered between 2021 and 2024, LimF has
the greatest potential to be developed into a biocatalyst, where
LimF (1) can prenylate the His residue of any non-native peptide
substrates, regardless of their length, overall sequence composition,
and ring size; (2) has secondary function to prenylated Tyr residue
that has not been seen in other cyanobactin prenyltransferases; (3)
crystal structure in complex with substrate have been solved, PDB
7VMW and 7VMY; (4) key catalytic residues have been identified;
and (5) can prenylated FDA-approved His-containing peptide/non-
peptide drugs such as leuprorelin, pramlintide and cimetidine. The
patent application on LimF has been published (PCT/JP
2022/038924).

In 2023, a re-visit of M. aeruginosa NIES-88 and found
argicyclamide D (12) from the culture condition at 37°C without
ammonium ferric citrate (iron source) supplemented in BG-11 media
(Figure 1B) (Ballo et al., 2023), while argicyclamides A-C (6–8) were
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previously isolated from the culture condition at 25°C with
ammonium ferric citrate supplemented in BG-11 media.

In 2024, a genome mining approach was used to prioritize
cyanobacterial strains containing cyanobactin prenyltransferase from
uncharacterized cluster in sequence-function space. This led to the
detection of 11 cyanobactins, monchicamides A-K, and identification of
cyanobactin prenyltransferase MonF from Microcoleaceae
cyanobacterium LEGE 16532 (Castelo-Branco et al., 2025). Only
monchicamide I (13) was isolated and characterized by NMR,
whereas the structures of the other cyanobactins were proposed
based on LC-MS/MS data, which revealed that monchicamides B
(14), D (15), F, G and K were prenylated cyanobactins.
Interestingly, a trans amide bond between two adjacent Pro residues
was proposed in the cyclic peptides of monchicamides B and D (14 and
15) (Figure 1B). However, if monchicamides B and D (14 and 15) were
measured by NMR, the peptide bond between two adjacent Pro
residues is most likely a cis geometry, and many similar cis amide
bonds have been reported between Pro/Pro residues in cyclic peptides,
such as 5-7, noducyclamides and phakellistatins (Kwon et al., 2018;
Phan et al., 2021; Takahashi et al., 2021; Mehjabin et al., 2024).
Monchicamide I (13) showed no activity against three cancer cell
lines (HepG2, HCT 116 and SH-SY5Y), four bacterial strains (S. aureus

ATCC 29213, B. subtilis ATCC 6633, E. coli ATCC 25922 and
Salmonela typhimurium ATCC 25241), one yeast (Candida albicans
ATCC 10231) and three amoeba strains (Acanthamoeba castellanii,
Acanthamoeba polyphaga and Dictyostelium discoideum).

3 Protein engineering of cyanobactin
prenyltransferases from 2021 to 2024

Rational engineering of enzyme complexes in nonribosomal
peptide synthetases (NRPS) and polyketide synthases (PKS) is a
next-generation technology for natural products or small molecule
drug discovery (Bozhüyük et al., 2024; Mabesoone et al., 2024).
Many engineering studies in RiPPs have focused on the precursor
peptides (Goto and Suga, 2018; Do and Link, 2023; Zhong et al.,
2022). A relatively few engineering studies focused on the post-
translational modification enzymes to alter or expand enzyme
substrate scope (Phan and Morinaka, 2024b; Barrett et al., 2025).
Cyanobactin prenyltransferases are known for their strict selectivity
for the prenyl donors, with LimF and PirF only accept the GPP (C10,
geranyl pyrophosphate) but not the DMAPP (C5, dimethylallyl
pyrophosphate), while AutF, KgpF, PagF and TolF only accept

FIGURE 2
(A) Sequence alignment of representative cyanobactin prenyltransferases, highlighting the active sites correlated to G224, H239 and W273 in LimF.
(B) Complex structure of LimF-GSPP (PDB:7VMW), showing the space occupied by G224 in the prenyl binding pocket. (C) Bulky side chain residues that
affect pocket sizes are colored in purple. (D) Prenylation activities. High, moderate, and low prenylation activities are indicated as (+++), (++) and (+),
respectively. No reactions and not tested are indicated as (−) and N/A, respectively. Large, moderate, and small bulky side chains are indicated as
(OOO), (OO) and (O), respectively.
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the DMAPP but not the GPP, but AgcF can accept both the DMAPP
and GPP (Figure 2D).

In 2023, a structure-based engineering of the prenyl binding pocket
size expansion was achieved in LimF (Zhang et al., 2023b). Three
important active sites G224, H239 and W273 in LimF were identified
(Figure 2A), particularly G224 located at the apex of the prenyl binding
pocket (Figure 2B), which was thought to be the key residue in
differentiating the pocket size for preference of C5 or C10 prenyl
donors based on the bulky side chain of this amino acid at position 224
(Figure 2C). Mutation of G224 to Met successfully altered the prenyl
donor preference from GPP to DMAPP (Figure 2D). Remarkably, the
double mutant of LimF H237G,W271T achieved farnesylation
accepting FPP (C15, farnesyl pyrophosphate) for the first time in
cyanobactin prenyltransferases (Figure 2D). In a previous study, it
was reported that the mutant PagF F222G exhibited geranylation
activity (Estrada et al., 2018), and only a low farnesylation activity
was detected (Zhang et al., 2023b). Interestingly, transfer of these two
engineered sites in LimFH237G,W271T to PagF F222G could improve
the farnesylation activity (Figure 2D) (Zhang et al., 2023b). In 2024, the
mutant LimF I52A based on substrate binding pocket engineering
enabled the enzyme to accept substrates with bulky chain side residue
Phe preceding to the prenylated residue His, where the wild type
substrate has less bulky residue Ala preceding to His (Zhang et al.,
2024). Currently, the biological activities of the prenylated products
catalyzed by these engineered proteins have not been evaluated.
However, these engineering efforts have broadened the chemical
space of cyanobactin prenyltransferases and further expanded the
biocatalytic toolbox for prenylation.

4 Conclusion

Cyanobactins are a class of natural products that belong to the RiPPs.
To date, RiPP is an exciting area of research for the discovery of new
chemistry catalyzed by the post-translational modification enzymes
(Zhong, 2023; Hubrich et al., 2022; Hubrich et al., 2024; Nguyen
et al., 2024; Phan and Morinaka, 2024a; Khan et al., 2025; Kandy
et al., 2025; Shi et al., 2025). Although cyanobactin system especially
the subtilisin-like serine protease (A/G protein), YcaO cyclodehydratase
(D protein) and prenyltransferase (F protein) has been extensively
studied, there are still several aspects that can be further explored, for
examples (1) unlike the A/G and D proteins, whose mechanisms have
been studied (Koehnke et al., 2012; Koehnke et al., 2015; Zheng andNair,
2023), mechanistic studies of cyanobactin prenyltrasnferases have not
been performed; (2) a non-functional cyanobactin prenyltransferase PatF
was found in the patellamide gene cluster (Bent et al., 2013), but its role
remains unknown; (3) whether more diverse chemistries exist in the
sequence-function space of cyanobactin prenyltransferases remains
unclear; and (4) another open question is the logic governing the
geometry of proline residues in cyclic peptides. While many
cyanobactins feature a cis peptide bond between adjacent proline
residues, the trikoramides interestingly show a cis configuration
between non-adjacent prolines, suggesting the need for further
investigation. Cyanobacteria are a rich source of natural products and
biosynthetic enzymes (D’Agostino, 2023; Weiss et al., 2025), and

cyanobactin prenyltransferases will allow access to unique prenylated
natural products for applications in drug discovery.
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