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Introduction: Functional food products are widely available in the market and
have several benefits, such as high protein and low calorie content, for addressing
obesity. However, the regulation of product content, which results in weight
maintenance, needs to be described. This study aimed to explore methods to
assess the influence of anti-obesity food bars made from soybeans on
antioxidants in functional food products that are widely available in the market.
Methods: These methods include network pharmacology screening, bioactive
gene analysis, interaction network development, phytochemical screening,
molecular docking, and antioxidant activity testing.
Results: Screening revealed that the main bioactivities of the soybean food bars
were glycitein and 6″-Omalonylglycitin, which have a high affinity for molecular
docking. The food bar methanol and ethanol extracts had higher ES50 values
(1.30 and 2.00mg/mL, respectively) than genistein (0.13 mg/mL), indicating weak
antioxidant activity. Therefore, the ethanol and methanol extracts of the soybean
food bar exhibited weak antioxidant activity.
Conclusion: This study suggests that soybean-based food bars may have
potential anti-obesity relevance through predicted interactions with leptin
signaling proteins, network pharmacology analysis, and measurable
antioxidant activity.
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1 Introduction

Obesity is a common problem because it can lead to several diseases that culminate
in death. According to WHO data from 2017, more than 4 million people die of obesity
annually. Moreover, since 1975, the number of obese children and adolescents has
quadrupled from 4% to 18% in 2016, and since 1980, the number of obese adults has
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increased by more than 200% (WHO, 2022). Obesity causes
cognitive dysfunction by triggering mechanisms that accelerate
reactive oxygen species (ROS) production. ROS induce oxidative
stress in cells and tissues, causing DNA mutations that can
increase the risk of developing obesity. Owing to the
seriousness of the obesity problem, many groups have started
innovations that simply address overweight individuals.
Phytochemicals have the potential to overcome obesity;
therefore, they are added to processed foods known as
functional foods (Konstantinidi and Koutelidakis, 2019; Saad
et al., 2021; Sandner et al., 2020; Patil et al., 2025).

Functional foods contain active substances that have been
proven to provide physiological health benefits. The expected
physiological function of functional foods is to reduce body
weight by optimizing the fiber and antioxidant content. Natural
antioxidants can modulate oxidative stress caused by ROS, improve
immune function in obesity, and stabilize and simultaneously
reduce body weight and body mass index (Bonomini, 2023;
Fekete et al., 2025; Ham and Joung, 2021). The bioactive
compounds found in plants, such as isoflavones, can stimulate
the process of lipolysis, regulate adipogenesis and apoptosis in
adiposity cells, and act as antioxidants that counteract free
radicals resulting from high amounts of oxidative stress in obese
people (Saad et al., 2021; Kim, 2022; Sohn et al., 2021; Younis
et al., 2025).

Several functional food products have become popular and have
generated excellent profits. Previous research has shown that in
2019, the global functional food market was valued at USD
177.770 million, and the compounded annual growth rate
(CAGR) of the functional food market is expected to increase by
6.7% by 2027 compared to 2021 (Domínguez Díaz et al., 2020; Fuso
et al., 2023; Ojwach et al., 2022; Szakos et al., 2022). The functional
food market in 2025 based on region with the highest percentage is
occupied by Asia Pacific at 47.5%, then followed respectively by
North America (23.8%), Europe (15.8), rest of the world (12.9)
(Doshi, 2025). Despite the vast functional food development and
market, the mechanism of action of products to address overweight
has not yet been determined.

Isoflavones are found in leguminous plants, particularly
soybeans (Kim, 2022; Messina et al., 2025). As bioactive
compounds, isoflavones have antioxidant activity (Saad et al.,
2021; Sohn et al., 2021; Kim et al., 2020). The structure and
function of plant-derived isoflavones resemble those of the
hormone estrogen, which is a phytoestrogen. Isoflavones with the
most potent estrogenic activity include genistein, daidzein, and
glycitein (Kim, 2022; Chiang et al., 2016; Choi et al., 2020;
Intharuksa et al., 2025). This study aimed to explore and predict
the potential of soybean food bar extracts as functional foods with
anti-obesity properties using network pharmacology, molecular
docking, and antioxidant activity measurements.

2 Materials and methods

2.1 Identification and screening of bioactive

Bioactive compounds in soybeans were obtained from the
KNApSAcK database (http://www.knapsackfamily.com/) using

the query “Glycine max” (Liu et al., 2017). The KNApSAcK
database contains 63,723 metabolite entries,
159,101 metabolite-species pairs, and 24,749 species entries.
OB and DL parameters were screened for all soybean
bioactives using the Traditional Chinese Medicine Systems
Pharmacology (TCMSP) database platform (https://old.tcmsp-
e.com/index.php). The TCMSP database uses data from 29.
384 compounds and 3,311 targets that can be used as
sources of analysis (Ru et al., 2014; Zhao et al., 2022; Wang S.
et al., 2021). Bioactive compounds in food bars with OB ≥ 30%
and DL ≥ 0.18 were selected (Tao et al., 2020; Wang K. et al., 2021;
Han et al., 2024).

2.2 Identification of component-target gene
network-protein targets

Basic compound information was obtained from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/) (Kim
et al., 2021). Bioactive protein targets were identified using the
STITCH database (http://stitch.embl.de), which contains 9.643.
763 proteins from 2.031 organisms (Chen et al., 2023; Szklarczyk
et al., 2021). Proteins were extracted using UniProt
Knowledgebase (UniProtKB), which contains 54.247.
468 sequence items (www.uniprot.org) (Zhang et al., 2020;
Consortium et al., 2025).

2.3 Obesity-associated targets prediction
and construction of PPI network

GeneCards (https://www.genecards.org/) and STRING (https://
string-db.org/cgi/input.pl) was used to identify obesity-associated
genes (Safran et al., 2021; Szklarczyk et al., 2023; Zhou et al., 2022).
The query used to obtain related targets was “Oxidative Stress”,
“antioxidant”, “ROS”, and “obesity”. PPI network interactions were
performed using the INPUT database (http://cbcb.cdutcm.edu.cn/
INPUT) (Chen et al., 2023).

2.4 GO and KEGG pathway
enrichment analysis

GO and KEGG analyses use the INPUT database (http://cbcb.
cdutcm.edu.cn/INPUT) and STRING (https://string-db.org/cgi/
input.pl) to process and visualize data from the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Chen et al., 2023; Szklarczyk et al., 2023). GO analysis identified
biological processes (BP), molecular functions (MF), and cellular
components (CC) (Liao et al., 2019).

2.5 Component–target molecular docking

The 3D structure of the target protein LEP (PDB ID: 1AX8) was
obtained from the RCSB PDB database (https://www.rcsb.org/) and
UniProt Knowledgebase (www.uniprot.org). The target protein
selected for docking was leptin (LEP, PDB ID: 1AX8), a key
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adipokine that regulates energy balance, lipolysis, and satiety
signaling, making it biologically relevant for anti-obesity
mechanisms. LEP was identified as one of the top-ranked hub
genes in the network pharmacology analysis, indicating its
central role in the soybean bioactive compound–target
interaction network. The protein was prepared using Pymol 2.2.
5 and saved in PDB file format. Hydrogen atoms were added, and the
protein was protonated at physiological pH 7.4 (Saxton et al., 2023;
Ren et al., 2025).

The bioactive ligands were obtained from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) to download a
three-dimensional (3D) structure with the SDF file type. Open
Babel software (PyRx 0.8) was used to change the file type from
SDF to MOL2 for molecular docking analysis using AutoDock
Vina (PyRx 0.8). The resulting output had the best affinity, with
the most negative value, and was visualized using PyMOL
software (Kondapuram et al., 2021). Lorcaserin was used as a
comparator in this study. Lorcaserin was used as a redocking
control to validate grid parameters and pocket definition (Bohula
et al., 2018; Singh and Singh, 2020; Wagner et al., 2023;
Tuccinardi et al., 2019).

2.6 Phytochemical profiling and antioxidant
activity assays

2.6.1 Material
DPPH (≥95% purity, Sigma-Aldrich, United States), genistein

(≥98% purity, Sigma-Aldrich, United States), and ferric chloride
FeCl3.6H2O 5% (Merck, Germany) were used as reagents.
Analytical grade methanol (80%) and ethanol (70%) (Merck,
Germany) were used as solvents for sample preparation
and dilution.

2.6.2 Thin layer chromatography (TLC) assay
Sample preparation and extraction were performed as

previously described (Borges et al., 2020). The soybean food bar
powder was air-dried at 40 °C until a constant weight was reached
before extraction to correct for the moisture content. A 5 g sample of
the soybean food bar was extracted by ultrasonication for 30 min at
room temperature (25 °C ± 1 °C), carried out three times using 70%
ethanol (50 mL) and 80% methanol (50 mL). The solvent-to-sample
ratio was maintained at 1:10 (w/v) for all extraction cycles. The
residue from the first extraction was extracted again using a new
solvent of the same volume and type. The extraction process was
carried out until the obtained dregs did not form a green color when
dropped with FeCl3 solution, and the extracted solution was clear
(the residual fraction still contained flavonoids). This ensured that
the extraction process was optimal and that the active substances in
the sample were completely extracted (Hayat et al., 2020; Zhang
et al., 2019). The filtrate resulting from the extraction was combined
and concentrated at 40 °C–50 °C in a water bath until the remaining
volume reached ±25 mL (Fahad et al., 2021). Each evaporated
extract was mixed with methanol to a total volume of 25 mL,
and a liquid extract of 200 mg/mL was obtained. The samples
were stored at 4 °C until further analysis to prevent the
degradation of phenolic and isoflavone compounds (Shawky and
Sallam, 2017).

Qualitative testing of flavonoids was performed using 5% FeCl3.
Isoflavone testing was carried out using TLC silica gel
60 F254 aluminum plates (Merck, 0.25 mm thickness). Samples
(5 μL) were spotted on silica gel 60 F254 aluminum plates (Merck,
0.25 mm) and developed in the mobile phase (ethyl acetate:
methanol:distilled water:acetic acid, 100:20:16:1, v/v/v/v). The
chamber was pre-saturated for 15 min (Shawky and Sallam,
2017; Pobłocka-Olech et al., 2018). Genistein was used as a
marker compound for qualitative standardization of the extracts
through TLC analysis.

2.6.3 Antioxidant activity
The ethanol liquid extract was prepared with a concentration

series of 1.75, 1.5, 1.25, 1.0, 0.75, 0.5, and 0.25 mg/mL in
methanol, and methanol aqueous extracts were prepared with
concentrations of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 mg/mL in
methanol. Genistein was used as a positive control at
concentrations of 0.160, 0.140, 0.120, 0.100, 0.080, 0.060, and
0.040 mg/mL. The negative control was a 0.15 mM DPPH
solution (Shawky and sallam, 2017). The absorbance was
measured using a UV-Visible spectrophotometer (Pharmaspec
UV 1700 SHIMADZU) equipped with a 1 cm quartz cuvette at a
wavelength of 517 nm over a time range of 0–120 min (Kim et al.,
2020). The mixture was incubated in the dark for 30 min at a
controlled room temperature (25 °C ± 1 °C).

The absorbance of the remaining DPPH compounds that did
not react with the test compounds was calculated as the percentage
of free radical scavengers using Equation 1.

% Scavenging activity � Ac − As

Ac
x 100% (1)

Ac is the negative control absorbance, and As is the sample
absorbance (Fahad et al., 2021). The antioxidant activity was
evaluated using the DPPH radical scavenging assay, and the ES50
(Effective Scavenging 50%) value was calculated as the extract
concentration (mg/mL) required to scavenge 50% of DPPH
radicals under the experimental conditions. The ES50 concept is

TABLE 1 Main bioactive of soybean-based food bar.

Mol ID Bioactive OB% DL

MOL008400 Glycitein 50.48 0.24

MOL011691 6″-O-malonylglycitin 30.40 0.81

FIGURE 1
Bioactive-target network of soybean food bars.
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analogous to IC50 but emphasizes scavenging efficiency over
inhibition. All results are expressed as mg/mL for consistency.

3 Results and discussion

3.1 Bioactive compounds of the soybean
food bar

Three hundred and forty-six bioactive compounds were
identified from the soybean using the query “glycine max.”
The main bioactive compounds in soybean-based food bars
are glycitein and 6″-O-malonylglycitin. The use of bioactive
compounds with oral bioavailability (OB) and drug-likeness
(DL) values facilitates the optimization of product
formulations. This parameter is related to absorption and
bioavailability in the gastrointestinal tract (Oliveira et al.,
2022; Wang et al., 2023; Bekele and Admassu Emire, 2023; Yu
et al., 2018). Glycitein and 6″-O-malonylglycitin compounds
have OB and DL criteria that meet the requirements with
values seen in Table 1. The complete list of soybean bioactive
compounds, predicted targets, and enriched pathways is available
in Supplementary Material S1 (Supplementary Tables S1–S4).

3.2 Construction of
soybean–bioactive–target network

The bioactive relationship in the soybean food bar has a bond
with the target, as shown in Figure 1, and information related to the
compound is shown in Table 2. Network Pharmacology analysis
using the STITCH database obtained ties between Glycitein
(MOL008400) and six genes with scores of MMP13 (0.800), JUN
(0.700), MAPK1 (0.700), MAPK3 (0.700), SP1 (0.700), and CDK4
(0.700). One gene was linked to 6″-O-malonylglycitin
(MOL011691), with an SUB1 score (0.428). Genes linked to
bioactives in the STITCH database were associated with oxidative
stress, antioxidants, and obesity, according to analyses using
GeneCards and STRING (Zhang et al., 2022).

3.3 Prediction results of obesity targets and
the construction of the protein-protein
interactions (PPI) network

Targets identified from the query “obesity” were 66 target genes
analyzed using the STRING database. Gene targets related to obesity
are shown in Figure 2A. The core targets that functioned as hub

TABLE 2 Basic information on soybean bioactive food bars.

CAS Compound SMILES

40,957-83-3 Glycitein COC1 = C(C=C2C(=C1)C (=O)C
(=CO2)C3 = CC = C(C=C3)O)O

137,705-39-6 6″-O-malonylglycitin COC1 = C(C=C2C(=C1)C (=O)C (=CO2)C3 =
CC = C(C=C3)O)OC4C(C(C(C(O4)

COC(=O)CC(=O)O)O)O)O

FIGURE 2
(A) Target genes associated with obesity and (B) The PPI network of 66 target genes related to obesity.
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genes were sequenced based on their degree. The degree values of
these genes were as follows: MC4R (Ham and Joung, 2021), CEP290
(Ham and Joung, 2021), BBS1 (Kim, 2022), BBS5 (Kim, 2022), LEPR
(Kim, 2022), BBS4 (Kim, 2022), INS (Kim, 2022), BBS2 (Kim, 2022),
POMC (Kim, 2022), and LEP (Kim, 2022). The PPI network, which
was analyzed using the INPUT database, is shown in Figure 2B.

3.4 Molecular docking

The results of molecular docking analysis showed that the
bioactive glycitein and 6″-O-malonylglycitin had a stronger
affinity than lorcaserin (control), with binding affinity values
of −7.1, −6.7, and −5.2 kcal/mol, respectively. The molecular
docking results are shown in Figure 3. The binding pocket was
defined around the co-crystallized ligand site with grid box
dimensions of 37.2360 × 42.9117 × 46.8780 Å, centered at
coordinates (X:58.8463 Y: 31.2328 Z: 5.8357). As a positive
control, lorcaserin, a clinically approved anti-obesity drug known
to interact with leptin pathways, was redocked into the same pocket
to validate the docking protocol performance. The root-mean-
square deviation (RMSD) between thredockeded and
crystallographic ligands was <2.0 Å, confirming docking reliability.

Network pharmacology and molecular docking analyses
suggested possible interactions of daidzein and genistein with
leptin signaling proteins, providing a hypothesis for their
potential anti-obesity relevance, which requires validation
through cellular and in vivo experiments.

3.5 Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis

The top genes in the GO analysis were analyzed using several
parameters by classifying the top 10 significantly enriched terms and
the top five pathways-gene networks. The highest aspect of the CC
was the basal ciliary body. The highest MF aspect was DNA-binding
transcription factor-binding activity. The highest BP aspect was
cilium organization. The KEGG enrichment pathway related to
obesity targets soybean-based food bars, including the regulation
of lipolysis in adipocytes, AMPK signaling pathway, adipocytokine
signaling pathway, thermogenesis, and non-alcoholic fatty liver
disease. The results of this analysis are shown in Figure 4.

3.6 Antioxidant activity

The free radical test is often used in the 2,2-diphenyl-1-
picrylhydrazyl (DPPH) method because it can provide a profile
of the antioxidant capabilities of the tested compounds, providing
valid, accurate, sensitive, highly reproducible, easy-to-use, and
inexpensive results (Fuso et al., 2023; Lu et al., 2015). DPPH is a
dark-purple artificial free radical compound with an unstable
nitrogen atom. The DPPH method involves the donation of
electron atoms from antioxidant compounds to DPPH
compounds, which neutralizes the free radical properties of
DPPH compounds, as indicated by a decrease in the intensity of

FIGURE 3
Molecular docking interactions of soybean isoflavones with LEP (PDB ID: 1AX8). (A) Glycitein, (B) 6“-O-malonylglycitin, and (C) Lorcaserin (control)
after redocking validation (RMSD < 2.0 Å) showing anti-obesity conformations within the defined pocket.
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the purple color of DPPH (Fuso et al., 2023). Measurement of
antioxidant activity using the DPPHmethod is based on the fact that
the compounds contained in soybeans have more than one OH
group, and the OH group in the flavonoid structure is in the B-ring
position, thereby increasing the accuracy of the test (Platzer et al.,
2021; Liu et al., 2023; Gulcin and Alwasel, 2023).

Ultrasonication with 80% methanol and 70% ethanol prevents
secondary metabolite degradation (changes in the structure and
composition of isoflavones) and produces a high yield. This method
can be used to produce secondary metabolites with diverse biological
and pharmacological properties. Isoflavonoids are extracted from

soybeans using a 70% ethanol-water mixture and an 80% methanol-
water mixture because isoflavonoids are present as aglycones or free
forms and mostly as glycosides (Blicharski and Oniszczuk, 2017;
Gbedo et al., 2025).

The use of 70% ethanol and 80% methanol was due to the
presence of isoflavone compounds in the form of glycosides with
hydroxy groups, which are hydrophilic and mostly soluble in
hydroalcoholic solvents. Therefore, solvents mixed with water
have been used to optimize the extraction process (Kim et al.,
2020; Choi et al., 2020). The aim of using two different types of
solvents was to compare whether there were differences in the levels
of antioxidant activity as scavengers of DPPH free radicals in
different solvents, but both types of semi-polar solvents (Gao
et al., 2021; Abd Elhamid et al., 2022). Methanol and ethanol can
also be used to extract isoflavones. Previous research has found
differences in the yield of isoflavones produced, and the two solvents
have different capabilities depending on temperature, pressure, flow
rate, and sample particle size. This study produced the highest yield
of isoflavones in 70% ethanol, based on ES50 data, compared to
methanol. The mechanism that explains this difference in ability is
the ultrasonication method in the extraction process, which causes
increased mass transfer and disruption of the cells. Soybeans are
more easily dissolved in 70% ethanol solvent (Blicharski and
Oniszczuk, 2017; Fahmi et al., 2014; Mahrous et al., 2025).

The results of the qualitative test of the soybean-based food
product samples with the addition of FeCl3 were positive. The color
is formed as a result of the reaction of polyphenolic compounds,
which have an O2 atom with a lone pair of electrons donated to Fe3+

by an empty orbital to form a polyphenolic Fe3+ complex, which is a
green covalent coordination bond (Shawky and Sallam, 2017;
Wasihun et al., 2023).

The use of a mobile phase (ethyl acetate, methanol, distilled
water, and acetic acid) with polarity variations is optimal for
glycosidic isoflavones contained in soybeans because it produces
perfect separation in the stationary phase (Puri and Panda, 2015;
Patil and Kumar, 2025). The elution results were detected using UV
254 light, and the densitometer is shown in Figure 5. The results of
the analysis showed that the sample spots were not very visible;
however, when detected with a densitometer, there was a sample

TABLE 3 Percentage values of DPPH radical scavengers and ES50 values of the ethanol extract.

No. % Free radical scavenging ethanol extract (mg/mL) Linear regression equations ES50 (mg/mL)

0.25 0.50 0.75 1.00 1.25 1.50 1.75

1 21.14 28.66 35.54 43.97 50.32 54.86 59.53 y = 26.05x + 15.95 1.31

2 21.27 28.66 35.67 44.62 49.94 55.64 59.92 y = 26.31x + 15.93 1.29

3 21.79 27.63 35.93 44.63 50.45 55.12 60.83 y = 26.66x + 15.68 1.29

4 22.18 28.15 36.19 44.23 49.68 55.77 59.66 y = 25.88x + 16.38 1.30

5 21.79 27.89 36.32 44.10 50.45 55.12 60.44 y = 26.36x + 15.94 1.29

Average 1.30

SD 0.07

CV 0.77%

Percent value of inhibition Weak

FIGURE 4
GO and KEGG enrichment analysis.
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analyte in an area parallel to the genistein standard, such that the
AUC value of the analyte was so small that it was not visible under
UV light 254. This result was attributed to the minimal number of
genistein compounds present in the samples. The Rf value of
genistein was 0.81, whereas those of the ethanol and methanol
extracts were 0.82. The presence of sample analytes in areas parallel
to the genistein standard indicated that the ethanol and methanol
extracts of food bar products from soybeans contained genistein.

Antioxidant activity tests were performed at several stages
using the DPPH assay. The initial testing stage determined the
operating time (OT) for optimal and stable absorbance
measurements. The reaction between DPPH and ethanol and
methanol extracts of food bar products made from soybeans
and genistein was optimal. OT was determined at a wavelength
of 517 nm within the time range of 0–120 min (Kim et al., 2020).
The results of determining the operating time showed that the
genistein absorbance was stable at 30–36 min, ethanol extract of
food bar products made from soybean at 31–35 min, and methanol
extract of food bar products made from soybean at 34–40 min after
the addition of DPPH.

The second stage involved measuring the maximum wavelength
to determine the wavelength at which the maximum absorbance
occurred. The maximum wavelength measurement used a negative
control solution of DPPH, because the principle of the DPPH
method is to measure the absorbance of the remaining DPPH
solution, which does not react with antioxidant compounds from
genistein, ethanol extract, or methanol extract of food bar products
made from soybeans. Maximum wavelength measurements were
performed in the 400–600 nm range. The measurement results
showed that the maximum absorbance wavelength of the
0.15 mM DPPH negative control with genistein and ethanol
extracts of food bar products made from soybean was 516 nm,
and the maximum wavelength of the methanol extract was

515.60 nm. The wavelength obtained was based on the maximum
DPPH wavelength theory, which ranges from to 515–520 nm (Kim
et al., 2020).

The maximum absorbance wavelengths of the ethanol and
methanol extracts of food bar products made from soybean and
genistein without adding 0.15 mM DPPH solution were also
measured to ensure that the absorbance measured was the
correct absorbance for DPPH compounds. The ethanol and
methanol extracts of food bar products made from soybeans and
genistein showed maximum absorbance at 262 nm in band I and
343 nm in band II. The maximum wavelength was different from
that of DPPH. This indicates that the measured absorbance is the
actual absorbance of the residual DPPH, which does not react with
the ethanol and methanol extracts of food bar products made from
soybeans or genistein. The theory also reinforces this that the
maximum absorption of band I isoflavones is in the wavelength
range of 245–275 nm, and band II is in the range of 310–330 nm
(Kim et al., 2020; Choi et al., 2020; Avior et al., 2013).

Measurement of antioxidant ability using parameters and
percentage of free radical scavengers and ES50. The percentage of
free radical scavengers was calculated by reducing the absorbance of
the negative control to that of the test compound or genistein, which
reacted with 0.15 mM DPPH. The ES50 value describes the
concentration of the test compound that exhibits 50 free radical
scavenging activity. The ES50 value was obtained from the results of
the linear regression of the concentration of the test compound with
the percentage of free radical scavengers to obtain a linear regression
equation, which was then used to enter the value of 50 in the
y-parameter to obtain the concentration value (x) as the ES50 value
of the test compound and genistein. The free radical scavenging
percentages of DPPH and ES50 for the test compounds and genistein
are shown in Tables 3–5, respectively.

The data in Tables 3–5 show that the higher the concentration of
the test compound, the greater the percentage of free radical
scavengers, because of the better capture of DPPH free radicals
by the test compound and genistein. The average ES50 values of
genistein, ethanol extract, and methanol extract of food bar products
made from soybeans were 0.13, 1.30, and 2.00 mg/mL, respectively.
This value indicates the free radical scavenging activity in the order
from largest to smallest, namely, genistein, ethanol extract, and
methanol extract, in soy-based food bar products. However,
genistein has a moderate antioxidant potential based on its
antioxidant strength. Ethanol and methanol extracts of food bar
products made from soybeans have very weak potency. These data
indicate that the extract had a measurable but relatively weaker
scavenging capacity than genistein. Because the extract represents a
complex mixture and the values were not normalized to the total
phenolic content or active compound concentration, the
comparison in this study was interpreted qualitatively rather than
quantitatively.

The results of the analysis of the antioxidant activity of soybean-
based food bar products as diet companion foods to help overcome
obesity can be considered weak because they contain low levels of
isoflavones. The genistein positive control antioxidant activity test
results showed an ES50 value of 0.13 mg/mL, which means that it has
moderate potential as an antioxidant. There is a direct relationship
between antioxidant activity and the mechanism by which obesity is
overcome. The stronger the antioxidant potential of a compound,

FIGURE 5
TLC results of qualitative analysis of isoflavones at UV 254 nm (A)
and densitometric scan results (B). (1) genistein standard, (2) soybean
food bar ethanol extract, and (3) soybean food bar methanol extract..
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the greater its potential to overcome obesity. This is based on an
antioxidant mechanism that neutralizes free radicals resulting from
lipid metabolism in the form of lipolysis in patients with obesity. The
stronger the antioxidant activity, the greater the number of free
radicals that can be neutralized (Kim et al., 2020; Khutami et al.,
2022; Lee et al., 2022; Nakai et al., 2020). The very low DPPH
scavenging activity observed suggests that the antioxidant
contribution of the soybean extract is measurable but limited in
this study. Such activity may contribute indirectly to metabolic
regulation and should be confirmed using complementary assays.

4 Conclusion

The network pharmacology-based soybean food bar contains
the main ingredients glycitein and 6″-O-malonylglycitin, which are
related to anti-obesity genes. Bioactive glycitein and 6″-O-
malonylglycitin have a stronger affinity than lorcaserin for
binding to the LEP protein. Soybean-based food bar products
have weak antioxidant potential for scavenging DPPH free

radicals. These results showed a significant difference in the ES50
values between the two extracts and between each extract and
genistein. The current findings suggest that soybean-based food
bars may interact with leptin-related signaling pathways, indicating
their potential relevance in obesity regulation. Molecular docking
and network pharmacology analyses indicated that daidzein and
genistein may be associated with leptin signaling and energy
metabolism, supporting their predicted biological relevance.
These findings are hypothesis-generating and provide a predictive
framework for future cellular and in vivo investigations of the anti-
obesity potential of soybean isoflavones as functional food
ingredients.

5 Limitations and future perspectives

The present study provides predictive insights into the
antioxidant and anti-obesity effects of soybean food bars using
an integrated network pharmacology and molecular docking
approach. However, the current findings are limited by the lack

TABLE 4 Percentage values of DPPH radical scavengers and ES50 values of the methanol extract.

No. % Free radical scavenging methanol extract (mg/mL) Linear regression equations ES50 (mg/mL)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

1 19.95 25.81 47.63 56.36 62.59 66.71 71.70 y = 18.00x + 14.10 1.99

2 19.58 27.68 47.51 54.11 62.72 67.71 70.82 y = 17.78x + 14.44 2.00

3 21.32 25.69 47.01 54.11 63.47 65.96 71.45 y = 17.67x + 14.51 2.00

4 19.45 26.06 47.13 55.99 62.97 66.96 71.45 y = 18.11x + 13.76 2.00

5 16.21 26.56 47.13 55.74 62.72 67.96 71.45 y = 18.86x + 11.95 2.01

Average 2.00

SD 0.007

CV 0.35%

Percent value of inhibition Weak

TABLE 5 Percent value of DPPH radical scavengers and ES50 values of genistein.

No. % Free radical scavenging genistein (μg/mL) Linear regression equations ES50 (mg/mL)

40 60 80 100 120 140 160

1 14.22 21.34 30.30 38.41 46.80 53.34 61.31 y = 0.396x – 1.641 0.13041

2 14.37 21.48 30.01 38.69 47.23 53.49 61.45 y = 0.397x – 1.625 0.13004

3 14.08 21.62 29.87 38.55 47.08 53.49 61.59 y = 0.399x – 1.867 0.12999

4 14.22 21.62 30.30 38.41 47.08 53.34 61.17 y = 0.394x – 1.456 0.13060

5 14.51 21.76 30.16 38.26 46.94 53.63 61.31 y = 0.394x – 1.368 0.13038

Average 0.13028

SD 0.00026

CV 0.2%

Percent value of inhibition Moderate
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of normalization to the total phenolic content or quantified active
compound concentrations within the extract. Future analytical work
should determine the total phenolic content (expressed as mg gallic
acid equivalent per gram of extract) and quantify the major
isoflavones, such as genistein and daidzein, using validated
chromatographic techniques. Such normalization will enable a
more accurate comparison of antioxidant and biological potency
between crude extracts and reference compounds.

Furthermore, as the current predictions are based only on in
silico and in vitro chemical assays, these results remain hypothesis-
generating. To substantiate the predicted bioactivities, subsequent
studies should include cellular-level evaluations and in vivo
investigations focusing on leptin-related pathways, adipogenesis
regulation, and oxidative stress modulation. Future studies will
provide essential mechanistic validation of the anti-obesity
potential of soybean isoflavones as functional food bioactives.
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