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Autosomal dominant polycystic kidney disease (ADPKD), the most common

monogenic hereditary kidney disease, is the fourth leading cause of end-stage

kidney disease worldwide. In recent years, significant progress has been made in

delaying ADPKD progression with different kinds of chemical drugs, such as

tolvaptan, rapamycin, and somatostatin. Meanwhile, numerous plant-derived

compounds have been investigated for their beneficial effects on slowing

ADPKD progression. Among them, saikosaponin-d, Ganoderma triterpenes,

curcumin, ginkgolide B, steviol, resveratrol, Sparganum stoloniferum Buch.-Ham,

Cordyceps sinensis, triptolide, quercitrin, naringin, cardamonin, gambogic acid,

and olive leaf extract have been found to retard renal cyst development by

inhibiting cell proliferation or promoting cell apoptosis in renal cyst-lining

epithelial cells. Metformin, a synthesized compound derived from French lilac or

goat’s rue (Galega officinalis), has been proven to retard the progression of ADPKD.

This review focuses on the roles and mechanisms of plant-derived compounds in

treating ADPKD, which may constitute promising new therapeutics in the future.
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1 Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common

monogenic hereditary kidney disease and the fourth leading cause of end-stage kidney

disease (ESKD) (1). It affects approximately 6 million people worldwide, and approximately

50% of patients develop ESKD after 60 years of age (2). ADPKD often occurs in adults and is

characterized by the development of cysts in both kidneys and an increase in total kidney

volume (TKV), leading to the destruction of kidney tissue and the eventual development of

renal failure, and sufferers can only be sustained by dialysis or kidney transplantation (3).

Furthermore, ADPKD is a systemic disease that can cause liver cysts, pancreatic cysts, and

intracranial aneurysms in addition to kidney disease, posing a severe risk to human life and

health (4). Therefore, it is of great clinical significance to discover new drugs to delay the

development of ADPKD.
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The pathogenesis of ADPKD involves complex pathophysiological

changes; mutations of the PKD1 gene encoding polycystic protein 1

(PC1) and the PKD2 gene encoding polycystic protein 2 (PC2) are the

leading causes of ADPKD (5). In addition, ciliary dysfunction, non-

antagonistic proliferation of renal tubular cells, impaired polarity of

polarized and planar cells, disorder of intracellular Ca2+ levels, and

abnormalities of cyclic adenosine monophosphate (cAMP), the

mammalian target of rapamycin (mTOR), and other signaling

pathways contribute to the formation and enlargement of renal cysts

(6). Therefore, many drugs for treating ADPKD are primarily studied

by interfering with these genetic and molecular mechanisms

responsible for cystic formation.

In recent years, significant progress has been made in delaying

ADPKD progression with different drugs, such as tolvaptan,

rapamycin, and somatostatin. As the first drug approved by FDA

for the treatment of ADPKD, tolvaptan can slow the growth of TKV

and estimated glomerular filtration rate (eGFR) loss, but its hydration

and potential liver injury indicate the need for further therapeutic

interventions (7). In addition, rapamycin, an mTOR inhibitor, and its

analogs did not show satisfactory therapeutic effects in clinical studies

(8, 9).

Plant-derived compounds are natural organic components, some

of which are considered beneficial to health, and most are easily

absorbed and metabolized in the body (10). The development of

modern science and technology has broadened people ’s
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understanding of phytochemical components. Thousands of plant-

derived compounds have been used to treat various diseases, such as

cancer, metabolic diseases, and neurodegeneration (11). Meanwhile,

numerous plant-derived compounds have also been explored for their

beneficial effects on ADPKD progression. Studies have found that

several plant-derived compounds, such as saikosaponin-d,

Ganoderma triterpenes, curcumin, ginkgolide B, steviol, resveratrol,

Sparganum stoloniferum Buch.-Ham, Cordyceps sinensis, triptolide,

quercitrin, naringin, cardamonin, gambogic acid, and olive leaf

extract, may delay the development of cysts and improve renal

function in ADPKD. Moreover, metformin, a synthesized

compound derived from the French lilac or goat’s rue (Galega

officinalis), has been proven to retard the progression of chronic

kidney disease in ADPKD. This review focuses on the mechanisms

(Figure 1) of these plant-derived compounds in treating ADPKD,

which may constitute promising new therapeutics in the future.
2 The effect of plant-derived
compounds in ADPKD models

2.1 Saikosaponin-d

Saikosaponin-d (SSd) is a significant triterpenoid saponin derived

from Bupleurum falcatum L. It has immunomodulatory, anti-
FIGURE 1

Schematic map of the pathogenesis of ADPKD and the therapeutic targets of plant extracts or plant-derived compounds. The functional site of PC1 and
PC2 associated with polycystic kidney disease is on the cilia. The decrease or loss of PC1 or PC2 caused by PKD1 and PKD2 mutations may lead to a
decrease in intracellular calcium concentration or an increase in intracellular cAMP. The increase of cAMP will activate PKA, which will activate the
mTOR, Ras, and other signaling pathways, and promote cell proliferation. Activated PKA can also promote Cl- to enter the cyst cavity through CFTR, thus
promoting the secretion of cyst fluid. In addition, EGFR can promote cell proliferation by activating Ras. Additionally, calcium ions can induce autophagy
by activating CaMKK b-AMPK-mTOR. The red boxes contain the candidate plant extracts or plant-derived compounds. PC1, polycystin-1; PC2,
polycystin-2; AC6, adenylyl cyclase six; V2R, vasopressin type 2 receptor; SSTR, somatostatin receptor; cAMP, cyclic adenosine monophosphate; PKA,
protein kinase A; CFTR, cystic fibrosis transmembrane conductance regulator; EGFR, epidermal growth factor receptor; MEK, mitogen-activated protein
kinase; ERK, extracellular-signal-regulated kinase; mTOR, the mammalian target of rapamycin; SERCA, sarcoplasmic/endoplasmic reticulum Ca2+

ATPase; CaMKKb, Ca2+/CaM-dependent protein kinase b; AMPK, AMP-activated protein kinase; TGF-b, transforming growth factor-b; SSd, saikosaponin-
d; GT, Ganoderma triterpenes; SBH, Sparganum stoloniferum Buch.-Ham.
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inflammatory, antiviral, anti-proliferation, and anti-cancer effects in

vivo and in vitro (12–15). Many studies have found that SSd has an

anti-tumorigenic effect, while ADPKD is considered a tumor-like

disease. There are similarities between ADPKD and tumors in

pathophysiology (16). This shows the application potential of SSd

in the treatment of ADPKD. In ADPKD, PC1 deficiency may activate

the function of sarcoplasmic/endoplasmic reticulum calcium ATPase

(SERCA) and inhibit flux across the endoplasmic reticulum

membrane (17). Research shows that, as a SERCA inhibitor, SSd

induces autophagy via the direct inhibition of SERCA, which in turn

upregulates intracellular calcium levels. In 2018, we reported for the

first time the role of SSd in ADPKD (18). SSd directly inhibits SERCA

to upregulate Ca2+ levels, thereby activating the CaMKKb-AMPK-

mTOR signaling pathway, which subsequently induces autophagy in

ADPKD cells (18) (Table 1). However, this study was limited to the

cellular level, and more studies are needed further to investigate the

therapeutic effect of SSd in ADPKD.
2.2 Ganoderma triterpenes

Ganoderma triterpenes (GTs) are a family of lanostane triterpenes

isolated from Ganoderma lucidum, which is used in Chinese

traditional medicine. As primary secondary metabolites of G.

lucidum , GTs undertake anti-cancer, anti-inflammatory,

antioxidative, and hepatoprotective therapeutic activities, among

others (39). They have been shown to inhibit cell proliferation and

invasion, induce cell apoptosis, and regulate immune response (40).

The effect of GTs on regulating multiple signaling pathways shared by

ADPKD implies their possible role in modulating cyst development.

In 2017, Su et al. (19) confirmed that GTs significantly downregulate

the RAS/MAPK signaling pathway and inhibit renal cysts in the

embryonic renal cyst model and rapidly progressive ADPKD mouse

model. Further studies have shown that GT monomer CBLZ-7 (ethyl

ganoderate C2) can downregulate the RAS/MAPK signaling pathway

in forskolin-stimulated Madin–Darby canine kidney (MDCK) cells in

a dose-dependent manner and inhibit the expansion of cysts (19).

Hence, GTs have great potential to be developed as a novel

therapeutic agent for treating PKD.
2.3 Curcumin

Curcumin is a yellow- or orange-pigmented substance obtained

from the root of the turmeric plant (41). In 1937, scientific research

on curcumin in the treatment of diseases was first published, and a

study investigating the antibacterial activity of curcumin, published in

1949, achieved exciting results (42). More recently, it has been found

that curcumin has anti-inflammatatory (43), immune regulation (44),

renoprotective (45), hepatoprotective (46), and hypoglycemic (46)

effects. Owing to its easy availability, low cost, and low toxicity, it is

expected to be an ideal drug. Gao et al. (2011) (20) explored the

mechanism of curcumin in an in vitro renal cyst model. The results

showed that curcumin significantly inhibits the formation and

enlargement of the MDCK cell cystic model and fetal renal cyst and

reduced the expression of signal proteins RAS, B-RAF, p-MEK, p-

ERK, c-fos, and Egr-1 in forskolin-treated MDCK cells, while
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increasing the expression of Raf-1 and NAB2 (20). These data

suggest that curcumin may inhibit the development of renal cysts

by regulating the Ras/MAPK signaling pathway and has the potential

to be developed as a candidate drug for the treatment of PKD. In

addition, curcumin has the disadvantage of low bioavailability and

can interfere with other drugs.
2.4 Ginkgolide B

Ginkgolide B is a major bioactive component of Ginkgo biloba

and undertakes anti-inflammatory (47), anti-allergy, antioxidative,

anti-cancer, and neuroprotective (48–50) activities, among others.

The increase of intracellular cAMP mainly stimulates the

proliferation of renal cystic epithelial cells by activating the MAPK/

ERK signaling pathway, which may be related to the regulation of B-

Raf and Raf-1 (51, 52). Zhou et al. (21) used an in vitro MDCK cyst

model, an embryonic kidney cyst model, and an in vivo PKD mouse

model to study the effect of ginkgolide B on cysts. The results showed

that ginkgolide B does not induce cytotoxicity and apoptosis in

MDCK cells but significantly inhibits the formation and growth of

renal cysts (21). Ginkgolide B could downregulate the level of B-Raf in

forskolin-treated MDCK cells, but upregulate the level of Raf-1. The

opposite regulation of B-Raf and Raf-1 may be the key mechanism

that allows ginkgolide B to inhibit cysts (21). Therefore, the RAS/

MAPK signaling pathway may be involved in the inhibitory effect of

ginkgolide B on the abnormal proliferation of cystic cells.
2.5 Steviol

Stevioside, extracted from Stevia rebuadiana, is widely used as a

non-calorie sweetener in food (53). Pharmacokinetic studies have

shown that stevioside is first transformed into steviol, the primary

metabolite, by intestinal flora, then absorbed by the intestinal tract

and distributed to several organs, such as the intestine, liver, and

kidneys through blood (54–56). It has been found that the interaction

between steviol and renal organic anion transporter helps improve the

therapeutic effect of drugs (57, 58). In addition, steviol and its

derivative (dihydroisosteviol) inhibit cAMP-activated chlorine

secretion by targeting CFTR in human colonic epithelial cell lines

(59). The dilatation of the cyst cavity of ADPKD is related to the

proliferation of cyst wall epithelial cells and the secretion of fluid.

Fluid secretion depends on the chloride channel of the CFTR (60) and

the water channels of the parietal membranes of the cyst wall

epithelial cells (61). Chloride enters the cystic cavity through CFTR

activated by cAMP, accumulates in the cyst cavity, and sucks sodium

and water into the cyst cavity through the paracellular pathway,

causing the cyst to enlarge (60). Yuajit et al. (2013) (22) studied the

inhibitory effect of steviol and its derivatives on the cystic growth of

MDCK cells and its mechanism. The results showed that steviol has

the most substantial inhibitory effect on the growth of MDCK cysts,

which was achieved by inhibiting the activity of the CFTR chloride

channel and reducing the expression of CFTR (22). Further study in

the PKD1 mouse model showed that steviol at 200mg/kg body weight

for 14 days could significantly reduce kidney weight and the cystic

index and improve renal function in mice. This effect is achieved in
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part by activating AMPK, inhibiting the expression of the CFTR

chloride channel, and inhibiting the proliferation of renal epithelial

cel ls through the mTOR/S6K pathway (23). Moreover,

overexpression of aquaporin 2 (AQP2) was shown to be involved in

fluid secretion, leading to cyst enlargement in ADPKD. A study in

2018 found that steviol not only affected the activity of CFTR but

inhibited the expression of AQP2 at the transcriptional level and

promoted the degradation of AQP2 mediated by proteasomes and

lysosomes, resulting in a decrease in water transport to the cyst cavity,
Frontiers in Nephrology 04
thus delaying the growth of cysts (24). Therefore, steviol may be a

potential botanical candidate for treating PKD.
2.6 Resveratrol

Resveratrol is a natural polyphenol and occurs abundantly in red

grapes, berries, peanuts, and legumes (62). Studies have shown that

resveratrol has therapeutic effects on various diseases, such as aging,
TABLE 1 Summary of the function and mechanism of plant-derived compounds in ADPKD.

Compounds/
herbal medicines

Source of compound Related signaling
pathways

Effects in ADPKD First
author

Year Country

Saikosaponin-d Bupleurum falcatum L. CaMKKb/AMPK/mTOR Activation of
autophagy

Shi et al. (18) 2018 China

Ganoderma triterpenes Ganoderma lucidum RAS/MAPK Inhibition of cell
proliferation

Su et al. (19) 2017 China

Curcumin The root of the turmeric plant RAS/B-RAF/MEK//ERK Inhibition of cell
proliferation;
promotion of cell
differentiation

Gao et al. (20) 2010 China

Ginkgolide B Ginkgo biloba Ras/MAPK Inhibition of cell
proliferation

Zhou et al.
(21)

2012 China

Steviol Stevia rebuadiana CFTR; APQ2 Inhibition of cell
proliferation;
restraint of cyst fluid
secretion

Yuajit et al.
(22, 23);
Noitem et al.
(24);

2013;
2014;
2018

Thailand

Resveratrol Grapes, peanuts, berries, and their
derivatives

NF-kB Inhibition of
inflammation

Wu et al. (25) 2016 China

Sparganum stoloniferum
Buch.-Ham

NA EGFR Inhibition of cell
proliferation

Xu et al. (26);
Li et al. (27)

2002;
2006

China

FTY720 Cordyceps Sinensis NF-kB Inhibition of
inflammation

Li et al. (28) 2019 China

Quercitrin Vegetables and fruits AKT/ERK Inhibition of cell
proliferation

Zhu et al. (29) 2017 China

Naringin Flavanone naringenin and the
disaccharide neohesperidose

PC2 Inhibition of cell
proliferation

Waheed et al.
(30)

2014 UK

Cardamonin Garcinia hanburyi MAPK/Wnt/mTOR;
TGF-b/Smad2/3

Inhibition of cell
proliferation;
inhibition of fibrosis

He et al. (31) 2020 China

Gambogic acid Garcinia hanburyi ERK/mTOR/S6K; AMPK Inhibition of cell
proliferation

Khunpatee
et al. (32)

2022 Thailand

Olive leaf extract Olive leaf PKA/AKT/ERK/cAMP Inhibition of cell
proliferation

Toteda et al.
(33).

2018 Italy

Metformin Galega officinalis AMPK;PC2 Inhibition of cell
proliferation

Takiar et al.
(34);
Chang et al.
(35);
Lian et al.
(36);
Perrone et al.
(37)

2011;
2017;
2019;
2021

United States of
America;
China;
China;
United States of
America

Triptolide Tripterygium wilfordii Hook f PC2; caspase-3 Induction of cell
apoptosis;
regulation of the cell
cycle

Leuenroth
et al. (38);

2007;
2008

United States of
America
NA, not available; EGFR, epidermal growth factor receptor; MEK, mitogen-activated protein kinase; ERK, extracellular-signal-regulated kinase; AMPK, AMP-activated protein kinase; MAPK,
mitogen-activated protein kinase; CFTR, cystic fibrosis transmembrane conductance regulator; mTOR, the mammalian target of rapamycin; PC2, polycystin-2; AKT, protein kinase B; TGF-b,
transforming growth factor-b; NF-kB, nuclear factor-k-gene binding; CaMKKb, Ca2+/CaM-dependent protein kinase b.
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hypertension, cancer, and kidney diseases (62, 63). It has been found

that resveratrol exerts its anti-inflammatory, antioxidative, and anti-

proliferative effects by acting on different intracellular targets (63).

Inflammation plays an essential role in the pathogenesis of ADPKD

(64). Inflammatory factors have been found in the urine and renal

cyst fluid of ADPKD patients (64). In addition, inflammatory cells,

such as macrophages, accumulate in cystic kidneys and have been

shown to promote the growth of renal cysts (64, 65). We reported the

role of resveratrol in ADPKD in 2016 (25). In this study, we

demonstrated that the anti-inflammatory substance resveratrol

reduced the production of monocyte chemotactic protein-1,

complement factor B, and tumor necrosis factor-a (TNF-a) and

reduced macrophage infiltration in cystic kidneys, delaying the

progression of PKD by reducing inflammation in cystic kidneys

(25). Notably, resveratrol is also an activator of the SIRT pathway

(66), which may have deleterious effects on PKD. However, Zhou

et al. (67) found that activation of SIRT1 led to the proliferation of

renal epithelial cells through deacetylation and phosphorylation of the

retinoblastoma (Rb) protein and dysregulation of cell death through

deacetylation of the P53 protein, leading to continued epithelial cell

growth and cystic lesion formation. Thus, excessive amounts of

resveratrol may cause excessive activation of the SIRT pathway,

which promotes vesicle formation and expansion. Further studies

are needed to address these critical issues and identify resveratrol’s

safe and effective dosage.
2.7 Sparganum stoloniferum Buch.-Ham

Sparganum stoloniferum Buch.-Ham (SBH), also known as Coptis

Chinensis, is a commonly used traditional Chinese medicine that is

widely used to improve blood circulation and reduce vascular

obstruction (27). In a study, we found that SBH could prevent cells

at the G0/G1 phase from reaching the G2/M phase, and inhibited the

phosphorylation of EGFR, thus inhibiting the proliferation of

ADPKD cystic epithelial cells (26). The PKDL gene encodes

polycystic protein-L (PCL), which has 50% homology with PC2

(68). PC2 and PCL are non-selective cation channels for the

permeability of potassium, sodium, and calcium, which are closely

related to the occurrence of renal cysts (69). Li et al. (27) expressed

human PCL in Xenopus oocytes and examined the effects of SBH on

PCL channel function, using the 2-electrode voltage-clamp technique

and radiolabeled 45Ca uptake measurements. The results showed that

SBH contained one or more components that inhibited PCL channels,

which might be useful for diseases related to abnormal PCL function

(27). However, whether SBH also inhibits PC2 channels remains to

be determined.
2.8 Cordyceps sinensis

Cordyceps Sinensis (CS) is a unique leafy fungus growing on

caterpillars and is regarded as a beneficial herbal medicine in

traditional Chinese medicine and is used to treat many diseases,

including those that affect the respiratory system, liver, cardiovascular

system, as well as hyperlipidemia (70). CS has renal protective effects

(71) and has been used to treat several renal diseases, including
Frontiers in Nephrology 05
chronic renal failure, renal transplantation, and acute renal injury

(72–74). FTY720 (Fingolimod) is a novel immunomodulatory

compound derived from CS and is an effective inhibitor of

sphingosine-1-phosphate receptor (S1PR) (75). S1P has been

approved by the FDA for the treatment of multiple sclerosis. S1P is

an inflammatory regulator that activates the signal transducer and

activator of the transcription 3 (STAT3) pathway or directly activates

the NF-kB pathway through S1PR1 (76). We found that FTY720 can

inhibit the expression of pro-inflammatory cytokines, such as IL-6

and tumor necrosis factor-a(TNF-a), block the activation of

inflammatory pathways, such as STAT and NF-kB, and thus inhibit

the growth of renal cysts in PKD rats (28).
2.9 Quercitrin

Quercitrin is a kind of plant polyphenol widely found in many

kinds of vegetables and fruits (77). It has many pharmacological

effects, such as those that are anti-inflammatory, anti-tumorigenic,

anti-oxidative, neuroprotective, and anti-aging (78–80). Studies have

shown that quercitrin significantly inhibits the growth and

proliferation of tumor cells through MAPK/ERK and AKT/mTOR

(81, 82), which corresponds to the pathophysiology of ADPKD. Zhu

et al. (29) used an MDCK cystic model and a PKD mouse model to

study the effect of quercitrin on renal cysts. The results showed that

quercitrin significantly inhibits the formation and development of

vesicles both in vivo and in vitro in a dose-dependent manner (29).

Quercitrin significantly decreases the levels of AKT and ERK in the

kidney cells of PKD mice. In addition, E-cadherin is a kind of cell

membrane protein that is involved in the maintenance of intercellular

adhesion and plane polarity (83, 84) and can be regulated through the

regulation of the ERK and AKT signal pathways (85). Zhu et al.

showed that the expression of E-cadherin is reduced in PKDmice and

is located in proximal tubules (29). Quercitrin reversed E-cadherin

expression in proximal tubules of PKD mice on P10. Meanwhile,

quercitrin can decrease p-ERK and p-AKT expression, thus inhibiting

cystic development (29). Therefore, quercitrin has great development

potential as a candidate drug for treating ADPKD.
2.10 Naringin

Naringin is a flavanone compound found in citrus fruits and has

anti-inflammatory, antioxidative, and cholesterol-lowering effects (86).

In addition, naringin can promote cell cycle arrest and p53-dependent

apoptosis to inhibit the growth of tumor cells (87). Waheed et al. (30)

studied the effect of naringin on the growth of cysts in PC2 knockout

MDCK cells. The results showed that naringin can significantly reduce

the viability and inhibit the growth of MDCK cells in a PC2-dependent

manner (30). As PC2 participates in intracellular calcium signal

transduction, thus affecting the secretion of Cl-, the effect of naringin

on Cl- was investigated (30). However, naringin did not reduce the

short-circuit current compared with the positive control group (e.g.,

genistein and apigenin), which inhibited the entry of chloride ions

through the basement membrane (30). This suggests that naringin

exerts its anti-proliferative effect by activating PC2, but the downstream

mechanism does not include liquid secretion (30).
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2.11 Cardamonin

Cardamonin is a chalcone compound isolated from Alpinia

katsumadai and which has significant anti-inflammatory, anti-

proliferative, and immunomodulatory effects (88). Many studies

have shown that cardamonin has an obvious curative effect on

many diseases, such as arthritis (89), colitis (90), and cancer (91). It

has been found that the occurrence of ADPKD is related to the

changes in the composition of the extracellular matrix and the

thickness of the basement membrane. The excessive production of

collagen leads to the deposition of fibroblasts and collagen fibers (92).

He et al. (31) studied the role of cardamonin in the treatment of a cyst

enlargement MDCK cyst model, an embryonic kidney cyst model,

and an orthologous mouse model of ADPKD. The results showed that

cardamonin delayed cystic growth and alleviated renal fibrosis by

downregulating the MAPK, Wnt, mTOR, and TGF-b signaling

pathways (31).
2.12 Gambogic acid

Gambogic acid (GA) is a compound isolated from the brownish

orange gamboge resin of the Garcinia hanburyi tree (93) and

undertakes anti-proliferative, anti-apoptotic, anti-tumorigenic, anti-

angiogenic, and anti-inflammatory activities, among others (93–98).

GA has been shown to inhibit the proliferation of melanoma (95),

esophageal squamous carcinoma (99), and glioma cells (100).

Khunpatee et al. (32) studied the effect of GA on ADPKD in

MDCK and PKD1 mutant cells. The results showed that GA

inhibits the enlargement of cysts by inhibiting the phosphorylation

of the ERK1/2 and mTOR/S6K signaling pathways (32). In addition,

GA can significantly improve the phosphorylation activity of

AMPK (32).
2.13 Olive leaf extract

Extra virgin olive oil contains a lot of polyphenols, which can

lower blood pressure, increase blood flow in coronary arteries, and

slow down heart rate (101, 102). Olive leaf extract (OLE) is often used

to prevent and treat high blood pressure or as a diuretic or

preservative (103). Recent studies have found that OLE can treat a

variety of cancers (104–107). Toteda et al. (33) investigated whether

OLE can inhibit the cystic growth of ADPKD in vitro. The results

showed that OLE could reduce the level of PKA, p-ERK, and cAMP

and upregulate the level of p-AKT, thus reducing the growth of cystic

cells in vitro (33).
3 The effect and safety of plant-derived
compounds in ADPKD patients

3.1 Metformin

Metformin is a synthesized compound derived from goat’s rue

(Galega officinalis). As an AMPK activator, metformin has been
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widely used for treating type 2 diabetes and polycystic ovary

syndrome for decades (108). During the development of PKD,

AMPK activity decreases. Several studies have shown that AMPK is

a potential target for treating ADPKD (34). In preclinical studies,

metformin can inhibit renal cysts in ADPKD mice, miniature pig

models, and in vitro experiments. Therapeutic AMPK activation can

reduce the severity of cystic kidney disease in Pkd-/- animal models by

improving mitochondrial biogenesis and reducing tissue

inflammation (109). Recent preclinical studies have shown that it

may play a role in delaying the development of renal cysts in patients

with ADPKD (110). The therapeutic effect of metformin on ADPKD

was first proposed by Takiar et al. (34). They found that large doses

(300 mg/kg body weight) of metformin can stimulate AMPK,

resulting in the inhibition of CFTR and mTOR, thereby inhibiting

the secretion and proliferation of Pkd-/- mouse epithelial cells (34).

Another study showed that metformin inhibits the formation of renal

cysts in Pkd2 morphant zebrafish by activating the AMPK pathway

and reducing cell proliferation and autophagy (35). Similarly, in a

miniature Pkd-/- pig model, oral metformin can inhibit renal cyst

growth and improve renal function (36). However, no beneficial effect

of metformin was observed in another Pkd-/- mouse model (111). The

reason for this may be that this study injected tamoxifen later causing

the disease to progress slowly compared with the study by Takiar et al.

Another difference between the two studies may be the method of

drug administration. Takiar et al. administered the drug by injection

(34), while Leonhard et al. (111) administered it orally. The oral

bioavailability of metformin was only 40–60%. This suggests that the

animal models and administration methods used in the study will

affect metformin’s effectiveness. Furthermore, the tolerance, safety,

and preliminary efficacy of metformin in adult patients with ADPKD

were evaluated in a phase 2 double-blind placebo-controlled

randomized controlled trial (37). In this study, 97 ADPKD patients

between the ages of 18 and 60 were randomly assigned to receive a 1:1

administration of metformin and placebo. The results showed that

metformin slightly reduces the decrease of GFR in patients with

ADPKD, but the effect was not significant (37). Encouragingly,

metformin showed good safety and tolerance in this study (37).

Hence, the evaluation of efficacy requires a larger trial with

sufficient power to detect differences in endpoints. Interestingly, the

phase 3 clinical trial (IMPEDE-PKD) of metformin therapy to

alleviate renal function decline in ADPKD is expected to be

completed in 2026. By then, we should have a clear answer as to

whether metformin will be effective in the management of ADPKD.
3.2 Triptolide

Triptolide is a compound derived from the Chinese herbal

medicine Tripterygium wilfordii Hook f (TWHf) and exhibits anti-

proliferative, immunosuppressive, and anti-inflammatory effects in

many diseases (112). Root extracts of TWHf have been used to treat

nephrotic syndrome, cancer, lupus, Behçet’s disease, and other

diseases throughout history (113, 114). Since triptolide was

extracted and isolated from TWHf in 1972, its mechanism of action

and clinical efficacy have been extensively investigated, and its

inhibitory effect on renal cysts has also become a research hotspot.

Several studies have shown the inhibitory effect of triptolide on renal
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cysts in several premature Pkd1 animal models at embryogenic,

neonatal, or neonatal to adult transition stages (38, 115, 116).

Research shows that triptolide can regulate the release of Ca2+

through a PC2-dependent mechanism to arrest cyst proliferation

(116). In 2018, we reported the effect of triptolide in an adult PKD rat

model. Triptolide treatment for 12 weeks delayed the decline of renal

function and inhibited renal cysts in adult PKD rats, perhaps through

the JAK2/STAT3 pathway (117). In a clinical study, Chen et al. found

that albuminuria decreases in patients with ADPKD after 6 months of

triptolide treatment, and cyst growth rate and renal dysfunction are

significantly improved (118). However, the study also mentions that

the use of triptolide in treating ADPKD may cause menstrual

disorders in female patients (118), and the water solubility of

triptolide is poor (118). Hence, we need more rigorous

pharmacological research and well-designed clinical trials to

provide evidence-based support for its safety and efficacy.
4 Conclusions and outlook

ADPKD patients show extreme enlargement of both kidneys,

which are filled with cystic fluid, and this eventually leads to ESKD

(2). At present, the limited treatment options for ADPKD is still a

challenge for nephrologists. So far, some plant-derived compounds

have been shown to inhibit the activity of renal cysts through a variety

of potential mechanisms, which provides new options for ADPKD

treatment. However, there are still some problems that need to be

considered in the future development of plant-derived compounds.

First, some plant-derived compounds inhibit renal cysts in vitro but

much less so in vivo or in clinical trials, whichmay be due to the toxicity

or low bioavailability of the drugs. Therefore, more basic and clinical

studies are needed to prove the safety and effectiveness of these plant-

derived compounds. Second, there are many factors affecting the

effectiveness of plant-derived compounds, and good quality control is

the key to ensuring their safety and effectiveness. Therefore, a more

comprehensive quality control model is needed, which requires

pharmacological/biological evaluation in addition to some emerging

chemical analysis assessments, such as chromatographic fingerprinting

and multi-component quantification (119, 120). Besides, the

nephrotoxicity of plant-derived compounds cannot be ignored (121).

In addition to aristolochic acid, some other plant-derived compounds,

such as Tripterygium regelii Sprague et Takeda, can cause renal tubular

damage and inflammatory cell infiltration (122). It is speculated that

more than 100 herbs have adverse effects on the kidneys (123). In

addition, although many plant-derived compounds have been widely

used in clinical environments, the mechanism of most plant-derived
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compounds is still unclear. A more comprehensive understanding of

the specific mechanisms will lead to the discovery of more potent drugs

to treat ADPKD. Finally, the application of artificial intelligence

technology and the development of bioinformatics may provide new

insights for research of plant-derived compounds for treating ADPKD.

In addition to those described in this paper, there are some other plant-

derived compounds, such as colchicine and emodin, that are associated

with the pathophysiology of ADPKD (124, 125).

In conclusion, plant-derived compounds provide a rich resource

for the development of drugs in the treatment of ADPKD. Many

plant-derived compounds show good application potential for the

inhibition of renal cyst growth and may provide promising new

therapeutic choices for ADPKD in the future.
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