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Objective: This study assessed the efficacy of INV-202, a novel peripherally

restricted cannabinoid type-1 receptor (CB1R) inverse agonist, in a

streptozotocin-induced type-1 diabetes nephropathy mouse model.

Methods: Diabetes was induced in 8-week-old C57BL6/J male mice via

intraperitoneal injection of streptozotocin (45 mg/kg/day for 5 days);

nondiabetic controls received citrate buffer. Diabetic mice were randomized to

3 groups based on blood glucose, polyuria, and albuminuria, and administered

daily oral doses for 28-days of INV-202 at 0.3 or 3 mg/kg or vehicle.

Results: INV-202 did not affect body weight but decreased kidney weight

compared with the vehicle group. While polyuria was unaffected by INV-202

treatment, urinary urea (control 30.77 ± 14.93; vehicle 189.81 ± 31.49; INV-202

(0.3 mg/kg) 127.76 ± 20; INV-202 (3 mg/kg) 93.70 ± 24.97 mg/24h) and albumin

(control 3.06 ± 0.38; vehicle 850.08 ± 170.50; INV-202 (0.3 mg/kg) 290.65 ±

88.70; INV-202 (3 mg/kg) 111.29 ± 33.47 µg/24h) excretion both decreased

compared with vehicle-treated diabetic mice. Compared with the vehicle group,

there was a significant improvement in the urinary albumin to creatinine ratio

across INV-202 groups. Regardless of the dose, INV-202 significantly reduced

angiotensin II excretion in diabetic mice. The treatment also decreased Agtr1a

renal expression in a dose-dependent manner. Compared with nondiabetic

controls, the glomerular filtration rate was increased in the vehicle group and

significantly decreased by INV-202 at 3 mg/kg. While the vehicle group showed a

significant loss in the mean number of podocytes per glomerulus, INV-202

treatment limited podocyte loss in a dose-dependent manner. Moreover, in both

INV-202 groups, expression of genes coding for podocyte structural proteins

nephrin (Nphs1), podocin (Nphs2), and podocalyxin (Pdxl) were restored to levels

similar to nondiabetic controls. INV-202 partially limited the proximal tubular
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epithelial cell (PTEC) hyperplasia and normalized genetic markers for PTEC

lesions. INV-202 also reduced expression of genes contributing to oxidative

stress (Nox2, Nox4, and P47phox) and inflammation (Tnf). In addition, diabetes-

induced renal fibrosis was significantly reduced by INV-202.

Conclusions: INV-202 reduced glomerular injury, preserved podocyte structure

and function, reduced injury to PTECs, and ultimately reduced renal fibrosis in a

streptozotocin-induced diabetic nephropathy mouse model. These results

suggest that INV-202 may represent a new therapeutic option in the treatment

of diabetic kidney disease.
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1 Introduction

Diabetic nephropathy (DN) is a complication of diabetes and a

leading cause of chronic kidney disease (1). DN is defined as

persistent macroalbuminuria associated with an alteration in

creatinine clearance in the presence of diabetes. Two renal cell

types are primarily affected: podocytes and proximal tubular

epithelial cells (PTECs). Podocytes are epithelial cells located in

the renal glomeruli that play a crucial role in maintaining

glomerular selectivity, permeability, and protein filtration capacity

(2, 3). Proteinuria is associated with morphological changes in the

glomeruli causing dysfunction and podocyte detachment and/or

apoptosis leading to failure of the glomeruli (4). The structural

integrity of podocytes is central to kidney function and their failure

purportedly plays a part in multiple renal diseases, including

DN (5).

The PTECs, which are responsible for glucose reabsorption via

expression of sodium-glucose co-transporters-2 (SGLT2), are also

affected by the deleterious effects of diabetic chronic hyperglycemia.

These cells commonly display tubular atrophy, apoptosis, and

thickened tubular basement membranes with occasional splitting

and lamination (6). In diabetes, expression of SGLT2 and glucose

transporter 2 (GLUT2) is increased in PTECs, which in turn

increases glucose re-absorption and contributes to hyperglycemia

(7, 8). PTECs also express the multiligand receptor megalin, which

is responsible for the normal proximal tubule uptake of filtered

molecules, including carrier proteins, peptides, hormones and

nephrotoxins. The expression of megalin, which plays an essential

role in the development of some types of kidney injury, is

significantly suppressed in diabetes (9, 10).

To slow progression of DN, blockade of the renin-angiotensin-

aldosterone system (RAAS) via angiotensin II (Agt II) receptor

antagonists or angiotensin converting enzyme (ACE) inhibitors is

recommended (11, 12). With more advanced disease, the addition

of SGLT2 transporter inhibitors is recommended for patients with
02
type-2 diabetes (12) but not for type-1 diabetes because of an

increased risk of ketoacidosis and acute kidney injury due to volume

depletion (13). The use of SGLT2 transporter inhibitors (14)

induces glycosuria by inhibiting glucose and sodium reabsorption

in the PTECs, causing a mechanical reduction in blood glucose

comparable to that observed with standard antidiabetic therapy,

such as metformin. In addition, SGLT2 inhibitors confer a slight

body weight loss, decrease systolic and diastolic blood pressure (15),

and reduce the risk for nephropathy independent of their effect on

blood glucose (16). Increasingly, patients require combination

therapy targeting both the RAAS and SGLT2 transporter to

control their diabetes, suggesting a need for new therapeutic targets.

Cannabinoid receptor blockers offer an interesting option for

the treatment of DN. In the kidney, the cannabinoid receptor type 1

(CB1R) is mainly expressed in PTECs and podocytes, and plays an

important role in the development of DN (17, 18). In animal

models, CB1R inverse agonists improve function of these cells

through reduced albuminuria, decreased glucose reabsorption,

and improved glomerular filtration (19, 20). In addition to the

direct effects on the kidney, CB1R inverse agonists have secondary

reno-protective effects of weight loss, increased energy expenditure,

and improved lipid profiles and glycemic control (21, 22).

Rimonabant, the first commercialized CB1R inverse agonist,

yielded body weight loss and significant improvements in

dyslipidemia, glycated hemoglobin, and glycemic control in obese

and/or diabetic patients (23–25). However, rimonabant distributed

to the brain and was removed from the market due to serious

psychiatric adverse effects such as depression and suicidality (26).

Alternatively, peripherally-restricted CB1R antagonists show at

least equivalent efficacy to rimonabant in preclinical models,

without the CNS penetrance underlying the central adverse effects

of rimonabant (27). The objective of this study was to assess the

efficacy of INV-202, a novel peripherally acting CB1R inverse

agonist, originally described as MRI-1891 (28), in a type-1

diabetes DN mouse model.
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2 Material and methods

2.1 Animals and disease induction

The study protocol was approved by the animal welfare ethics

committee CE2A (APAFIS #16799 and 39296). Eight-week-old

C57BL6/J male mice from Janvier Labs (Le Genest Saint Isle,

France) were housed under a 12-hour light/dark cycle and fed a

standard diet ad libitum. Diabetes was induced via intraperitoneal

(IP) injection of streptozotocin (STZ; 45 mg/kg/day) in a sodium

citrate solution (0.1 M, pH 4.5) for 5 consecutive days (n = 39).

Nondiabetic control mice were administered citrate buffer IP for 5

days (n = 5).

Two weeks following STZ injection, mice with random glucose

levels ≥ 230 mg/dL were considered diabetic (n = 24). Mice were

kept for 12 more weeks for the nephropathy to fully develop, after

which the mice were single-housed in metabolic cages

(Techniplast, 3600M021, Decines-Charpieu, France) for 24

hours for urine collection. Diabetic mice were then divided into

three groups (vehicle, INV-202 0.3 mg/kg and 3 mg/kg; n = 8 per

group) with comparable blood glucose, polyuria, and albuminuria.

During the pharmacological treatment period, 2 vehicle-treated

and 1 INV-202 (0.3 mg/kg)-treated mice died, giving a final staff of

5 non-diabetic control, 6 vehicle-treated, 7 INV-202 (0.3 mg/kg)

and 8 INV-202 (3 mg/kg) diabetic mice.
2.2 Pharmacological treatment and
termination

Mice were administered daily oral doses for 28-days of either

vehicle or INV-202 at 0.3 or 3 mg/kg (Kunos Laboratory, National

Institute on Alcohol Abuse and Alcoholism, National Institutes of

Health, Bethesda, USA). The formulation was DMSO/Tween 80/

Saline (5/5/90). Previously, INV-202 exerted maximum efficacy in

the diet induced obese mouse model at a dose of 3 mg/kg (which

blocked 99.99% of CB1Rs in binding experiments) with only slight

penetration across the blood-brain-barrier (28). The 10-fold lower

dose of 0.3 mg/kg was included to further limit brain penetration

while still blocking 90% of CB1Rs and to assess the dose

relationship of INV-202 in the DN model (28).

On day 28, the mice were placed in metabolic cages for 24 hours

for urine collection. Trunk blood was collected prior to euthanasia

via a lethal injection of Euthasol followed by cervical dislocation.

Kidneys were harvested, weighed, and snap frozen in liquid

nitrogen or fixed in formalin for subsequent analysis. Given the

significant body weight loss due to chronic diabetes, kidney weights

were normalized using tibial length rather than body weight.
2.3 Biochemical markers

Albumin was measured in the urine pre- and post-treatment

using an enzyme-linked immunosorbent assay (ELISA) kit (Mouse

Albumin ELISA Kit; Bethyl Laboratories). Agt II was measured in
Frontiers in Nephrology 03
urine and serum pre- and post-treatment using an ELISA kit

(General Angiotensin II ELISA Kit; AbClonal Technologies;

RK04203; Wuhan, China). Blood glucose was evaluated using a

glucometer (MyLife Glucometer, Pura). Urinary urea, blood and

urine creatinine were measured by the “Lipidomic Analytical

Platform” of the University of Burgundy with a liquid

chromatography with tandem mass spectrometry (LC-MS/MS)

1260 LC system coupled with a 6460 triple quadrupole MSMS

detector (Agilent) equipped with a KINETEC column (2.6 µm

HILIC 150 × 2.1 mm) at 30°C or 40°C, respectively. Urea was

eluted at 0.2 mL/min in isocratic mode using methanol containing

0.1% formic acid. Creatinine was eluted at 0.3 mL/min in isocratic

mode with a mixture of buffer A (acetonitrile/water, 95/5;

ammonium acetate 5 mM) and buffer B (water, ammonium

acetate 5 mM) in a 60/40 ratio. The analytes were quantitated

using an isotopic dilution method with isotope-labeled standards—

specifically, urea C13/15N2 (Santa Cruz Biotechnology; CAS 58069-

83-3) or d3-creatinine (Santa Cruz Biotechnology; CAS 143827

20-7).
2.4 Histology

Experiments were carried out in the ImaFlow core facility,

UMR1231 INSERM, University of Burgundy, Dijon, France.

Kidneys were fixed in formalin (Labelians FPC60FT) for 48 hours

at room temperature, dehydrated, and processed in paraffin (Leica

ASP300 and Leica ASP300). Slices (5 µm) were prepared using a

microtome (HistoCore Autocut R de Leica), then dried overnight at

37°C. Samples were stained with either hematoxylin and eosin

(H&E), periodic acid-Schiff, or picro-sirius red, using an

automated stainer (AutoStainer XL) after paraffin removal and

sample rehydration.

Immunostaining with anti-Wilms Tumor 1 (WT-1; 1:400 in a

1% bovine serum albumin [BSA] solution) for 1 hour at room

temperature (Nordic Biosite, ASC-9BJSZH) was performed

manually on kidney slides. Slides were pretreated for 20 minutes

with Tris-EDTA, pH 9 buffer at 95°C, inhibition of endogenous

peroxidases for 15 minutes (3% hydrogen peroxide in 1X

phosphate-buffered saline [PBS]), and saturation of nonspecific

binding sites for 20 minutes before addition of primary antibodies

(3% BSA + 2% milk powder in 1X TBS for WT-1 staining). For the

anti-WT-1 staining it was necessary to block endogenous mouse Ig

(1 hour at room temperature, Vector Laboratory kit MOM

MP2400) before addition of the primary antibody. The signal was

generated using a horseradish peroxidase (HRP)-labeled secondary

antibody incubated for 30 minutes at room temperature and

NovaRed substrate (Vector Laboratories SK4800). Counter-

staining with Harris hematoxylin allowed for visualization of the

nucleus (blue-violet). Slides were dehydrated and mounted in

organic media. All images were acquired by optical microscopy

(Axio Scope A1; Zeiss) coupled to Gryphax image acquisition

software (Gryphax, Jenoptik, Jena, Germany). The different

analyses were performed using Image J software (National

Institutes of Health, Bethesda, USA).
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2.5 Semi-Quantitative reverse transcription
polymerase chain reaction

Kidney total RNA was extracted using the Tri Reagent

technique, whereas total RNA from cells were extracted using a

Qiagen (RNEasy® Mini Kit) extraction kit. The concentration and

purity of RNA was determined using a Nanophotometer N50

(Implen GmbH, Munich, Germany). Reverse transcription was

done with 1 µg (in vivo) or 0.5 µg (in vitro) total RNA using an

iScript Reverse Transcription Supermix for quantitative reverse

transcription polymerase chain reaction (RT-qPCR; Bio-Rad

Laboratories, #1708841). A Sybr Green Supermix kit (Bio-Rad

Laboratories, #1708886) with QuantStudio 3 Real Time PCR

System (ThermoFisher, Illkirch-Graffenstaden, France) were used

for quantitative PCR. A standard curve was constructed for each

gene using four dilutions of cDNA (1/5 to 1/100 dilution) and used

to determine the relative variation in gene expression after

normalization with the geometric mean of reference genes (Hprt,

Rpl19, Rpl32, Rplp0 and Txn2). Primer sequences used for

amplification are listed in Table 1.
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2.6 Statistical analysis

Statistical analysis was performed with GraphPad Prism (version

7.04 for Windows, San Diego, CA) by an analysis of variance

(ANOVA) followed by Tukey-Kramer post-hoc test for multiple

comparisons. Time-dependent results were analyzed using an

ANOVA followed by a Bonferroni test. Statistical significance was set

at p < 0.05. All summary results are presented as mean ± standard error

of the mean.

3 Results

3.1 Diabetes induction and randomization

Of 40 mice initially, one mouse died prior to the start of the study,

leaving 39 for randomization. Five were randomly selected as

nondiabetic controls, while 34 were treated with STZ to induce

diabetes. Only 24 mice had blood glucose levels ≥230 mg/dL and

were evaluated for urine volume and albuminuria for randomization

into 3 treatment groups (vehicle; INV-202 0.3 and 3 mg/kg; Figure 1).
TABLE 1 Primers sequence.

Forward Reverse

Acta2 CCCAGACATCAGGGAGTAATGG TCTATCGGATACTTCAGCGTCA

Agtr1a AACAGCTTGGTGGTGATCGTC CATAGCGGTATAGACAGCCCA

Ccl2 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT

Cnr1 CCGCAAAGATAGTCCCAATG AACCCCACCCAGTTTGAAC

Col1a1 GCTCCTCTTAGGGGCCACT CCACGTCTCACCATTGGGG

Des GTTTCAGACTTGACTCAGGCAG TCTCGCAGGTGTAGGACTGG

Fn-1 ATGTGGACCCCTCCTGATAGT GCCCAGTGATTTCAGCAAAGG

Hprt AGTCCCAGCGTCGTGATTAG TTTCCAAATCCTCGGCATAATGA

Lrp2 AAAATGGAAACGGGGTGACTT GGCTGCATACATTGGGTTTTCA

Nox2 CCTCTACCAAAACCATTCGGAG CTGTCCACGTACAATTCGTTCA

Nox4 GAAGGGGTTAAACACCTCTGC ATGCTCTGCTTAAACACAATCCT

Nphs1 GATGCGGAGTACGAGTGCC GGGGAACTAGGACGGAGAGG

Nphs2 GACCAGAGGAAGGCATCAAGC GCACAACCTTTATGCAGAACCAG

P47phox ACACCTTCATTCGCCATATTGC TCGGTGAATTTTCTGTAGACCAC

Podxl AGGTGGTCAACCTTAATGGGG TCATCCTTGGTCAAGTTGTCCA

Rpl19 ATGAGTATGCTCAGGCTACAGA GCATTGGCGATTTCATTGGTC

Rpl32 TTAAGCGAAACTGGCGGAAAC TTGTTGCTCCCATAACCGATG

Rplp0 AGATTCGGGATATGCTGTTGGC TCGGGTCCTAGACCAGTGTTC

Tgfb1 CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG

Tim1 ACATATCGTGGAATCACAACGAC ACAAGCAGAAGATGGGCATTG

Tnf CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG

Txn2 TGGGCTTCCCTCACCTCTAAG CCTGGACGTTAAAGGTCGTCA
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3.2 INV-202 does not modify body weight
nor hyperglycemia but can reverse renal
hypertrophy and improve blood and
urinary parameters

Compared with non-diabetic mice, all STZ-induced diabetic

mice displayed a similar weight loss that was unaffected by INV-202

(Figure 2A). However, INV-202 normalized the diabetes-induced

renal hypertrophy after 28 days of treatment as compared with the

vehicle group (Figure 2A). Also, no significant effect on glycemia

was observed with INV-202 treatment, indicating that any effect of

INV-202 on kidney function was mainly due to kidney remodeling

rather than improved glycemic control (Figure 2B). While polyuria

was unaffected by INV-202 treatment, urinary urea was

significantly decreased versus vehicle in the INV-202 group at 3

mg/kg (Figure 2C). Compared with the vehicle group, there was a

significant improvement in both INV-202 groups for albumin

excretion and the urinary albumin to creatinine ratio

(ACR; Figure 2D).
3.3 INV-202 decreased urinary excretion of
Agt II and expression of Agt II and CB1R
renal receptor

The RAAS is highly involved in DN; its inhibition plays a

significant role in the clinical treatment of the disease. Here, Agt II

was quantified in the plasma and urine. Expression of Agtr1a, which
Frontiers in Nephrology 05
codes for the Agt II receptor in the kidney, was also assessed. While

plasma levels were similar across groups, the urinary Agt II

excretion was increased in the vehicle group, and significantly

reduced in the INV-202 groups regardless of dose (Figure 3A).

Notably, a significant increase in Agtr1a and Cnr1 (coding for

CB1R) renal expression was seen in the vehicle group, which was

significantly decreased in the INV-202 groups in a dose-dependent

manner for Agtr1a while both doses normalized Cnr1 expression

(Figure 3B). This observation is of particular importance as CB1R

may interact with Agt II signaling by heteromerization with its

receptor in the kidney (29, 30).
3.4 INV-202 improves the glomerular
filtration rate and prevents glomerular
remodeling

The glomerular filtration rate (GFR) is typically decreased in

humans with chronic kidney disease. In our model, the pathology

stage resembles the hyperfiltration observed in early or mid-

impaired functions (31). We estimated GFR by assessing

creatinine clearance (CCr). The mean CCr was increased in the

vehicle group compared to control mice and significantly decreased

in the INV-202 group at 3 mg/kg (Figure 4A). Such changes in

kidney function are associated with glomerulopathy characterized

by an increase in glomeruli size and in the mesangial space. These

changes were observed in the diabetic vehicle group compared with

nondiabetic controls but were reversed in the INV-202 groups in a
B

A

FIGURE 1

Induction of diabetes and randomization of diabetic mice. (A) Schematic of in vivo approach. (B) Randomization of mice with comparable glycemia,
polyuria, and albuminuria into 3 groups: Control (n = 5), Vehicle (n = 6), INV-202 (0.3 mg/kg; n = 7), INV-202 (3 mg/kg; n = 8).Statistical significance
versus nondiabetic controls: *p < 0.05; **p < 0.01; ***p < 0.001. STZ, streptozotocin. C: non-diabetic control mice, V: Vehicle-treated diabetic mice,
I-0.3: INV-202-treated diabetic mice (0.3 mg/kg), I-3: INV-202-treated diabetic mice (3 mg/kg).
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dose-dependent manner (Figure 4B). Similarly, INV-202 preserved

the Bowman space to a similar level as in nondiabetic

mice (Figure 4B).

We quantified podocyte numbers per glomerulus section by

immunostaining of the WT-1 protein, which is exclusively

expressed in these cells in the kidney. The vehicle group showed a

significant loss in the mean number of podocytes per glomerulus

compared with nondiabetic controls, whereas the INV-202

groups showed limited podocyte loss in a dose-dependent

manner (Figure 4C).

Gene expression of Nphs1, Nphs2, and Pdxl, which code for the

podocyte structural proteins nephrin, podocin, and podocalyxin,

respectively, was also assessed. Compared with nondiabetic

controls, the vehicle group showed nonsignificant lowering of the

expression of Nphs1, Nphs2, and Podxl, whereas expression of Des

was significantly increased (Figure 4D). Desmin (Des) is a

cytoskeletal protein with significant role in tissue proliferation
Frontiers in Nephrology 06
and tubulointerstitial fibrosis in kidney (32). In both INV-202

groups, expression of these four markers were comparable to

nondiabetic controls levels (Figure 4D).
3.5 INV-202 reduced renal lesions in PTECs

DN is often associated with a tubulopathy, characterized by

lesions and hyperplasia of the PTECs (32). PTECs were identified

on histological section with the help of the ImaFlow core facility.

Hyperplasia of PTECs was found in the vehicle group and INV-202

groups compared with nondiabetic controls. INV-202 partially

limited this hyperplasia (Figure 5A).

The genetic expression of megalin and of the kidney injury

molecule 1 (KIM1) were measured. KIM1 is considered a useful

marker of the presence of lesions in PTECs (33) and is involved in

the detoxification mechanism of PTECs. The reduction of megalin
frontiersin.or
B

C

A

D

FIGURE 2

INV-202 treatment effects on different parameters associated with diabetic nephropathy. (A) Relative kidney mass and body weight following
treatment. (B) Glycemia following treatment. (C) Polyuria and urinary urea following treatment. (D) Albumin excretion and urinary ACR
following treatment. Statistical significance versus nondiabetic control: *p < 0.05; **p < 0.01; ***p < 0.001; versus vehicle: #p < 0.05; ###p
< 0.001. ACR, albumin to creatinine ratio. C: non-diabetic control mice, V: Vehicle-treated diabetic mice, I-0.3: INV-202-treated diabetic
mice (0.3 mg/kg), I-3: INV-202-treated diabetic mice (3 mg/kg).
g
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expression (Lrp2) was greatest in the vehicle group compared with

nondiabetic controls. Conversely, in the INV-202 group at 3 mg/kg,

Lrp2 expression did not significantly differ from nondiabetic

controls (Figure 5B). Gene expression of kidney injury molecule 1

(Tim1) was significantly increased in the vehicle group versus

nondiabetic controls and significantly decreased in both INV-202

groups relative to the vehicle and nondiabetic control

groups (Figure 5B).
3.6 INV-202 reduced renal fibrosis

Compared with nondiabetic controls, renal fibrosis was

significantly increased in the vehicle group. Both INV-202 groups

exhibited a significant reduction in renal fibrosis compared with the

vehicle group (Figure 6A), which was associated with a decrease in

Tgfb1 expression (Figure 6B). Moreover, Compared with control

mice, the vehicle group displayed a marked increase in the gene

expression of Col1a1, Fn-1 and Acta2, coding respectively for

Collagen, type I, alpha 1 fibronectin and a-smooth muscle actin

(Figure 6B). Both INV-202 groups showed a significant reduction in

the expression of those genes. This suggests that modulation of the

transforming growth factor-beta (TGF-b) pathway contributed to

the anti-fibrotic effect of INV-202.
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3.7 INV-202 reduces gene expression for
markers of renal oxidative stress and
inflammation

As the over-activation of the RAAS is associated with an

upregulation of reactive oxygen species (ROS)-generating

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

isoforms in diabetic Zucker rats, we assessed the gene expression of

GP91Phox (Nox2), NADPH oxidase 4 (Nox4), and P47phox (29).

Compared with the vehicle group, expression of Nox2, Nox4, and

P47phox was significantly reduced with INV-202 at 3 mg/kg

(Figure 7A). Moreover, the expression of 2 inflammatory biomarkers

was analyzed: tumor necrosis factor (Tnf) and chemokine ligand 2

(Ccl2). The expression of Tnf, but not Ccl2, was reduced with INV-202

in a dose-dependent manner (Figure 7B).
4 Discussion

Our STZ mouse model successfully reproduced various

biological markers characteristic of human diabetes, including

kidney hypertrophy, GFR alteration (estimated through the CCr

alteration), and increased albuminuria. The latter marker is of

particular clinical significance, as increased albumin excretion in
B

A

FIGURE 3

INV-202 treatment effects on angiotensin II excretion. (A) Serum and urinary angiotensin II concentration. (B) Agtr1a and Cnr1 mRNA expression that
codes for the angiotensin II receptor and the cannabinoid 1 receptor, respectively. Statistical significance versus nondiabetic control: **p < 0.01;
***p < 0.001; versus vehicle: ##p < 0.01; ###p < 0.001; versus INV-202 group, 0.3 mg/kg: & p < 0.05. C: non-diabetic control mice, V: Vehicle-
treated diabetic mice, I-0.3: INV-202-treated diabetic mice (0.3 mg/kg), I-3: INV-202-treated diabetic mice (3 mg/kg).
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urine (microalbuminuria) is an early sign of DN. Also, it is well

established that kidney weight and GFR are affected from the onset

of diabetes and progressively degenerate as DN develops (34). The

significant reduction of CCr (predictive of GFR) with INV-202

treatment Compared with vehicle-treated mice was particularly

noteworthy, as glomerular hyperfiltration is apparent early in the

clinical course of diabetes and associated with an increased risk of

progression to DN (35). However, while INV-202 restored these

diabetic and DN markers, it did not restore polyuria or decrease

glycemia and body weight, as reported previously in STZ mouse

models treated with CB1R antagonists or displaying podocyte-
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specific genetic deletion of CB1R (19, 36). This suggests that the

effects of INV-202 on renal parameters reported in this study are

primarily due to remodeling of the kidney function, as opposed to

an improvement of glycemic control. The latter is supported by

similar findings that showed a disconnect between DN and

hyperglycemia upon peripheral CB1R blockade, wherein DN

improved while glycemic control remained unchanged (29).

DN is also associated with an over-activation of the RAAS and

in particular of the activity of Agt II (37). Agt II triggers an increase

in intra-glomerular pressure and stimulates the synthesis of growth

factors such as TGF-b, which in turn promotes the accumulation of
B

C

D

A

FIGURE 4

Effects of INV-202 treatment on glomeruli. (A) Summary of calculated CCrs. (B) Representative PAS staining performed on histological sections of
kidneys from mice. Graphs summarize the mean glomerular area, Bowman space, and mesangial area (scale: 50 µm). (C) Representative
immunostaining for Wilms tumor-1 protein (scale: 50 µm) with analysis of the mean podocyte numbers per glomerulus cross-section. (D) Nphs1,
Nphs2, Podxl, and Des mRNA expression coding for nephrin, podocin, podocalyxin, and desmin, respectively. Statistical significance versus
nondiabetic control: *p < 0.05; **p < 0.01; ***p < 0.001; versus vehicle: #p < 0.05; ##p < 0.01; ###p < 0.001; versus INV-202 group, 0.3 mg/kg:
&p < 0.05; &&p < 0.01. CCr, creatinine clearance; PAS, periodic acid-Schiff. C: non-diabetic control mice, V: Vehicle-treated diabetic mice, I-0.3:
INV-202-treated diabetic mice (0.3 mg/kg), I-3: INV-202-treated diabetic mice (3 mg/kg).
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extracellular glomerular matrix and collagen expression, leading to

the progressive formation of renal fibrosis (37). Inhibition of the

RAAS is an important part of the treatment of DN. The CB1R can

interact with Agt II and its receptor in the kidney (29). The latter

represents a common pathway by which hyperglycemia and the

RAAS elicits the various pathological changes involved in the

development of DN. Thus, the decrease in Agt II urinary

excretion and of its receptor expression Agtr1a observed in vivo

may be attributable to INV-202’s CB1R inverse agonistic activity.

DN induces strong functional alterations in two cell types: the

podocytes and the PTECs (4, 38). We observed an increase in the

size of the glomeruli and of the mesangium in diabetic mice treated

with vehicle. This is aligned with literature suggesting that DN is

associated with significant structural changes in the glomeruli, such

as glomerular hypertrophy, thickening of the basal membrane, and

expansion of the mesangium (39, 40). These parameters were all

improved following treatment with INV-202. Another important

factor in the development of DN is the loss of podocyte pool, either

via cell death or detachment and excretion in the urine (4) that leads

to profound deleterious effects as the podocytes play a crucial role in

maintaining glomerular selectivity and permeability, and in protein

filtration (2, 3). Accordingly, we observed podocyte loss in the

glomeruli of the diabetic vehicle-treated mice, which was reversed

by INV-202 in a dose-dependent manner (WT-1 staining, Figure 5).

We further demonstrated that INV-202 blocked the deleterious

effects of diabetes on the expression of the genes (Nphs1, Nphs2, and

Pdxl) coding for structural proteins (nephrin, podocin, and

podocalyxin, respectively). This protection over podocyte loss is

particularly important, as those cells are terminally differentiated

and cannot replicate except in the presence of human

immunodeficiency virus infection (41, 42).
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DN is classically associated with an increase in oxidative stress

and inflammation (43). In agreement with those features, the

vehicle-treated diabetic mice displayed an increase in the

expression of genes (Nox2, Nox4, and P47phox) coding for

NADPH oxidative isoforms responsible for the generation of ROS

and ensuing oxidative stress; and for the gene (Tnf) coding for TNF

linked to inflammation. INV-202 mitigated those effects in a dose-

dependent manner.

PTECs are the main site of glucose reabsorption via SGLT2

expression and activity (7). Diabetic nephropathy is often associated

with tubulopathy, characterized by lesions and hyperplasia of the

PTECs, and with cellular death triggered by a decrease in lipocalin-2

expression (44, 45). INV-202 treatment partially reduced tubular

hyperplasia and blocked the negative effects of diabetes on lipocalin-

2 protein expression. Moreover, INV-202 possibly improved PTEC

function as gene expression of megalin was restored to normal

levels. This is particularly relevant since megalin, which is typically

decreased in diabetes, is both involved in the reabsorption process

of proteins and in the detoxification process of the body (9, 10).

Therefore, its inhibition during diabetes contributes to the

development of albuminuria (46). We also observed a marked

reduction in the expression of KIM1, a strong marker of PTEC

lesions, which suggests a clear improvement in PTEC function and

survival (33).

CB1R blockade has additional beneficial sodium-dependent and

metabolic effects in PTECs. CB1R antagonism downregulated Na+/

K+-ATPase activity in an in vitro PTEC (LLC-PK1) cell model (47)

and in an ischemia and reperfusion LLC-PK1 kidney injury model

(48). Accordingly, effects on CB1 inhibition may promote

natriuresis, which would be beneficial in the management of

hypertension, a major factor in the progression of diabetic kidney
B

A

FIGURE 5

INV-202 treatment effects on proximal tubule cells. (A) Representative H&E staining of kidney slides with analysis of mean surface area of PTECs
(scale: 100 µm). (B) mRNA analysis of Lrp2 and Tim1 coding for megalin and KIM1, respectively. Statistical significance versus nondiabetic control:
**p < 0.01; ***p < 0.001; versus vehicle: ##p < 0.01; ###p < 0.001; versus INV-202 group, 0.3 mg/kg: &&&p < 0.001. H&E, hematoxylin and eosin;
KIM1, kidney injury molecule 1; PTEC, proximal tubular epithelial cell. C: non-diabetic control mice, V: Vehicle-treated diabetic mice, I-0.3: INV-202-
treated diabetic mice (0.3 mg/kg), I-3: INV-202-treated diabetic mice (3 mg/kg).
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disease (49). Inhibition of Na+/K+-ATPase activity may further

downregulate the sodium-dependent neutral amino acid

transporter B0AT1, reducing amino acid bioavailability for the

activation of mTORC1 (50). During hyperglycemia, blockade of

CB1R also inhibits enhanced mTORC1 activity, downregulating

GLUT2 expression in PTECs, which prevented diabetic mice from

developing diabetic kidney disease (50).

Another interesting finding was the reduction in tubulo-

interstitial fibrosis observed in INV-202 treated animals and

associated reduction in TGF-b expression. Recently, CB1R was

identified as a key player in the fibrogenic process in various tissues

such as the liver (51, 52), lungs (53, 54), skin (55), and kidneys (56–

58). In non-metabolic renal disease, CB1R gene expression is

among the 10 most up-regulated genes in an experimental

unilateral ureter obstruction model of renal fibrosis (56) and

CB1R inhibition (genetic or pharmacological) profoundly reduces

renal fibrosis (56), mainly through a direct action on renal

interstitial myofibroblasts. Moreover, CB1R was described as a

major contributor of chronic allograft dysfunction by inducing

fibrosis (57). In all studies, reno-protection induced by CB1R

modulation, either with neutral antagonists or inverse agonists,

was associated with a reduction in TGF-b-mediated collagen
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deposition. The exact mechanism by which CB1R blockade

reduces TGF-b signaling requires further study. However, it is

reasonable to speculate that improvements in metabolic efficiency

of the PTECs may allow them to better cope with oxidative stress,

reducing senescence and other fibrotic pathways.

Lastly, improvements in several biomarkers were observed at

the lowest dose of INV-202. Compared with vehicle, treatment with

INV-202 0.3 mg/kg significantly decreased the mean excreted

albumin, ACR, Agt II, gene expression of Agt II (Agtr1a) and

CB1R (Cnr1) renal receptors, mesangial area, fibrosis score and

Tgfb1 gene expression, and expression of Tnf related to

inflammation; and significantly increased the mean Bowman

space, expression of genes coding for podocyte structural proteins

(Nphs1, Nphs2, Pdxl), and preserved podocyte per glomerulus

cross-section. This suggests that, even at low doses, INV-202 has

the potential for beneficial effects on kidney function in patients

with diabetic kidney disease.

In conclusion, we demonstrated the potential therapeutic effect

of INV-202 in a STZ-induced DNmouse model. Our results suggest

that INV-202 may represent a new therapeutic option in the

treatment of diabetic kidney disease. Further studies in preclinical

models are warranted to further clarify the mechanisms by which
B

A

FIGURE 6

INV-202 reduces renal fibrosis. (A) Representative picro-sirius red stains of kidney slides for collagen fibers with analysis of mean fibrosis scores.
(B) mRNA analysis of Tgfb1, Col1a1, Fn-1 and Acta2 coding for TGF-b, Collagen I type 1, fibronectin and a-smooth muscle actin respectively.
Statistical significance versus the standard condition: *p < 0.05; **p < 0.01; ***p < 0.001; versus vehicle: #p < 0.05; ##p < 0.01; ###p < 0.001;
versus INV-202 group. C: non-diabetic control mice, V: Vehicle-treated diabetic mice, I-0.3: INV-202-treated diabetic mice (0.3 mg/kg), I-3: INV-
202-treated diabetic mice (3 mg/kg).
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CB1R blockade confers protection. Clinical trials in humans using

this therapeutic approach are also underway (NCT05514548).
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