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Ciliopathies are a group of rare genetic disorders caused by defects to the

structure or function of the primary cilium. They often affect multiple organs,

leading to brain malformations, congenital heart defects, and anomalies of the

retina or skeletal system. Kidney abnormalities are among the most frequent

ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that

are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic

kidney disease and often progress to end-stage renal disease, necessitating

replacing therapies. There are more than 35 known ciliopathies; each is a rare

hereditary condition, yet collectively they account for a significant proportion of

chronic kidney disease worldwide. The primary cilium is a tiny microtubule-

based organelle at the apex of almost all vertebrate cells. It serves as a “cellular

antenna” surveying environment outside the cell and transducing this

information inside the cell to trigger multiple signaling responses crucial for

tissue morphogenesis and homeostasis. Hundreds of proteins and unique

cellular mechanisms are involved in cilia formation. Recent evidence suggests

that actin remodeling and regulation at the base of the primary cilium strongly

impacts ciliogenesis. In this review, we provide an overview of the structure and

function of the primary cilium, focusing on the role of actin cytoskeleton and its

regulators in ciliogenesis. We then describe the key clinical, genetic, and

molecular aspects of renal ciliopathies. We highlight what is known about actin

regulation in the pathogenesis of these diseases with the aim to consider these

recent molecular findings as potential therapeutic targets for renal ciliopathies.
KEYWORDS

renal ciliopathies, genetics, primary cilium, ciliogenesis, actin regulation
Introduction

Ciliopathies are a heterogeneous group of rare genetic disorders that arise due to defects

in the structure or function of the primary cilium. The severity of the disease presentation

in ciliopathies is highly variable and depends on the nature of the ciliary dysfunction,

which, in turn, is dependent on both the affected gene and the type of genetic variant (i.e.,
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BOX 1 KEY POINTS.

• The primary cilium is a specialized microtubule-based organelle that
extends from the surface of almost all vertebrate cells and functions as
a key signaling nexus for tissue morphogenesis and homeostasis.

• Defects to primary cilium formation and function cause a
heterogeneous group of hereditary disorders known as ciliopathies.
Ciliopathies that feature kidney abnormalities (renal ciliopathies) are
among the most common.

• Recent evidence has revealed complex actin dynamics at the basal
body that critically affect primary cilium formation.

• Many ciliopathy-associated proteins directly or indirectly regulate
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mutation) involved. Disease-causing variants in over 180 human

genes give rise to more than 35 established human ciliopathies,

including Bardet Biedl Syndrome (BBS), Nephronophthisis

(NPHP), Polycystic Kidney Disease (PKD), Retinitis Pigmentosa

(RP), Joubert Syndrome (JBTS), Orofacial-Digital Syndrome (OFD)

and many others. Ciliopathies often affect multiple organs, resulting

in a range of congenital defects such as cardiac malformation,

retinal degeneration, or skeletal defects. Kidney abnormalities are

among the most frequent ciliopathic phenotypes, including renal

hypo-dysplasia, fluid-filled cysts, or renal fibrosis (1–4). Most renal

ciliopathies cause chronic kidney disease and progress to end-stage

renal disease (ESRD). Although each disease is an individually rare

hereditary condition, collectively, ciliopathies contribute

significantly to chronic kidney disease worldwide with an

associated burden on families, society and the health system.

The primary cilium is a specialized microtubule-based organelle

that extends from the surface of almost all vertebrate cells. Although

primary cilium was observed in mammalian cells as early as 1898

(5), for almost a hundred years after its discovery, it was thought to

be a vestigial organelle that lacked functional properties (6). The

role of the primary cilium as a key cellular signaling hub crucial for

tissue morphogenesis and homeostasis was only discovered in the

1990s (7, 8).

The primary cilium is nucleated at the basal body which

anchors it to the apical plasma membrane. The ciliary

microtubule core, known as the axoneme, is covered by a ciliary

membrane, which contains thousands of signaling molecules,

receptors, channels, and transporters. Therefore, the primary

cilium acts as a “cellular antenna” that protrudes outside of the

cell, senses the surrounding extracellular environment, and

transduces the information inside the cell to trigger signaling

pathways that govern important cellular responses (9). The

primary cilium integrates different cellular components such as

cytoskeletal actin and microtubule networks with unique cellular

trafficking machinery and a repertoire of signaling molecules.

Disruptions to these functions cause human ciliopathies including

diseases with kidney involvement (10).

In this review, we will provide an overview of the structure and

function of the primary cilium and describe the clinical, genetic and

molecular aspects of the renal ciliopathies. We will emphasize the

role of the actin cytoskeleton at the primary cilium and describe

recent molecular findings that might be of therapeutic importance

for renal ciliopathies, as summarized in Box 1.
actin-cytoskeletal dynamics during cilium formation.
• Actin dynamics are disrupted across renal ciliopathy disorders,

contributing to cystic transformation, fibrosis, and renal
malformations due to dysregulated cilium-dependent developmental
signaling processes.

• The actin-dependent mechanisms in renal ciliopathies are an
emerging field that promises to uncover important mechanistic
aspects of disease pathogenesis and discover new potential
therapeutic targets.
Primary cilia and ciliogenesis

Motile and sensory cilia

Cilia have evolved to accomplish two major functions, motility

and sensation, and, accordingly, are classified as motile and sensory

(11). Motile cilia (or flagella) were the first organelles ever observed

in mid-16th century, when Antony Van Leeuwenhoek used the

simple light microscope he invented to visualize a tiny protozoan

organism in rainwater that rapidly moved with the help of multiple

miniature “legs” (12). These “legs” were later named “cilia” or
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“eyelashes” in Latin for the plural or “cilium” or an “eyelash” for a

single structure (12). Motile cilia are found in a subset of tissues

such as the bronchi of the lungs, cells lining brain ventricles and

other organs (13), and are characterized by their ability to move in a

coordinated manner to propel fluid or cells in the extracellular space

(14). The axoneme of the motile cilium is composed of 9

microtubular duplets, which are the extensions of the 9

microtubular triplets that make up the basal body. In addition,

motile cilia have an inner central pair of microtubules, an

arrangement described as (9 + 2) and other proteins that enable

motile cilia to beat coherently and directionally (15). Unlike motile

cilia, a sensory, or primary, cilium is solitary (present in a single

copy per cell), extending from the apical surface of almost all cells,

including kidney or lung epithelia. The primary cilium lacks the

central microtubule pair and the molecules associated with the

ciliary motility. The primary cilium adopts a (9 + 0) arrangement

and harbors an abundance of signaling molecules within its

membrane enabling it to function as a signaling hub (16–18).

Motile and primary cilia share a plethora of common structural

proteins, however, many proteins, especially those required for

ciliary motility or sensory function, are unique to each type (18).
The early stage of ciliogenesis

Cilia biogenesis, referred to as “ciliogenesis” hereafter, begins

when a cell exits the cell cycle. Upon cell cycle exit in G0, the

mother/daughter centriole pair, that serves as the microtubule

organizing center (MTOC) during cell division, is liberated and

the mother centriole undergoes maturation by acquiring

morphologically and functionally distinct distal and subdistal
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appendages; it then ascends towards and docks beneath the apical

surface, thereby becoming the basal body (19). The distal

appendages are recruited to the basal body by centrosomal

proteins and are required for anchoring the basal body to the

apical cell membrane, while subdistal appendages help nucleate

microtubules to build ciliary axoneme (20–23). Mother centriole

maturation is governed by multiple proteins, many of which are

linked to human ciliopathies. For example, mutations in two of the

genes encoding distal appendage proteins, CEP164 and CEP83,

cause nephronophthisis phenotypes, while the distortion of

centrosomal proteins OFD1 and C2CD3 (both are also engaged

in the distal appendage assembly) is linked to JBTS, OFD, and RP

(9). Additionally, centriolar satellites, which are electron-dense

structures that move around the basal body, maintain the

centrosome and cilium by facilitating the transport of ciliary and

centrosomal proteins (9).
Pathways of ciliogenesis

Depending on the cell type, two pathways of ciliogenesis,

“intracellular” and “extracellular”, have been described (24, 25)

(Figure 1). The intracellular pathway mostly occurs in non-
Frontiers in Nephrology 03
polarized cells, although it was described in some epithelial cells

as well (26). It begins with the formation of a large ciliary vesicle

which encloses the mother centriole. The ciliary vesicle forms via

trafficking of Golgi-derived cargo protein vesicles toward the distal

appendages of the mother centriole and fusing with them. The

ciliary vesicle grows and then fuses with the plasma membrane

forming the ciliary membrane and the ciliary pocket. The latter is a

membrane invagination that keeps the primary cilium submerged

in the cytoplasm and is a site for ciliary protein trafficking and active

endocytosis (24, 27, 28). On the other hand, polarized epithelial

cells (such as kidney epithelium) utilize the extracellular pathway to

form the primary cilium at the cellular apex. In this pathway, the

primary cilium is formed only after the mother centriole has

acquired its distal and subdistal appendages and docked directly

to the plasma membrane. The core ciliogenic machinery is shared

between the intracellular and extracellular pathways, however, some

differences between the two routes exist (reviewed in (28)). For

example, the exocyst complex is critical for ciliogenesis in the

polarized kidney epithelial cells but is dispensable in the retinal

pigmental epithelial RPE-1 cells employing intracellular ciliogenesis

(29). Emerging evidence suggests that defects attributed to each

specific ciliogenic pathway might contribute to different ciliopathy

phenotypes or tissue-specific defects (28, 30, 31).
FIGURE 1

Two routes of ciliogenesis and the ciliary structures. The formation of the primary cilium by intracellular pathway commences when the mother
centriole matures by acquiring distal and sub-distal appendages and transforming into the basal body. This is followed by the formation and
enlargement of a pre-ciliary vesicle around the mother centriole via fusion of centriole’s appendages with the ciliary-protein cargo vesicles
originating from trans-Golgi. The basal body ascends and then docks to the apical membrane and the ciliary vesicle fuses with the plasma
membrane to form the ciliary membrane and the ciliary pocket. The extracellular route of ciliogenesis in the epithelial cells (intermittent black
arrows) is characterized by direct docking of the basal body to the apical membrane and cilia elongation without the formation of a ciliary pocket.
Basal body docking is preceded by clearing of cortical actin at the cell apex, an obligatory step permitting ciliogenesis. Docked basal body templates
axoneme extension, and cilia growth via bi-directional anterograde and retrograde Intraflagella transport, IFT, is depicted. The inversin compartment
and the transition zone immediately above the basal body form a diffusion barrier to control protein content within the ciliary shaft and
ciliary membrane.
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Initiation of ciliogenesis

To initiate ciliogenesis, the removal of the CP110-CEP97

protein complex from the mother centriole is required (32). This

complex is localized at the distal end of centrioles and exerts control

over centriole length by inhibiting centriolar microtubule extension

(33–35). The elimination of CP110 is important for the

transformation of the mother centriole into the basal body, as

retention of CP110 at the mother centriole blocks cilium formation

(36–38). Membrane remodeling occurs directly above the site of

future basal body docking and is known as “cortical clearing”; it is

an obligatory step that precedes docking in both intracellular and

extracellular ciliogenesis pathways and is followed by basal body

microtubule extension and assembly of the ciliary axoneme (39).
Primary cilia compartments

Transition zone

The transition zone (TZ) is a highly organized compartment at

the base of the cilium, acting as a gate that controls protein entry to

and exit from the ciliary compartment (40, 41). The TZ consists of

transition fibers connecting the distal part of the basal body to the

base of the ciliary membrane and Y-shaped structures (known as Y-

links) (Figure 1). The Y-links serve as physical connectors between

the microtubular doublet of axoneme and the ciliary membrane (40,

42). The precise mechanisms underlying the formation of the TZ

and how it effectively carries out its regulatory functions are not well

understood and remain areas of ongoing active investigation (43).

Transition fibers act as docking sites for ciliary trafficking

machinery (44, 45). In addition, disrupting the formation of

transition fibers impedes basal body docking and blocks

ciliogenesis at an early stage (21, 46). The TZ is essential to the

function and integrity of the primary cilium, notably to regulate the

downstream cellular pathways such as Sonic Hedgehog (SHH) and

WNT signaling pathways (47).
Components of the transition zone

The transition zone is composed of a complex network of several

protein compartments with at least 28 proteins associated with the

TZ (9) (Figure 1). NPHP1, NPHP4 and NPHP8 form the

nephrocystin module (NPHP1-4-8) involved in apical organization

of renal epithelial cells (48). The nephrocystin module interacts with

the CEP290 module (CEP290-NPHP5) at the basal body, as well as

with theMKSmodule of the transition zone (43). TheMKSmodule is

critical to ciliogenesis and SHH signaling and is composed of several

evolutionarily conserved proteins that are associated with severe

ciliopathy phenotypes. INVS, NPHP3, NEK8, and ANKS6 localize

to the inversin compartment, which forms distally to the transition

zone along the axoneme (49). Disruption of any of these modules

leads to the abnormal formation and function of the primary cilium.

For example, the absence of CEP290 results in TZ malfunction that

leads to alterations in cilia composition. Additionally, an increasing
Frontiers in Nephrology 04
number of proteins are being recognized as reliant on an intact TZ for

their precise localization within the cilium (47–50). Proximity ligation

assays broadened and refined the protein-protein interaction network

at TZ, confirming the majority of well-known TZ proteins and

revealing novel prospective TZ protein candidates and potential

linkages to other ciliary proteins excluded from the TZ (51–54).
Intraflagellar transport

The cilium is built via a unique, evolutionary-conserved cellular

machinery known as intraflagellar transport or IFT, that is dedicated

to the transport of ciliary proteins and lipid components toward and

within the primary cilium (30, 55). IFT machinery is composed of

anterograde transport complexes (IFT-B) powered by kinesin motors

(56, 57) and retrograde transport complexes (IFT-A), which are

mainly dynein motor-dependent (58, 59). Six proteins constitute the

IFT-A group, while sixteen proteins were identified in the IFT-B

group. Proteins of both IFT-B and IFT-A complexes are enriched

with domains that enable extensive interactions with multiple

partners, as observed in IFT-IFT and IFT-cargo interactions (60).

Utilizing total internal reflection fluorescence microscopy and

photobleaching techniques, it was shown that a solitary anterograde

train pauses upon reaching the ciliary tip and subsequently divides

into multiple retrograde trains (61). This observation implies a

significant structural reconfiguration of the trains and a dynamic

cross-talk between the IFT-A and IFT-B proteins, although the details

of how the switch from anterograde to retrograde transport occurs

are mainly unknown (62). Genetic variants in several IFT machinery

components are associated with multi-systemic ciliopathies including

BBS (63), JBTS (64), OFD1 (65), and NPHP (66) signifying the

importance of this machinery in maintaining the cilium.
The Bardet-Biedl syndrome
protein complex

The BBSome is a ciliary trafficking protein complex composed

of eight BBS protein subunits (BBS1, 2, 4, 5, 7, 8, 9 and BBIP10) that

has similarity to the coat protein trafficking systems (67) (68).

Several additional proteins act as chaperonins and are required for

BBSome assembly (69). The BBSome constituents are localized in

the cilium proper, the basal body, and centriolar satellites. They

regulate both ciliary cargo protein transport and signaling

processes. The BBSome’s role is pivotal for the ciliary entry of

many signaling molecules: e.g. SMO protein (a key part of the SHH

signaling pathway) or several G-protein-coupled receptors which

are absent from the cilium when the BBSome is malfunctional (70,

71). Likewise, somatostatin receptor type 3 is absent from the cilia of

hippocampal neurons in Bbs2- or Bbs4-mutant mice (71). In

addition, the BBSome maintains microtubule stability by

preventing histone deacetylase HDAC6-mediated microtubule

deacetylation and destabilization through its BBIP10 subunit

(which binds to and sequesters the HDAC6) (68). More recent

findings also highlight the BBSome’s involvement in ciliary protein

exit thus regulating the equilibrium of ciliary receptor
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concentration and their localization on ciliary membrane (72, 73).

Mutations in the genes encoding BBSome subunits and BBSome

chaperonins cause pleiotropic Bardet-Biedl syndrome (72, 74, 75)

(discussed below). Overall, proper cilia formation depends on the

coordinated interplay between the different ciliary compartments

and their prospective components.
The roles of actin in ciliogenesis

Hints of actin involvement in the formation
of primary cilia

In the last decade, a particular role for the actin cytoskeleton in

ciliogenesis emerged (10). For example, vesicle trafficking, basal

body docking, centrosome positioning, and intraflagellar transport

are all actin-dependent processes. The primary cilium is also rich in

actin regulatory proteins, and genetic or pharmaceutical disruption

of actin dynamics may negatively or positively affect ciliation in cells

in vitro [reviewed in (10)] (Figure 2). Actin localization within the

photoreceptor connecting cilium was initially observed by Chaitin
Frontiers in Nephrology 05
et al. as early as 1984 (76). Mammalian photoreceptors consist of an

inner segment, the cell body where proteins are synthesized, and the

outer segment, where photo-sensing takes place. These segments

are connected by the “connecting” cilium that uses IFT machinery

to move proteins from the inner to the outer segment. Liu et al.

demonstrated that actin bundles act as tracks, facilitating the

transportation of the periciliary membrane complex to the basal

body located at the base of the connecting cilium (77, 78). This

study for the first time revealed a potentially important role of actin

cytoskeleton in the regulation of primary cilium dynamics.
Genomic and proteomic screens defining
the ciliome

To understand the regulatory mechanisms governing the

formation of the primary cilium, several ciliogenesis modulator

screens were carried out to identify key drivers and repressors

influencing the formation and maintenance of primary cilia (79,

80) and to demarcate the ciliome, which represents the extensive

repertoire of ciliary proteins currently counting over 1000 molecules
FIGURE 2

Regulation of actin dynamics in ciliogenesis. The actin cytoskeleton at the ciliary base contributes to cilia assembly and function. A set of actin
regulatory proteins including DIAPH1-3 family of formins is important for the proper transport of ciliary proteins as well as actin nucleation and
polymerization. The proteins of the family of Rho GTPases RhoA directly impact ciliogenesis by regulating actin dynamics at the ciliary base. RhoA
cycles between an active GTP-bound and an inactive GDP-bound form with the help of RhoGEFs and RhoGAPs, respectively. Septins localize to the
transition zone of the primary cilium, contribute to the diffusion barrier formation and influence the activity of the RhoA and its effector RhoA kinase,
ROCK, at the basal body via ARHGEF18. p190A RhoGAP localizes to the basal body and inhibits excessive RhoA activation. Similarly, Arp2/3 complex
mediates F-actin branching, which inhibits ciliogenesis. Inlet: Excessive RhoA activity due to mutations in the genes that regulate the Rho pathway
lead to increased actin polymerization around the ciliary base, which hinders the transport of ciliary protein cargo and retains disassembly factors,
inhibiting ciliation. The rescue of ciliogenesis can be achieved by utilizing the ROCK inhibitors Fasudil and Y2732, or the actin depolymerizing agent
Cytochalasin D.
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(81). Independent studies such as Syscilia Gold standard (82),

CiliaCarta (83), and Cildb (9, 84) were dedicated to defining the

ciliome and identifying candidate ciliary genes using genomic,

proteomic, transcriptomic, and evolutionary data, often integrating

Bayesian statistics for predictive scoring of ciliary function. Moreover,

recent research efforts provided valuable transcriptomic resources for

curated primary ciliomes, establishing tissue and temporal specificity

within various subgroups of differentially expressed genes associated

with ciliary structures (85).

The involvement of actin in ciliogenesis was revealed in a

comprehensive functional high-throughput RNA interference

screen aiming to define genes involved in ciliogenesis (79). The

screen evaluated a total of 7,784 therapeutically relevant human

genes and revealed several molecules related to actin dynamics and

vesicle trafficking required for ciliogenesis. Among these, gelsolin, an

actin filament severing protein, emerged as a positive regulator, while

the actin nucleating proteins of the Arp2/3 complex, that drive actin

branching, were identified as negative regulators. Additionally, cilia-

associated proteomics, combined with proximity-based biotinylation

(Bio-ID) of the cilium-targeted APEX2 peroxidase enzyme, enabled

Kohli et al. to detect a high stoichiometry of actin-binding proteins

(86). Notably, actinin-1 & 4, tropomyosins-3 & 4, ezrin, gelsolin,

cortactin and other actin regulatory proteins were found to be

abundantly associated with cilia. Gupta et al. employed a BioID

approach to systematically map the centrosome-cilium interface (53).

This study generated a protein topology network of over 7,000

interactions with 58 bait proteins. The analysis of interactions and

phenotypic profiles revealed protein modules involved in centriole

duplication ciliogenesis and centriolar satellite biogenesis.

Importantly, the study highlighted extensive novel interactions

between centrosome-cilium interface proteins and actin regulators

such as RhoA, ARHGAP21, and DIAPH3 (53). Additionally, Choksi

et al. (87) undertook genome-wide expression profiling and large-

scale functional studies in a zebrafish model to describe a

comprehensive network of motile cilia genes controlled by Foxj1,

the master regulator of cilia biogenesis. Their gene ontology analysis

revealed a set of 78 cytoskeletal proteins, including the actin regulator

ARHGEF18. Ultrastructural studies found actin within cilia proper

where it participates in regulating ciliary length by “decapitating” the

ciliary tip (87). In fact, localized actin is essential for ectocytosis

(vesicle shedding), aiding G protein-coupled receptor recycling at the

ciliary tip (88). Overall, these studies uncovered an intriguing

phenomenon: actin polymerization and branching must be

precisely regulated spatially and timely to allow the formation of

primary cilium, its function and maintenance.
Actin-dependent mechanisms
of ciliogenesis

Actin dynamics at early stages
of ciliogenesis

Actin dynamics are critical for ciliogenesis during the early

stages since actin governs directional transportation of the mother
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centriole (future basal body) to the appropriate cell cortex (89).

Subsequent steps include the anchoring of the basal body to the

underlying actin cytoskeleton through focal adhesion proteins,

followed by localized actin clearing at the apical surface and

microtubule nucleation (39, 90). Prior to the basal body docking,

a reduction in cortical actin was shown to positively affect ciliary

vesicle trafficking and to promote axoneme extension (39). Actin

remodeling at the cell’s apex is particularly important in polarized

epithelial cells, in which the basal body docks directly to the apical

membrane to initiate ciliogenesis. Although actin is asymmetrically

distributed in all cells, the polarized epithelium is characterized by a

thick cortical actin layer, which is cleared as the basal body docking

occurs (39). Several molecules including RAB19 and lysosomal

membrane-tethering HOPS complex are implicated in cortical

clearing in the polarized dog kidney Madine-Darby collecting

duct epithelial cells (extracellular pathway) as well as in the

retinal epithelial cells RPE-1, which utilize intracellular

ciliogenesis route (39, 91). However, the precise sequence of

events during cortical clearing or whether a specific complement

of actin regulatory proteins exists in polarized vs non-polarized cells

is still unknown. On the contrary, a thick actin network is required

in multiciliated cells, in which thousands of basal bodies per cell

find orderly integration within a dense cortical actin mesh, directly

anchoring to the actin and microtubular cytoskeleton for proper

positioning and organized planar alighment (13, 92).

During ciliogenesis, actin reorganization coincides with

microtubule polymerization, stabilization, and modification (10).

Actomyosin contraction and the asymmetry of the stable

microtubule network within the cell generate the force required to

push the centrosome to the apical surface. The crosstalk between

actin and microtubule networks is tightly regulated by cytoskeleton-

associated proteins, many of which play crucial roles in cilium

formation and maintenance (10, 93) Furthermore, the transport of

vesicle cargo powered by myosin II and myosin Va (actin regulatory

protein) delivers essential ciliary membrane components including

Arl13b (10), the proteins of exocyst complex, the BBSome and

others to the base of the growing cilia. Myosin Va is involved at the

earliest stages of ciliogenesis, where it transports preciliary vesicles

through its association with Rab 8 and Rab11 small GTPases (94)

that mark vesicle trafficking route to the basal body (10).
Cilia disassembly

Actin at the basal body is also important for cilia disassembly (95).

Cilia disassembly occurs when the cell re-enters the cell cycle or during

injury and epithelia-to-mesenchyme transition, e.g., in fibrosis or

cancer (95–97). Three mitosis-regulating kinase families, Aurora A

kinase (AURKA), Polo kinase (PLK1) and NimA-related kinase (NEK)

and their associated proteins have been implicated in this process (98–

100). Both AURKA and PLK1 phosphorylate and activate histone

deacetylase 6 (HDAC6), which deacetylates axonemal tubulin, thereby

destabilizing the microtubule-based ciliary core and promoting cilia

resorption (98, 99). NEK family members phosphorylate other

proteins, e.g. Kif24, that also favors tubulin depolymerization (100).
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Actin polymerization, especially actin branching, appears to hasten cilia

disassembly (95). Although the detailed mechanisms remain unclear, it

is believed that the centrosomal polymerized actin plays a role in

retaining disassembly determinants AURKA, PLK1 and NEK at the

base of the cilium leading to an enhanced cilia disassembly (95).

Interestingly, translocation of Hippo pathway downstream effectors

YAP and TAZ to the nucleus is cued by the actin polymerization

cascade and results in increased expression of AURKA and PLK1

accompanied by suppression of ciliogenesis (101). This event appears

to reinforce a feedback loop where excessive RhoA and actin

polymerization trigger mechanisms of cilia disassembly. On the

contrary, cytoplasmic sequestration of YAP/TAZ from the nucleus

increased ciliogenesis and lowered AURKA and PLK1 expression

levels, indicating that YAP/TAZ transcriptionally controls the

expression of some disassembly factors (101).
Molecular determinants of actin
regulation at the primary cilium

DIAPH family of formins

Multiple actin regulatory proteins control actin dynamics

throughout the different stages of ciliogenesis [reviewed in (28,

95)] (Figure 2). Actin filament formation requires actin nucleation

factors such as formins. The DIAPH family of formins, which

includes DIAPH1, DIAPH2 and DIAPH3, features N-terminal

GTPase-binding domains that interact with and are activated by

small GTP-binding proteins of the Rho subfamily. Polander et al.

showed that depleting DIAPH1 by RNA interference led to

impaired ciliogenesis and reduced ciliary length. Reciprocally,

targeting DIAPH1 to the basal body using centrin or PACT

domains induced elongation of cilia and the formation of bulbous

ciliary tips, suggesting that DIAPH1 likely acts in regulating ciliary

vesicle trafficking. Similarly, DIAPH2 and DIAPH3 localize at the

ciliary base and are implicated in the regulation of cilia maintenance

by mediating post-Golgi and recycling endosomal vesicle trafficking

(102). Depletion of DIAPH2 and DIAPH3 leads to decreased cilia

length and accumulation of the ciliary structural protein IFT20 and

small GTPase Rab11 at the cilium. On the contrary, both IFT20 and

Rab11 levels increase upon targeting DIAPH2 and DIAPH3 to the

ciliary base (103).
Rho family of GTPases and its regulators

The establishment of the actin network in ciliated cells critically

relies on small GTPases that act as regulators of actin dynamics and

are capable of orchestrating pathways for actin assembly and

remodeling, microtubule organization, as well as contributing to

activation of essential transcription factors that trigger cell

differentiation (104, 105). The Rho family of GTPases counts

more than 20 members (106); RhoA, Rac1, and Cdc42 are the

most studied. Functioning as molecular switches, these GTPases
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cycle between their active, GTP-bound state, and their inactive,

GDP-bound configuration. The cyclic transition depends on three

distinct classes of molecules: 1) guanine nucleotide exchange factors

(GEFs), responsible for catalyzing the exchange of GDP for GTP,

thereby activating Rho-family proteins; 2) GTPase activating

proteins (GAPs), which expedite the inherent GTP hydrolytic

activity of the Rho-family, thereby tempering the signaling

cascade and 3) Guanine nucleotide dissociation inhibitors (GDIs),

that bind to Rho GTPases and stabilize them in their inactive states

(106–108).

Using primary cultures of mouse multiciliated tracheal

epithelial cells (mTEC), Pan et al. showed that RhoA plays a

critical role in the development of a distinct apical actin network

(109). The apical actin web is indispensable for the docking of basal

bodies, their uniform tilting (planar polarization) and the

subsequent elongation of the ciliary axoneme. Park et al. showed

that the Rho GTPase activation by planar cell polarity proteins

Dishevelled and Inturned is required for basal body docking to the

apical plasma membrane of multiciliated Xenopus cells (110). It is

plausible that the regulation of Rho activity for apical docking and

planar polarization of basal bodies involves distinct RhoA

regulatory proteins, a notion reinforced by observations that

knockdown of ARHGEF11 triggers various embryonic anomalies

indicative of impaired cilia-mediated fluid flow, likely due to

deregulation of basal body planar alignment and, as a

consequence, lack of uniform directional ciliary beating (110).

Employing an ENU mutagenesis strategy, Steward et al.

generated a mouse model displaying renal hypoplasia associated

with glomerular cysts, which stemmed from a point mutation in the

ArhGAP35 gene that encodes p190A RHOGAP, one of the main

mammalian GAPs (111). This loss-of-function mutation induced

mis-localization of p190ARHOGAP away from the basal body,

ultimately yielding escalated RhoA activity, increased actin

polymerization at the ciliary base and a curtailed ciliogenesis seen

as both diminished percentage of ciliated cells and shorter primary

cilia in mouse proximal tubules as well as mouse embryonic

fibroblasts (MEFs). Importantly, pharmacological inhibition of

RhoA kinase (ROCK) activity rescued ciliary length in mutant

MEFs (111). Building on these findings, Streets et al. screened

several ARHGAPs and identified ARHGAP5, -29, and -35 as

required for cell ciliation and ciliary length (112). After analyzing

PKD1 homozygous cells it was found that p190A RHOGAP was

absent at the basal body of these mutant cells, which also featured

elevated RhoA activity at the basal body and shorter cilia. In

conclusion, the lack of centrosomal PC1-ARHGAP35 interactions

in the PKD1 mutant cells might contribute to cyst formation in

ADPKD (112).
Branched filamentous actin

Branched F-actin, which is primarily distributed in the cell

cortex, is nucleated by the ARP2/3 complex. Notably, silencing the

key component of the ARP2/3 complex, ACTR3 (also known as
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ARP3) led to a marked increase in ciliary length and facilitated

ciliogenesis in hTERT-RPE cells (79). Similarly, Coa et al. showed

that overexpression of mir-129-3p not only stimulated ciliation in

proliferating mammalian cells but the primary cilia were also

elongated (38). These effects were caused by simultaneous

downregulation of four positive regulators of branched F-actin:

ABLIM1, ABLIM3, TOCA1, and ARP2. Furthermore, the

modulation of Arp2/3 complex activity led to the accumulation of

ciliary vesicles in the cilia proper, suggesting that Arp2/3 complex

plays a role in IFT-B distribution within cilia, therefore highlighting

its significance in regulating both IFT entry into the cilia and ciliary

length (113).
Septins

Septins are the family of GTP-binding scaffold proteins that

associate with the cell membrane and cytoskeleton (114). During

ciliogenesis, septins participate in the formation of the diffusion

barrier, partitioning the ciliary membrane from the rest of the apical

plasma membrane. Septins also regulate RhoA activity and actin

polymerization facilitating trafficking of ciliary cargo proteins (13).

For example, SEPTIN9 enhances the activity of ARHGEF18, which

in turn activates RhoA (115). In this context, activated RhoA is

required for the assembly of the complete exocyst complex (116),

which orchestrates transport of post-Golgi vesicles containing

transition zone proteins of the NPHP and MKS complexes

(115, 117).
Inhibition of actin polymerization pathway
and ciliogenesis

In 2010, Kim et al. reported that the inhibition of actin assembly

through drug intervention facilitates ciliogenesis in immortalized

human retinal pigmented epithelial cells (hTERT-RPE) (79). This

effect was attributed to the stabilization of the pericentrosomal

preciliary compartment (PPC), a vesiculotubular structure

responsible for storing transmembrane proteins needed for the

initial phases of ciliogenesis. Actin depolymerization halts vesicle

transport, causing vesicles to accumulate within the PPC.

Furthermore, actin depolymerization at the base of the cilium

leads to the formation of actin nodes that exhibit a marked

affinity for delivering ciliary membrane cargo proteins to the

ciliary vesicle. Thus, the reduction of actin polymerization

facilitates the efficient delivery of cargo to the ciliary vesicle (79).

On the contrary, actin polymerization, and especially actin

branching, establishes a physical barrier to vesicle transport and

ciliary membrane remodeling, inhibiting ciliogenesis (95)

(Figure 2). Thus, actin dynamics in ciliogenesis constitute a

remarkable phenomenon where the depolymerization of actin

serves to promote both the assembly and elongation of cilia. For

instance, the application of Cytochalasin D (CytoD), a small

molecule that induces the depolymerization of filamentous (F)-
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actin, rapidly triggers both the formation of primary cilia and an

excessive elongation of cilia likely through enhancing trafficking of

essential ciliary proteins such as Arl13b and the dynamics of IFT

machinery (79, 118). Remarkably, CytoD induces ciliogenesis even

under conditions that typically trigger ciliary disassembly, such as

serum stimulation of cultured cells (79). Interestingly, CytoD seems

to also cause cytoplasmic retention of YAP and TAZ, thereby

indirectly inhibiting transcription of ciliary disassembly factors

(101). Ciliary elongation was also achieved by treating cells with a

selective RhoA kinase inhibitor Y27632 (119). On the contrary,

factors that induce branched actin assembly exert inhibitory effects

on ciliogenesis (38, 120, 121). However, suppression of branched-

actin regulators such as Arp2 via microRNA-mediated approaches

(38) or treatment with a specific Arp2/3 inhibitor enhances

trafficking of ciliary proteins (113).

In summary, actin polymerization affects different aspects of

cilia formation and maintenance. The intricate interplay between

actin dynamics and ciliogenesis relies on multiple actin regulatory

proteins that orchestrate the balance between elongation and

disassembly of the cilium, ultimately ensuring fine-tuning of cilia

formation, maintenance, and function.
Renal ciliopathies: molecular
mechanisms of disease and
actin regulation

Preamble

The first indication that abnormalities of primary cilia can cause

cystic kidney phenotypes, resembling human polycystic kidney

disease (PKD), came from the studies of the Oak Ridge Polycystic

Kidney (orpk) mouse (122, 123). Genetic analysis revealed that the

orpk mouse harbored a hypomorphic allele in the Ift88 gene, which

is a component of the anterograde IFT-B complex (122, 124). The

residual IFT88 activity from the orpk allele was sufficient for the

generation of shorter, functionally impaired, primary cilia causing

dilatation of proximal tubules, glomerular cysts as well as

polydactyly and hydrocephalus (124–126). The studies of the orpk

mouse have established the key role of the primary cilium in cystic

kidney disease and started a new chapter in the exploration of the

cilia role in human disease. Since then, hundreds of genes involved

in the generation and function of the primary cilium have been

identified. While the quest for mapping all genes relevant to human

health is far from complete, the emerging picture revealed different

functional protein compartments that are essential for the cilia role

in mammalian development (Figure 3). In this ongoing process,

new evidence has emerged, linking several key ciliary proteins to the

regulation of the actin cytoskeleton. Below, we describe what is

currently known about the role of actin regulation in different renal

ciliopathies. Exploring the link between actin regulation and

ciliopathies may change our present understanding of disease

mechanisms and foster the development of novel treatments.
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Polycystic kidney disease

Autosomal-dominant polycystic kidney disease (ADPKD) is the

most common cause of inherited kidney disease, with a reported

incidence of 1:400 to 1:1,000 (127, 128). It primarily presents with
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renal cysts, liver cysts, and intracranial aneurysms (127). End-stage

renal disease (ESRD) occurs in approximately 50% of patients by

the age of 60 years. ADPKD is caused by heterozygous pathogenic

variants in the genes PKD1 (ADPKD1, OMIM #173900) and PKD2

(ADPKD2, OMIM #613095), which comprise about 80% and 5-
FIGURE 3

Renal ciliopathy gene-disease associations. Left panel: Genetic and phenotype information for renal ciliopathy gene-disease associations obtained
from OMIM. Renal ciliopathies demonstrate tremendous genetic and phenotypic heterogeneity: pathogenic variants in many different genes can
result in the same clinical ciliopathy phenotype, and different variants within the same gene can manifest in different phenotypes. The affected
proteins in the same disease are often found to localize to the same ciliary compartment or converge on the same ciliary pathway. BBS, Bardet-
Biedl syndrome; CED, Cranioectodermal dysplasia; JS, Joubert syndrome; LCA, Leber congenital amaurosis; NPHP, Nephronophthisis; OFD,
Orofaciodigital syndrome; RHPD, Renal-hepatic-pancreatic dysplasia; RP, Retinitis pigmentosa; SLS, Senior-Løken syndrome. SRTD, Short-rib
thoracic dysplasia. Upper right panel: Schematic depiction of the primary cilium and its protein compartments. The primary cilium regulates
developmental programs from many sensory inputs (listed in the violet box) through multiple signaling pathways (listed in the green box). GPCR, G
protein-coupled receptors; PCP, Planar cell polarity; PDGF, Platelet-derived growth factor; TGF-b, Transforming growth factor beta; BMP, Bone
morphogenic protein; mTOR, Mammalian target of rapamycin. Lower right panel: Spectrum of the most common ciliopathic phenotypes discussed
in the review.
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10% of total cases, respectively (127, 129, 130) (128, 131). The other

cases of ADPKD either remain unsolved or are due to other genes

[reviewed in (132, 133)].

Autosomal-recessive Polycystic Kidney Disease (ARPKD)

occurs less frequently with a prevalence of 1 in 20,000 and

is caused by biallelic variants in the PKHD1 gene (ARPKD,

OMIM #263200) (132). It is characterized by enlarged,

echogenic kidneys with fusiform dilatation of the collecting

ducts. Most patients progress to ESRD, however, there is some

clinical variability. Notably, patients frequently have liver disease

with dilated biliary ducts, congenital hepatic fibrosis and portal

hypertension. The most characteristic ARPKD presentation is

d e s c r i b ed in neona t e s , c on s i s t i ng o f a h i s t o r y o f

oligohydramnios, massively enlarged kidneys, and the

characteristic “Potter Sequence” with pulmonary hypoplasia that

leads to respiratory insufficiency and perinatal death in 30% of

affected newborns (134).

PKD molecular mechanisms of disease
PKD1 and PKD2 encode the transmembrane proteins

Polycystin1 (PC1) and Polycystin2 (PC2), respectively. PC1 and

PC2 form a heteromeric complex at the primary cilium, cell-cell

junctions and cell-extracellular matrix interface (127, 129, 130).

PKHD1 encodes fibrocystin/polyductin, a ciliary membrane protein

that is associated with the PC1/PC2 complex and localized to the

primary cilium and basal body in renal tubular epithelial cells and

bile duct cells (132, 135–137). The polycystin proteins are

understood to function at the primary cilium and are important

for maintaining the integrity of the renal epithelium. However, their

precise cellular roles and the pathogenic mechanisms underlying

cyst formation remain elusive (138). The polycystins are involved in

mediating numerous cellular signaling pathways, including

intracellular Ca2+, cAMP, mammalian target of rapamycin

(mTOR), and others (127, 138). Initially, it was thought that

polycystin complex at the primary cilium responded to external

stimuli (e.g., fluid flow) to induce intracellular Ca2+ signaling (139),

however, this role has been lately disputed (140). Moreover, its

putative mechanosensory role at the primary cilium has also been

contended (140). Others have suggested that ciliary-mediated

proliferation pathways integral to cell division may be activated

following loss of PC function, leading to unrestricted proliferation

of renal tubular epithelial cells. The cystic growth can then produce

a cascade of consequences including tubular obstruction,

inflammation, ischemia, and metabolic disruption of renal tissue

(127). On the cellular level, cystogenesis has been characterized by

disruptions to apical-basal polarity, excessive WNT signaling or

dysregulated planar cell polarity, aberrant extracellular matrix

formation, and cell cycle regulation (141–143).

In ADPKD, it is hypothesized that a “second-hit” in the

polycystin genes that reduces the PC function is required for

cystogenesis in renal epithelial cells (127, 138, 144). Extensive

research has shown that haploinsufficiency or complete loss of the

polycystin protein function leads to a spectrum of cystic kidney

phenotypes in a dosage-dependent manner (144, 145). Importantly,

in vivo studies in mice show that ablation of the primary cilium in
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Pkd1-/- and Pkd2-/- mice suppresses cystogenesis and ameliorates

the cystic phenotypes, suggesting that the polycystins may restrict

cilium-originating signals required for cystogenesis (145). Although

ciliary morphology is not grossly perturbed in PKD, as seen in other

ciliopathy disorders, coordination of ciliary turnover and cell-cycle

control may also be disrupted (146).

PKD proteins and actin regulation
Actin dynamics appear to play a role in PKD pathogenesis, as

cystic cells are characterized by significant actin cytoskeletal

disorganization and an accumulation of active RhoA at the basal

body (112). Streets et al. showed that PC1 interacts with GTPase

activating protein p190A RHOGAP, encoded by the ARHGAP35

gene. Biallelic loss of PKD1 results in the loss of p190A RHOGAP at

the basal body and excessive centrosomal RhoA activity, implicating

RhoA/ROCK signaling at the basal body in ADPKD pathogenesis

(112). Cai and colleagues elucidated the essential role of the RhoA-

YAP-c-Myc signaling axis in PKD cystogenesis (147). In Pkd1

mutant mouse tissues, aberrant activation of RhoA triggers

translocation of the transcription factor YAP to the nucleus. This

results in the upregulation of c-myc promoting cell proliferation

and renal tubule dilatation in vivo. Crucially, these effects were

reversed with the inhibition of RhoA signaling (147). However,

more recently, the involvement of transcriptionally-active YAP in

ADPKD pathogenesis was disputed (148).
NPHP and NPHP-related ciliopathies

Nephronophthisis (NPHP) is an autosomal-recessive renal

ciliopathy that was initially described by Fanconi et al. in 1951

based on the disappearance of nephrons in the kidneys of affected

children (149). Patients typically present with polydipsia, polyuria,

microalbuminuria, and chronic tubulointerstitial nephritis; most

patients progress to ESRD before the age of 30. Thus, NPHP is

considered one of the most common hereditary causes of renal

failure in the pediatric population and young adults (150). However,

incidence estimates vary widely from 1 in 50,000 in Canada to 1 in

900,000 in the United States (151). In comparison to PKD, the

kidneys are typically not enlarged and may be smaller in size. This

explains the origin of the disease name, which derives from Greek

and means “vanishing of the kidney”. Histological examination

reveals a characteristic triad: loss of corticomedullary differentiation

with occasional corticomedullary cysts, tubular atrophy with a

thickening of the basement membrane, and interstitial fibrosis

(150). Although cysts are found in about 70% of NPHP cases,

they are smaller than in ADPKD and their presence is not necessary

for an NPHP diagnosis (152). The first discovered and most

common is nephronophthisis type 1 (NPHP1) (OMIM #256100),

caused by biallelic variants in the NPHP1 gene (often due to a

homozygous deletion of the entire gene). NPHP1 accounts for 20-

50% of all genetically solved NPHP cases (153–155). About one-

third of NPHP1 cases are syndromic, often presenting with Senior-

Løken syndrome, SLS (retinal degeneration) and Joubert syndrome,

JS (cerebellar and oculomotor anomalies) (156). Currently, more
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than 25 genes have been identified as genetic causes of NPHP (155,

157). However, the majority (70%) of NPHP cases remain

unsolved (157).

NPHP molecular mechanisms of disease
Many NPHP proteins localize to specific compartments at the

primary cilium or centrosome and are involved in ciliogenesis or

ciliary functions (Figure 3). Some NPHP proteins are directly

involved in forming the basal body as well as facilitating its

migration and docking to the cell membrane (158). Interestingly,

many NPHP proteins involved in ciliopathies with either kidney or

eye involvement cluster within the transition zone modules (156).

The inappropriate accumulation of non-ciliary proteins in the

cilium proper due to aberrant ciliary gating is hypothesized to

contribute to disrupted ciliary function in NPHP and other renal

ciliopathies (159). Many ciliary-mediated signaling pathways,

including Hippo, cAMP, mTOR pathway and others, are

implicated in NPHP disease pathogenesis [reviewed in (154)].

NPHP phenotypes are further associated with upregulation of

pro-inflammation and pro-fibrotic pathways culminating in renal

interstitial fibrosis and inflammation (150, 160, 161). The complex

interactions between NPHP proteins and their roles in supporting

ciliogenesis and ciliary function play a role in the phenotypic

heterogeneity observed in NPHP-related ciliopathies.

NPHP proteins and actin regulation
Nephrocystins interact with actin and microtubule structures to

coordinate ciliary signaling in renal epithelial cells, which mediates cell

adhesion and cell division of renal tubular cells (162–164).

Nephrocystin 1 (NPHP1) localizes to the basal body of the primary

cilium and the apical surface of renal epithelial cells (160). NPHP1

functionally interacts with nephrocystin 4 (NPHP4) and nephrocystin

8 (NPHP8), forming the NPHP1-4-8 module within the ciliary

transition zone in both polarized renal epithelial cells and at the

centrosome of dividing cells. The NPHP1-4-8 protein complex is

involved in cortical actin cytoskeletal organization and regulation of

cellular apicobasal polarity during tubule morphogenesis and tissue

maintenance (48, 161, 164). NPHP1 also interacts with proteins at focal

adhesion complexes (164), which, in addition to enabling cell-

extracellular matrix contacts, facilitate anchoring the basal body to

the actin cytoskeleton in multiciliated cells (165). Loss of either NPHP1

or NPHP4 in vitro results in disrupted tight junction formation,

aberrant ciliary function and loss of normal apicobasal polarity (166).

In multiciliated Xenopus laevis cells, NPHP4 is involved in subcortical

actin organization through interactions with formin DAAM1 and the

PCP effector, Inturned (167).

Pathogenic variants in INVS result in an infantile form of

NPHP (OMIM #602088), featuring large cystic kidneys and situs

inversus in some patients. INVS encodes inversin, which forms the

“inversin compartment” and controls switching of the canonical

and PCP signaling pathways, believed to be important in renal

development and tissue maintenance (168). Inversin is involved in

regulating the cortical actin cytoskeletal network during mitosis,

and loss of its function leads to mitotic spindle misalignment,

defective PCP signaling, disrupted mitotic cell rounding, and loss
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of epithelial organization and integrity (169). Together, this gives

rise to defective tubulogenesis as the cells fail to preserve oriented

cell divisions and incorporate longitudinally along the developing

nephron (170).

Aberrant RhoA activity at the centrosome appears to play a

significant role in NPHP pathogenesis through activation of its

downstream target, ROCK, and by promoting abnormal actin

formation and activation of the Hippo pathway (95). The human

kidney proximal tubular epithelial cells with an NPHP1 knockdown

and the renal tissue from Nphp1 knockout mice exhibit increased

levels of GEF-H1, an important RhoA GTPase effector factor in

mammalian renal epithelium that mediates RhoA activation (171).

The NPHP phenotype could be rescued in these mice by a

knockdown of GEF-H1, which acts upstream of RhoA, thus

reducing the RhoA activity and preventing renal cystogenesis,

interstitial fibrosis and inflammation (171).
Bardet-Biedl syndrome

Bardet-Biedl Syndrome (BBS) is a group of autosomal-recessive

ciliopathies manifesting during early childhood. The diagnosis is

based on the presence of several major diagnostic criteria (retinal

dystrophy, obesity, intellectual disability, polydactyly, genital

anomalies and renal malformations) but may also include other

variable features affecting multiple organ systems (172). The

prevalence ranges from 1 in 140,000 to 1 in 160,000 but has been

reported more commonly on the island of Newfoundland, affecting

1 in 17,000 (173). Renal manifestations of BBS more closely

resemble the fibrocystic phenotypes observed in NPHP, JS, and

MKS, compared to PKD, and include dysplastic kidneys or

nephronophthisis, occurring in about 40% of cases, and often

leading to end-stage renal disease (174, 175). Renal disease in BBS

is highly variable in presentation due to high genetic locus and

allelic heterogeneity; however, the molecular basis behind this

phenotypic variability remains poorly understood (175, 176). At

least 26 different known genes have been identified as causes of BBS

and likely contribute to the great variability in severity and clinical

pleiotropy (177). Many of the BBS-causing genes encode the core

BBS proteins forming the BBSome, a protein complex that

facilitates ciliary vesicle trafficking toward and within primary

cilium (Figure 3) (68). Disruption to any of the BBSome subunits

can result in the clinical manifestations of BBS, providing strong

evidence for the functional interdependency among all

BBSome components.

BBS molecular mechanisms of disease
Defects to the BBSome can significantly alter the composition of

the ciliary membrane leading to the loss, mis-localization or

abnormal retention of membrane receptors and other molecules

within cilium. For example, the photosensory protein rhodopsin is

lost in the outer photoreceptor segment of Bbs2, Bbs4 and Bbs8 loss-

of-function mutant mice, while other proteins inappropriately

accumulate in the outer segment, leading to increased

photoreceptor apoptosis and progressive retinal degeneration
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(178–180). Studies of the cells isolated from patients with BBS and

pathogenic variants in BBS1, BBS5 and BBS10 demonstrate shorter

cilia and abnormal SHH signaling; the latter likely arises due to

inappropriate trapping of the key SHH component, Smoothened,

within ciliary shaft (181). Downregulation of SHH signaling during

development is linked to renal malformations and may contribute

to cystogenesis in BBS and other renal ciliopathies (182).

Suppression of Bbs transcripts in zebrafish leads to stabilization of

b-catenin and inappropriate activation of canonical WNT pathway,

that might contribute to the cystic renal phenotype in BBS (183).

The BBSome is crucial for the localizations of G-protein-coupled

receptors (GPCRs) at the primary cilium of certain neurons, and

some of the phenotypic manifestations of BBS are thought to result

from misplacement of specific GPCRs (71). Thus, like other

syndromic ciliopathies, the pathogenic mechanisms of BBS are

largely linked to defects in signaling pathways mediated by the

primary cilium.
BBS proteins and actin regulation
Studies of Bbs mutant cells established a potential role of

dysregulated actin polymerization in the pathogenesis of BBS

(184). Defects in actin cytoskeletal regulation during development

are implicated in renal malformations and renal cystogenesis in

BBS. Renal medullary cells isolated from Bbs4 and Bbs6 deficient

mice displayed a reduced percent of ciliated cells, shorter cilia, and

abnormal actin fiber accumulation at the cell apex. Additionally,

paucity of lamellipodia and filopodia was detected as well as loss of

peripheral focal adhesions, the defects usually associated with

decreased cell motility that was seen in the Bbs mutant cells.

Inappropriate actin aggregation was attributed to significantly

increased RhoA activity and dynamics of actin polymerization

since treatment of mutant cells with selective RhoA kinase

inhibitor Y27632 or actin polymerization inhibitor CytoD rescued

actin aggregation phenotype. Importantly, these inhibitors also

rescued ciliary length and increased percent of ciliated cells,

point ing to the strong l ink between abnormal act in

polymerization, increased RhoA activity and ciliary defects.

Intriguingly, Bbs4 and Bbs6 proteins previously detected only at

the basal body and in the cilium, also co-localized with the focal

adhesions and governed their assembly. Thus, the results of

Hernandez-Hernandez et al. support the hypothesis that BBS

proteins regulate actin cytoskeletal arrangement through RhoA

and focal adhesion dynamics, functions that are now recognized

as integral to ciliogenesis (184).
Meckel-Gruber syndrome

Meckel-Gruber syndrome (MKS, OMIM #24900) is a

perinatally lethal autosomal-recessive ciliopathy that presents with

a constellation of severe developmental anomalies including neural

tube defects, skeletal malformations, congenital heart defects, liver

anomalies, and enlarged cystic dysplastic kidneys (152, 185). The

worldwide incidence for MKS is 1 in 13,250 to 1 in 140,000 live

births (186). It is the ciliopathy with the most severe presentation,
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often arising from biallelic full loss-of-function variants in ciliary

genes that lead to total or significant loss of ciliary function (152).

Several genes have been associated with MKS, including MKS1,

TMEM67, CEP290, CC2D2A, and TMEM216, many of which

encode proteins that localize to the transition zone and are

essential for basal body docking (152, 187). Most MKS-causing

genes are also associated with milder ciliopathy phenotypes, causing

NPHP or JS, suggesting that these disease entities exist along an

“allelic spectrum” and depend on the nature of the underlying

genomic variant (188).
MKS molecular mechanisms of disease
Many of the MKS proteins converge on the same pathway

during ciliogenesis, and their loss-of-function models have

demonstrated a critical role in mediating basal body anchoring in

association with actin cytoskeletal dynamics (187, 189–191). The

transition zone protein TMEM67 (also known as Meckelin),

encoded by TMEM67, plays a crucial role in ciliogenesis. Biallelic

truncating pathogenic variants in TMEM67 (MKS3) commonly lead

to Meckel syndrome (MKS3, OMIM #607361); however, “milder”

TMEM67 allelic combinations (e.g., biallelic missense variants) lead

to less severe phenotypic presentations such as JS or isolated NPHP

(192, 193). TMEM67 and MKS1 interact together and are required

to mediate basal body docking to the apical cell surface (189, 194).

MKS proteins and actin regulation
The involvement of MKS proteins in actin regulation is only

beginning to emerge. The TMEM67 is suggested to promote actin-

cytoskeletal reorganization required for basal body docking by

regulating RhoA-ROCK signaling (190). Loss of TMEM67 or MKS1

leads to disrupted ciliogenesis and impaired epithelial morphogenesis

(189). Similarly, loss of TMEM216 in human fibroblasts or its

knockdown in zebrafish was shown to cause hyperactivation of

RhoA, hypothesized to disrupt the required actin reorganization at

the cell apex preventing normal basal body docking (187).
Skeletal ciliopathies with renal involvement

Approximately 10% of syndromic NPHP cases present with

skeletal anomalies often found alongside liver, eye, and CNS

anomalies (156). Short-rib thoracic dysplasia with and without

polydactyly (SRTD) are a group of skeletal ciliopathy disorders

with shared features of polydactyly, shortening of the long bones

and severe rib and thoracic malformations (152, 195). The most

common forms of SRTD are Jeune asphyxiating thoracic dysplasia

(JATD), Ellis–van Creveld syndrome, Sensenbrenner syndrome,

Mainzer-Saldino syndrome (MZSDS), and short-rib polydactyly

syndromes (SRPS) (196). Polycystic kidneys are occasionally

detected in patients with Oral-facial-digital syndromes (OFD),

which are primarily characterized by dysmorphic craniofacial and

oral anomalies and polydactyly (197). Ciliopathies with skeletal

malformations often arise due to defects in genes encoding for the

IFT-A and IFT-B components or the dynein motor arms of the

primary cilium, leading to defects in ciliary function, including
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mediating SHH signaling (Figure 3) (152). Defects to the IFT-A

complex of proteins (e.g., WDR35, IFT122, IFT43, IFT172, IFT140

and WDR19), can present with renal disease phenotypes such as

chronic renal failure, NPHP, and renal cysts (63, 198–203) and, in

some cases, isolated NPHP or NPHP-like nephropathy (63).

Although the underlying mechanisms are not well characterized,

several groups have posited that IFT proteins may be regulating

planar cell polarity in the elongating renal tubules, although this

supposition requires experimental confirmation. There are over 16

genes associated with OFD phenotypes, however, the X-linked

OFD1 (OMIM # 300170) is the most common (~50% of all OFD

cases) and causes polycystic kidney disease in half of affected

patients (152, 204, 205). OFD1 protein localizes to the

centrosome and is essential for recruiting the distal appendage

proteins during ciliogenesis (206). Recent research uncovered the

expanded role of OFD1 in microtubule organization and cell-cycle

regulation as well actin filament branching (207, 208).
Skeletal ciliopathies caused by distortion of
CPLANE function

A special subset of skeletal ciliopathies featuring renal

malformations is caused by defects in the Ciliopathy and Planar

Cell Polarity, CPLANE, genes (209). Originally discovered in

Drosophila (210), where these genes are known as “Planar cell

polarity effectors” and participate in PCP signaling, vertebrate

homologs of inturned, fuzzy and fritz (WDPCP) regulate

ciliogenesis. Their depletion in frogs led to significantly shorter

cilia (211); homozygous mutations of Fuzzy, Inturned andWdpcp in

mice caused stunted sparse primary cilia and features of classical

ciliopathies such as craniofacial defects, polydactyly, and dysplastic

kidneys (212–214). CPLANE proteins interact with each other

(215), localize to the basal body and control important aspects of

vesicular trafficking to the basal body (209, 216). Comprehensive

tandem affinity purification studies revealed interactions with

various ciliary proteins including IFT43 and WDR35 (209) [both

cause Sensenbrenner syndrome (201, 217)]. They also interact with

and form a functional complex with two additional proteins,

Joubert syndrome 17 encoded by the JBTS17 gene (also known as

CPLANE1) (209) and a small GTPase effector RSG1 (209).

Pathogenic variants in CPLANE1 cause JS and OFD, often

presenting with renal involvement (218). Variants in FUZ, INTU,

andWDPCP are associated with embryonically lethal cases of SRPS,

OFD syndrome, and neural tube defects (209, 219, 220); renal

hypoplasia was described in some of these patients.
CPLANE and actin regulation
Knockdown of Fuzzy or Inturned reduces the thickness of the

actin cortical network in multiciliated Xenopus cells (211), implying

that in this context, CPLANE proteins might function as positive

regulators of actin polymerization. Similarly, mouseWdpcpmutant

cells display thinner actin-based stress fibers and minimal actin-

based membrane protrusions; the latter affects cell motility (213).

The effect of WDPCP on actin was traced to its interaction with
Frontiers in Nephrology 13
actin regulatory protein Septin 2 (213). However, Drosophila

CPLANE homologs function to restrict actin polymerization in

the wing cells and their loss leads to an excessive actin cytoskeleton

consistent with the negative actin regulatory function in the fly cells.

In agreement with this, we recently observed both excessive RhoA

activity and increased actin polymerization at the basal body of

Fuzzy mutant cells (unpublished data). Importantly, ciliogenesis

could be rescued with CytoD or ROCK inhibitors in vitro and ex

vivo (Figure 4). Thus, the accumulated evidence suggests that

CPLANE proteins affect ciliogenesis via differential effects on

actin polymerization in various cells, and this may contribute to

the ciliopathic phenotypes of skeletal/renal ciliopathies.
Actin-involvement in ciliopathy-
associated diseases

Townes-Brock syndrome 1
The majority of the pathogenic mechanisms of renal

ciliopathies described above are associated with increased

centrosomal actin, however, Townes-Brock syndrome 1 (TBS1,

OMIM #107480) features reduced actin polymerization. TBS1, an

autosomal-dominant disorder, results from heterozygous loss-of-

function variants in the SALL1 gene and features ciliopathy-

spectrum phenotype with renal abnormalities often leading to

ESRD (221). SALL1 encodes a transcription factor that interacts

with CEP97 and CP110, two negative regulators of ciliogenesis, and

removes them from the mother centriole, thereby favoring

ciliogenesis. Loss of SALL1 function leads to defects in

ciliogenesis and SHH signaling in patient-derived fibroblasts

(221). Recently, Bosal-Basterra et al. reported that truncated

SALL1 protein interacts with LUZP1, a leucine-zipper motif-

containing protein that localizes around centrioles and binds to

filamentous actin (222). Loss of LUZP1 reduces F-actin and

increases ciliogenesis. Importantly, interactions between mutant

SALL1 and LUZP1 target LUZP1 for degradation leading to the

disruption of both ciliogenesis and SHH signaling through reduced

F-actin polymerization, indicating that dysregulation of

centrosomal actin cytoskeleton contributes to the pathogenesis of

TBS (222).
Lowe syndrome
Lowe syndrome (OMIM # 309000) is an extremely rare and

severe X-linked oculo-cerebro-renal disorder that results from

pathogenic variants in the OCRL gene encoding inositol

polyphosphate 5-phosphatase OCRL-1. The proximal tubular

dysfunction leads to renal failure in the second or third decade

(223). Some patients with OCRL variants present with Dent disease

type 2, which is thought to be a milder presentation of classical

Lowe syndrome (223). OCRL-1 is involved in membrane and

endosomal trafficking. It also binds Rho GTPases to modify F-

actin polymerization important for phagocytosis, cell migration, cell

polarity, and ciliogenesis (223–225). In OCRL-1 mutant cells, actin
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polymerization is decreased and primary cilium formation and

function are disrupted (226) due to defects in ciliary vesicle

processing during ciliogenesis (225, 227).

Overall, the studies of renal ciliopathies described above

indicate that many renal ciliopathy proteins localize to the basal

body and participate in the complex interactions that organize

centrosomal actin remodeling required for the successful formation

of primary cilium. These emerging data have uncovered a frequent

distortion of actin regulation and remodeling in pathogenesis of

renal ciliopathies.
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Primary cilium in renal cell carcinomas

Renal cell carcinomas (RCC) frequently present with cystic

kidneys, prompting studies of primary cilia in the context of RCC

(228, 229). Germline heterozygous pathogenic variants in the Von

Hippel-Lindau (VHL) gene is the most common genetic cause of

RCC, where renal cysts often precede tumorigenesis (230). VHL

encodes a tumor suppressor protein VHL that localizes to the Par3-

Par6-aPKC complex at the primary cilium to facilitate ciliogenesis

by stabilizing and orienting microtubule formation (228, 231, 232).
FIGURE 4

Inhibition of actin signaling pathway and/or polymerization rescues ciliogenesis in a CPLANE ciliopathy model. Upper panels: Schemata of
generating mouse embryonic fibroblasts (MEFs) from E12.5 embryos. Wildtype MEFs are ciliated at ~ 80-85% after 24 hours of starvation in vitro
whereas Fuzzy-/- MEFs lack cilia. Treatment of unciliated Fuzzy-/- MEFs with 0.5µM of CytoD leads to 60% ciliated mutant cells and no effect on
the wildtype cells; cilia were visualized with anti-acetylated-a-tubulin antibody and 4′,6-diamidino-2-phenylindole to stain nuclei (unpublished data).
Lower panels: Schematic depiction of an experiment in which embryonic kidney explants from E12.5 wildtype and Fuzzy-/- embryos were cultured
ex vivo for 72 hours in the presence or absence of 2.5µM Fasudil followed by a whole mount tissue immunostaining with anti-Arl13b antibody to
detect primary cilia. Treatment with Fasudil elongates ciliary length in mutant tissues with no effect on the wild-type tissues (unpublished data).
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VHL-deficient cells are not ciliated and exhibit defects in cellular

polarity and cell-cycle regulation, leading to uncontrolled cell

proliferation (233, 234). Interestingly, VHL also acts as a E3-

ubiquitin ligase, and in this capacity, targets the ciliary

disassembly factor Aurora Kinase A (AURKA) for degradation

(235). Moreover, loss of VHL function results in high levels of

AURKA, affecting stability of the microtubular axoneme and

leading to disassembly of the primary cilium followed by

development of cystic kidneys and RCC (235). Other ciliary genes

involved in RCC have been recently reviewed elsewhere (236).

Tuberous sclerosis TSC is an autosomal-dominant multi-system

disorder that results from pathogenic variants in the tumor

suppressor genes, TSC1 and TSC2, leading to aberrant activation

of the mTOR pathway (237) and often presenting with renal cysts

associated with cilia disruption (238). Currently, the role of actin

regulation at the primary cilium assembly and disassembly in renal

cancers and associated cystic phenotypes have not been studied.

Potential therapies

Renal ciliopathies are a significant cause of chronic kidney

disease and ESRD. Currently, the only long-term treatments for

kidney manifestations are renal replacement therapy through

hemodialysis and kidney transplantation. High frequency of

ADPKD, that affects more than 12 million people worldwide,

prioritized significant scientific and financial resources to develop

various treatment options. However, despite a significant effort,

Tolvaptan has so far been the only FDA-approved medication for

ADPKD (239). On the other hand, there are currently no approved

treatments for other renal ciliopathies. Recent clinical trials for BBS

were limited to obesity and hyperphagia treatment by

Setmelanotide (a selective melanocortin-4 receptor agonist) with

no focus on treating kidney phenotypes (240).

Drugs that prevent cilia disassembly via axoneme stabilization

through histone deacetylase inhibition have also been tested in several

pre-clinical models (241–243). Histone deacetylase 6 (HDAC6)

inhibitors such as ACY-1215, Tubacin, Trichostatin A (TSA),

Valproic acid (VPA) and Nicotinamide have shown to ameliorate

cystic kidney disease in in vitro and in vivo models, however, some of

these drugs have uncertain safety profiles and are yet to be tested in

clinical trials. Excessive cell proliferation in the VHL-dependent RCC

cells was rescued by treatment with alisertib, an AURKA−specific

chemical inhibitor (244), however, ciliary integrity in the treated RCC

cells was not investigated. Other treatments that target cellular

metabolism (e.g., basal body localized-AMPK agonists such as

Metformin), inflammation, EGF signaling, mTOR inhibitors, HDAC

inhibitors, CDK inhibitors, Hedgehog agonists, somatostatin

analogues, in addition to gene therapy via microRNAs, are all

extensively reviewed elsewhere (243).

Recent evidence on the role of the RhoA/ROCK pathway in

ciliogenesis heightened interest in the studies of actin regulation in

relation to ciliopathies. Actin polymerization inhibitors such as

Cytochalasin D or selective ROCK inhibitors Y27632 have shown to

rescue cilia defects to some degree in different ciliopathy disease models

(39, 101, 112, 184) (Figure 4). Importantly, inhibition of RhoA
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signaling with Y27632 suppresses cystogenesis in both the 3D culture

of Pkd1mutant collecting duct cells and in Pkd1mutantmouse kidneys

in vivo (147). However, their use in humans is difficult to envision due

to their toxicity. On the other hand, ROCK inhibitor Fasudil, that has a

reduced toxicity and a more favorable safety profile, was clinically

approved for use in humans as a systemic ROCK inhibitor to treat

cerebral vasospasm in Japan and China (245). Although it is still not

FDA-approved, Fasudil is being used in several clinical trials addressing

cardiovascular disorders (246, 247), Parkinson’s disease, Amyotrophic

Lateral Sclerosis, and other conditions (https://clinicaltrials.gov). Given

the persistent deregulation of RhoA signaling and actin polymerization

in many models of renal ciliopathies, including ADPKD, NPHP and

BBS, it would be reasonable to test Fasudil in human trials to treat

ciliopathies, e.g., ADPKD or NPHP. With the advent of new inhibitors

of actin regulatory pathways that can be targeted to specific tissues and

have acceptable safety profiles, these molecules can be harnessed for

their potential use in treating ciliopathies postnatally.
Conclusions

The primary cilium is an enigmatic organelle central to the

development and homeostasis of all human organs. Dysfunction of

primary cilium perturbs numerous cellular processes, negatively

affecting tissue morphogenesis and tissue maintenance causing a

constellation of severe, frequently congenital, phenotypes in humans,

known as ciliopathies. Pathogenic variants in over 180 genes have been

identified to date as the cause of human ciliopathies, which often

present as malformations of the kidney. However, analysis of cohorts of

patients with specific ciliopathies shows that only a fraction of genes

has been identified. Assembly of clinically well-characterized patient

cohorts and the use of a comprehensive genome-wide molecular

diagnostic testing are critical if we are to identify the hidden genetic

contributors and will pave the way towards improved diagnostic

criteria and elucidation of the molecular mechanisms which will

allow personalized therapies.

Analysis of the mechanisms causing ciliopathies has revealed an

unexpected key role of actin cytoskeletal dynamics in ciliogenesis and

ciliary function. Moreover, it is becoming clear that disruption to these

mechanisms plays a part in the pathogenesis of various classes of renal

ciliopathies, including ADPKD, NPHP, or BBS. However, whether

actin dysregulation is a driving force in the cellular phenotype or

merely is a consequence of an upstream mechanism that alters actin

dynamics remains unknown. Importantly, deregulation of basal body

actin network affects both cilial assembly and disassembly. For

example, loss of cilia in renal cancer appears to be driven by the

heightened activity of the cilium disassembly, but it remains unknown

whether actin deregulation at the base of the cilium contributes to the

cilia loss in RCC. Regardless of the precise nature of the cause-and-

effect relationship, persistent actin network disorganization in the cells

of patients affected with ciliopathies may offer an opportunity to

identify novel preventative and restorative treatments.

The cellular and molecular mechanisms underlying renal

ciliopathies are currently under intense investigation. The

expanding complexity of the genetic errors and phenotypic
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consequences and the basis for tissue specificity associated with

specific genes promise to be an exciting journey.
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Alonso MA. A model for primary cilium biogenesis by polarized epithelial cells: role of
frontiersin.org

https://doi.org/10.1146/annurev.genom.7.080505.115610
https://doi.org/10.1038/nrg2774
https://doi.org/10.1056/NEJMra1010172
https://doi.org/10.1083/jcb.200709133
https://doi.org/10.1016/s0091-679x(08)94001-2
https://doi.org/10.1101/cshperspect.a028175
https://doi.org/10.1016/j.cellsig.2019.109468
https://doi.org/10.1038/nrm.2017.60
https://doi.org/10.1016/j.semcdb.2019.12.005
https://doi.org/10.1242/jcs.066308
https://doi.org/10.1002/cm.970320203
https://doi.org/10.1042/BCJ20170453
https://doi.org/10.1016/j.cub.2014.08.047
https://doi.org/10.1016/j.jmb.2012.05.040
https://doi.org/10.1002/dvdy.21521
https://doi.org/10.1002/dvdy.21521
https://doi.org/10.1111/j.1600-0854.2006.00516.x
https://doi.org/10.1016/j.cub.2012.01.031
https://doi.org/10.1016/j.diff.2011.11.015
https://doi.org/10.1016/j.cell.2012.06.028
https://doi.org/10.1083/jcb.201202126
https://doi.org/10.1016/j.ajhg.2014.05.002
https://doi.org/10.1093/hmg/ddx183
https://doi.org/10.1083/jcb.15.2.363
https://doi.org/10.1007/BF01258487
https://doi.org/10.1042/BC20100128
https://doi.org/10.1242/jcs.059519
https://doi.org/10.1242/jcs.259030
https://doi.org/10.1016/j.cub.2021.09.067
https://doi.org/10.1007/s00018-017-2570-5
https://doi.org/10.3389/fneph.2023.1331847
https://www.frontiersin.org/journals/nephrology
https://www.frontiersin.org


Kalot et al. 10.3389/fneph.2023.1331847
the midbody remnant and associated specialized membranes. Front Cell Dev Biol
(2021) 8:622918. doi: 10.3389/fcell.2020.622918

32. Spektor A, Tsang WY, Khoo D, Dynlacht BD. Cep97 and CP110 suppress a cilia
assembly program. Cell (2007) 130:678–90. doi: 10.1016/j.cell.2007.06.027

33. Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD. CP110, a cell cycle-
dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell
(2002) 3:339–50. doi: 10.1016/S1534-5807(02)00258-7

34. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof Y-D, Nigg
EA. Plk4-induced centriole biogenesis in human cells. Dev Cell (2007) 13:190–202. doi:
10.1016/j.devcel.2007.07.002

35. Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB, Stierhof Y-D,
et al. Control of centriole length by CPAP and CP110. Curr Biol (2009) 19:1005–11. doi:
10.1016/j.cub.2009.05.016

36. Kobayashi T, Dynlacht BD. Regulating the transition from centriole to basal
body. J Cell Biol (2011) 193:435–44. doi: 10.1083/jcb.201101005

37. Seeley ES, Nachury MV. The perennial organelle: assembly and disassembly of
the primary cilium. J Cell Sci (2010) 123:511–8. doi: 10.1242/jcs.061093

38. Cao J, Shen Y, Zhu L, Xu Y, Zhou Y, Wu Z, et al. miR-129-3p controls cilia
assembly by regulating CP110 and actin dynamics. Nat Cell Biol (2012) 14:697–706.
doi: 10.1038/ncb2512

39. Jewett CE, Soh AW, Lin CH, Lu Q, Lencer E, Westlake CJ, et al. RAB19 directs
cortical remodeling and membrane growth for primary ciliogenesis. Dev Cell (2021)
56:325–340. e328. doi: 10.1016/j.devcel.2020.12.003

40. Reiter JF, Blacque OE, Leroux MR. The base of the cilium: roles for transition
fibres and the transition zone in ciliary formation, maintenance and
compartmentalization. EMBO Rep (2012) 13:608–18. doi: 10.1038/embor.2012.73

41. Jensen VL, Leroux MR. Gates for soluble and membrane proteins, and two
trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling compartment.
Curr Opin Cell Biol (2017) 47:83–91. doi: 10.1016/j.ceb.2017.03.012

42. Fisch C, Dupuis-Williams P. Ultrastructure of cilia and flagella–back to the
future! Biol Cell (2011) 103:249–70. doi: 10.1042/BC20100139
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