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Purpose of symposium: From September 6 – 8 2022, the Life/2022 Membrane

Symposium was held in Frankfurt, Germany, and transmitted live to a worldwide

internet audience. The event was part of the Life/Nephrology Campus initiative, a

continuous educational platform for the nephrology community to expand
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knowledge and share expertise on contemporary topics in chronic kidney disease.

We describe recent questions and advances in the field, andwe underline challenges

in the care of dialysis patients and opportunities for integration of new findings into

clinical practice to improve patient outcomes in end stage kidney disease patients.

Topics: Most patients with kidney failure are on maintenance hemodialysis

(MHD). The scientific program of the symposium was developed around topics

about the role, functional determinants, technical aspects, limitations, and

clinical implications of membranes presently in use. International experts with

clinical or technical expertise as well as scientific recognition within the

nephrology community were asked to prepare their presentations based on

their own experiences, perceptions, opinions, and sources of information. The

symposium devoted a major portion to discussing novel approaches for

improving membranes and treatment quality, including updates on innovative

concepts that may could potentially transform the landscape of kidney

replacement therapy for chronic kidney disease patients in the future.

Implications: The intent was to provide insights into current attention points for

healthcare professionals new to the field of MHD, and to test a unique forum for

continuing medical education integrating physician and patient experiences to

promote changes in clinical practice. Furthermore, the symposium premiered a

specifically developed mixed reality holographic 3D model to demonstrate

recent dialyzer innovation diminishing protein fouling on membrane surfaces.

As a continuous online educational platform for scientific exchange, this Life/

2022 event provided online learning opportunities with on-demand content,

with all symposium lectures freely available on nephrologycampus.com.
KEYWORDS

dialysis membranes, innovation, biocompatibility, science, technology, clinical impact,

chronic kidney disease
1 Symposium context and objectives

The demand for MHD is projected to increase significantly over

the next decade, increasing the burden for healthcare professionals

(HCPs) and systems (1, 2). There’s a growing concern regarding the

shortage of skilled nephrology professionals, which could impact

the quality of dialysis care. Nephrology is a complex medical field

due to the multifaceted nature of diseases, technological integration,

and cost pressures. When nine different markers of patient

complexity were evaluated, Nephrology was ranked as the most

complex of all disciplines (3).

To address the reluctance in choosing nephrology as a career,

more efficient and time-saving educational methods and utilization

of modern online tools, have gained traction. The Life/nephrology

campus strives to provide concise, updated educational material

collated by experts for newcomers as well as for established MHD

care personnel.

The Life/2022 Membrane Symposium focused on recent

advances in membrane technology, particularly in uremic toxin
02
removal in dialysis patients. Renowned experts discussed issues

revolving around chronic inflammation and the role of dialysis in

bioincompatibility. They also highlighted upcoming technical

innovations promising improved patient outcomes and quality of life.

This symposium introduced a novel educational approach,

combining on-site speaker presentations for healthcare professionals

with a real-time online global audience. The content was categorized

into six sections (Table 1), available for scientific discussion and

continuous education on nephrologycampus.com. The online library

also includes visual aids to enhance learning accessibility, such as

movies and animated videos elucidating complex membrane science

concepts, e.g., a movie explaining the stages of production of both

membranes and dialyzers, and an animated video series depicting the

membrane perspective of uremic toxins.
1.1 Delivery of hemodialysis

Patients with end-stage kidney disease (ESKD) undergo MHD

with approximately 89% experiencing a substantial disease burden,
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reduced life expectancy, notable symptom burden, and a low

health-related quality of life (2). These patients have a complex

clinical profile, commonly presenting multiple comorbidities,

especially cardiovascular (CV) pathologies, protein-energy

wasting, and diabetes (4), with increasing age exacerbating their

health complications (5). Albeit life-saving, clinical outcomes

associated with MHD lag behind the general population and

other chronic diseases (2). Rather than exclusively prioritizing

survival, there’s an increased focus on symptom alleviation and

enhancing functional and social rehabilitation (1). The current

intermittent dialysis schedule hampers effective uremic solute

removal, internal milieu restoration, clinical tolerance, and patient

rehabilitation (6, 7). Research suggests more frequent and extended

sessions, often referred to as intensive dialysis, could mitigate these

challenges, yet concerns about elevated costs impede widespread

adoption by payors and healthcare systems (1, 8). Technological

advances in extracorporeal circuitry (ECC) have historically

improved the efficiency, reliability, safety, and handling of renal

replacement therapy procedures (9, 10). The dialysis membrane,

while crucial for detoxification in MHD, also contributes to

bioincompatible reactions with their entailed dialysis-

related morbidity.

MHD facilitates life prolongation by regularly reducing

concentrations of harmful compounds (11). A semi-permeable
Frontiers in Nephrology 03
membrane allows for size-dependent elimination of substances to

combat the toxic uremic milieu. The membrane’s structure, dialyzer

design, and operating conditions determine solute exchange

efficiency (12). Each dialyzer/membrane type presents three

interrelated functionalities, each of them decisive for therapeutic

quality: a ‘bioexchanger,’ eliminating toxins and excess water, a

‘bioreactor,’ initiating biochemical reactions, and a ‘bioselector,’

balancing the removal of unwanted and essential substances (13)

(Figure 1). Despite progress, advancements in membrane science

and technology remain vital for refining dialysis therapies (14).

The assessment and removal of accumulated uremic retention

solutes (URS) during MHD are fundamental for replacing kidney

function in ESKD. Traditionally, URS classification focused on size

(15), aiding membrane development but limiting clinicians’ ability

to reduce circulating uremic toxin levels affecting patients’ well-

being (2). A more goal-directed classification based on biological/

chemical and clinical toxicity (16) has been proposed to grade key

URS compounds (17) (Table 2), identify target molecules for

removal, and develop novel elimination methods. However,

distinguishing between toxic and beneficial metabolites remains

challenging (18), as MHD follows size-exclusion, not toxicity

principles. Hence, essential substances (e.g., albumin) can leak

through membranes with larger pore size (19), calling for a

paradigm shift toward focusing on the dialysis-related loss of
TABLE 1 Key topics of the Membrane Symposium: aspects of progress in dialysis membrane technology aiming for an improvement of clinical results
and topics within the Membrane Symposium.

Key topics of the membrane symposium

Delivery
of hemodialysis

Chronic
inflammation

Inflammation
bioincompatibility axis

Blood-
material interaction

Membrane and
dialyzer technology

Emerging trends and
future frontiers

V

Improving Clinical Outcomes and Therapy Tolerance
FIGURE 1

Relationships between the three most characteristic dialyzer functions. Modified from Canaud et al. (13).
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beneficial metabolites (20). The uremic milieu entails various

biochemical disorders (i.e., inflammation, oxidative and chlorine

stresses, and carbamylation reactions) that modify accumulated

compounds and increase their toxicity (i.e., beta2-microglobulin

and B2M-amyloidosis). Additionally, discussions often overlook the

adverse effects of inorganic compounds like water, sodium,

potassium, and phosphate (21). impacting patients’ quality of life

(QoL) and contributing to hemodynamic instability, CV morbidity,

and mortality in MHD patients (22). Tissue sodium accumulation

contributes to cardiac and metabolic disorders independently from

its osmotic and hemodynamic action (22). Hyperphosphatemia is

important in the pathogenesis of secondary hyperparathyroidism,

endothelial dysfunction (23), and increased all-cause and CV

mortality (24). During MHD, considerable amounts of

intracellular phosphate are removed as observed by a significant

decrease in intracellular ATP, reflecting MHD-induced cellular

stress and/or intracellular phosphate regulation with potentially

severe clinical consequences (25, 26). Understanding and managing

these compounds’ effects are essential in optimizing treatment

strategies for patients undergoing dialysis.

Among the currently available renal replacement modalities,

online hemodiafiltration (HDF) is considered the most advanced

renal replacement therapy, offering improved clearance of larger
Frontiers in Nephrology 04
uremic toxins and better hemodynamic tolerance (27). It differs

from conventional MHD by infusing sterile fluid prepared ‘online’

from standard dialysis fluid into the bloodstream, enhancing blood

cleansing (28), (29). Depending on convection volume, high-dosage

HDF is associated with better survival rates compared to standard

HD (29–32) with survival improving at about 55 to 75 l convection

volume per week (29, 33). The CONVINCE trial provides evidence

for the superiority of high-volume HDF with a 23% risk reduction

in all-cause mortality (34). Mechanisms remain unclear but are

likely multifactorial (35). The ongoing UK H4RT study is expected

to further support HDF’s superiority over high-flux MHD (36, 37).
1.2 Systemic inflammation

Systemic inflammation is intrinsically linked to chronic kidney

disease (CKD) (38), contributing to end-organ damage, particularly in

the cardiovascular system and to premature ageing (39). In early CKD

stages, over half of patients exhibit increased CRP levels (40), with

severity escalating in later stages and complex inflammatory processes

persisting in ESKD (41, 42). Uremic toxins contribute to pro-

inflammatory effects, potentially catalysing the toxic uremic milieu,

promoting risks for wasting and vascular disease (17, 37, 40, 43–46).
TABLE 2 Uremic toxin classification based on evidenced toxicity.
A systematic review approach was used to assess 71 uremic retention solutes. The score was based on clinical evidence (2 points) and experimental evidence (2 points) of detrimental effects, with a
maximum of 4 points (summarized under “Evidence score”). A subclassification was applied based on the number of organ systems for which a negative impact was demonstrated (summarized
under “Toxicity Score – arrow and number at left”). The highest-ranking toxins (scoring 4 and 3) are illustrated. The highest scores were obtained for a broad range of solutes (small water-soluble
compounds, protein-bound compounds, middle molecules/small peptides, and large molecules whose size exceeds that of the pores of the kidney’s glomerular basement membranes). Modified
from Vanholder et al (17).
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The large gap between the health span and lifespan of patients

with chronic conditions is a major problem in modern healthcare

(47). Lifestyle diseases contribute to senescence and vascular aging

in CKD, with factors like uremic toxins, inflammation, and dialysis

amplifying oxidative stress and inflammation (47, 48). Loss of gut

microbiota biodiversity due to dietary effects further contributes to

the allostatic load and aging (‘inflammaging’) (39). A five-year

difference in biological and chronological age in patients requiring

MHD emphasizes the need for interventions against uremic

inflammation (47, 49), eg by reducing inflammatory molecule

production and strategies enhancing their removal through

improved dialytic clearance (40). Phenotyping according to

comorbidities, clinical, social, or cultural and environmental stress

factors that add to the global burden of CKD (50) and endotyping

for uremic toxins by proteomics, metabolomics, and genetic

markers based on selected biomarkers both aim to individualize

HD strategies to improve patient outcomes (50–52).

Imbalances between oxidant and antioxidant production, or

pro-inflammatory and anti-inflammatory mechanisms, mark the

diseased state in CKD (53). Endogenous (i.e. endothelial nitric oxide

synthase uncoupling) and exogenous mechanisms (i .e.

environmental pollution) contribute to oxidative stress, impacting

various organs and pathways. This results in increased

proinflammatory cytokines, fuelling CKD progression in a vicious

circle (54). Post-translational modifications (PTMs) are

bidirectional links between oxidative stress, inflammation, and

premature aging in CKD (55). PTMs, mainly phosphorylation,

acetylation, and ubiquitination, can alter the structure and

function of proteins, exerting adverse or beneficial effects on the

kidneys (56, 57). Therapeutic approaches to limit oxidative stress

and inflammation and to increase beneficial PTMs are available but

need to be tested in clinical trials.

Systemic inflammation associated with chronic kidney disease

is part of the uremic milieu disturbances that contribute to the

morbidity and mortality of CKD patients. Besides senescence and

aging, it is now well established that inflammation and its associated

disorders contribute to accelerated cardiovascular disease (58–60),

protein-energy wasting (61, 62), vascular calcification (63) and bone

disorders, and loss of kidney function (50, 64).
1.3 Bioincompatibility and inflammation
axis in MHD therapy

By reducing uremic toxin load and exposure, HD therapy helps

to decrease inflammation. However, it introduces other factors,

including bioincompatibility at the ECC-patient interface and

dialysis fluid contamination, which can amplify inflammation (65–

68). Bioincompatibility and inflammation are then inherent to all

extracorporeal therapies representing an additional risk factor to

MHD patients. Inflammation in MHD results from repetitive

interactions between blood, the dialysis membrane, and

contaminants in the dialysis fluid. This induces a series of cascade

reactions, including complement activation, leukocyte activation,

cytokine release, and the release of oxidative stress mediators,

which sustain acute phase protein responses and contribute to
Frontiers in Nephrology 05
related organ damage (10, 69). Mitigating bioincompatibility

reactions by improving membrane design, circuit components, and

dialysis fluid purity is crucial during MHD delivery, as any additional

inflammation compounds the existing inflammatory burden of CKD.

Despite advances in membrane, dialyzer, and extracorporeal circuit

design, bioincompatibility remains a significant issue to address (70).

Addressing these issues, e.g. by improving membrane and dialysate

purity, helps ameliorate the detrimental effects of the uremic toxin

milieu (2, 71).

Independent studies link increased inflammation to factors

related to MHD, including ECC components, modality, and

patient comorbidities (68). Addressing inflammation in MHD

requires patient-individualized approaches due to its multifaceted

origins (72)—factors like membrane type, modality, convective

volume, and dialysis fluid quality impact MHD-induced

inflammation (70). The CONTRAST study revealed that stable

CRP values can be maintained over a 3-year online HDF treatment,

while CRP levels increased during MHD (73). The use of ultrapure

dialysis and sterile substitution fluids in HDF can further reduce

inflammation by eliminating endotoxins from dialysis fluid (74)

and help preserve residual kidney function in hemodialysis (75, 76).
1.4 Blood-material interactions:
unavoidable consequences of
maintenance HD

ECC components (needle, blood tubing, air-trap chamber, and

dialyzer) interact with blood constituents like plasma proteins and

blood cells (70). Without the natural endothelial lining protection,

blood encounters polymeric materials and geometries in the dialysis

circuit (77), triggering potent reactions and blood component

activation. Altered plasma proteins or cells engage multiple

biochemical pathways, and the patient’s intrinsic immune

response and complement pathways are activated during blood-

membrane interaction. Precise characterization and risk

stratification guide membrane selection to reduce ECC-induced

inflammation, though clinical studies on immune activation in

dialysis patients remain scarce.

The 1970s discovery of cellulose-based MHD membranes

causing high complement pathways and leukocyte activation

sparked the biocompatibility debate. Synthetic membranes induce

lower activation and less inflammatory response but don’t eliminate

it. Despite membrane biocompatibility advancements, achieving

entirely compatible membranes remains challenging (78).

Biocompatibility extends beyond membranes to the rest of the

ECC. Heparin, commonly used for anticoagulation, is effective but

doesn ’t fully prevent bioincompatibility or coagulation/

complement-leukocyte activation (10), unlike citrate in specific

extracorporeal therapies.

As an integral part of the innate immune system, complement

plays a crucial role in antibody-mediated immunity (79). Its functions

include defending against bacterial infection, bridging innate and

adaptive immunity, and eliminating immune complexes. In chronic

conditions like CKD, the complement system actively regulates

various inflammatory responses. In HD, complement activation
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induces inflammation, promotes coagulation, and impairs host

defense. Overactivation of complement pathways leads to aging-

related diseases, e.g. Alzheimer’s disease or age-related macular

degeneration (AMD). In CKD, the complement-inflammation axis

mimics accelerated kidney aging, involving key players like Klotho

expression, C1-inhibitor, pentraxin 3, pericytes, and endothelial-to-

mesenchymal transition (74, 75, 80, 81). Understanding HD-induced

inflammaging, causing immunological dysfunction and long-term

complications that affect mortality (82), could inspire new therapeutic

approaches to delay this ‘premature aging phenotype’ and kidney

aging processes (83).

Minimizing adverse reactions requires comprehensive

characterization of blood-contacting medical devices like dialyzers

and membranes (84). Evaluating blood-membrane interactions

demands sophisticated methodologies and intricate analytical

techniques. Protein adsorption to biomaterials determines subsequent

blood reactions, creating a biologically active surface (2-10 nm thick),

of protein concentrations up to 1000 times higher than plasma.

Proteomic technologies help characterize this protein adsorption/

desorption (‘Vroman effect’) (85) creating a ‘blood-material interface’

that then mediates blood cell adhesion and coagulation or complement

system activation (86). Platelet and leukocyte activation induce the

release of extracellular vesicles, critical markers for cellular activation

and intercellular communication (87). Those vesicles are a source of

phosphatidylserine and tissue factor, amplifying thrombin generation

(88). Flow cytometric techniques prove valuable for studying

interactions of extracellular vesicles with biomaterials or with

leukocyte subsets (89).

Dialyzer membranes vary in structure and biocompatibility,

with different materials and production processes (90, 91). Even

membranes from the same base polymer (e.g., polysulfone) may

exhibit different biocompatibility and safety profiles (92). Guided by

clinical experience, manufacturers aim to minimize adverse

reactions, balancing hydrophobic and hydrophilic properties to

compromise between complement and coagulation pathway

activation. Approaches like adding PVP or thrombomodulin to

polysulfone aim to prevent coagulation or platelet adhesion, but

data on their success are controversial (93). Vitamin E-coated

membranes target oxidative stress and DNA damage reduction

(94, 95), but their applicability is limited due to manufacturing

constraints and costs.

ECC clotting issues in HD units are common, often stemming

from variable and sub-optimal anticoagulation. Assessing clotting

relies on subjective visual evaluations of dialyzer color (96).

Objective methods such as micro-computed tomography

scanning of fibers offer a superior approach to visual scoring, dry

weight assessment, or pressure measurement for addressing

anticoagulation and fiber patency issues, at least in experimental

settings (97).
1.5 Advances in membrane and technology

Several symposium presentations focused on dialysis

membrane and dialyzer development, highlighting engineering

accomplishments in physiochemistry, thermodynamics, material
Frontiers in Nephrology 06
sciences, and sterilization. The growing demand for dialyzer units

necessitates mass production with robotic automation which

requires a balance between productivity, recycling, environmental

safety, and cost constraints. From conceptualization to delivery,

attention is paid to uniformity, quality, clinical performance, and

safety. Adjusting membrane ‘spinning’ parameters customizes pore

size and porosity for desired sieving properties (98).

However, increasing porosity to remove larger uremic toxins

may cause essential substance loss: albumin and amino acid leakage

have to be kept to a minimum (19). Achieving optimal membrane

structure relies on selecting core polymer–copolymer combinations

with lower activation of biological pathways during blood-

membrane interaction (98) and higher pro-inflammatory

endotoxin retention (99), less protein fouling, and higher

hydraulic and solute permeability (100). The development of

superflux or super high-flux membranes, utilizing conventional

polymers to broaden the range of uremic toxin removal, is a key

focus of membrane research and advanced technology in dialysis.

Medium Cutoff (MCO) and High Cutoff (HCO) membranes

exemplify this research, aimed at improving the clearance of

middle- and large-molecular-weight uremic toxins compared to

traditional high-flux membranes (13, 101, 102). These

advancements are achieved by increasing membrane pore size

and enhancing internal filtration and backtransport mechanisms,

which together optimize convective clearance. MCO membranes

are specifically designed to remove middle- and large-sized uremic

toxins while minimizing the loss of essential plasma proteins, such

as albumin. MCO-based dialyzers are currently undergoing

evaluation in clinical hemodialysis settings for their potential to

enhance internal convective clearance, such as through internal

hemodiafiltration. HCO membranes, with even larger pore sizes,

enable the removal of larger molecules, including inflammatory

mediators and nephrotoxic light chains, which are implicated in

conditions like myeloma kidney. This technology holds promise for

patients with acute kidney injury (AKI) characterized by severe

inflammatory responses, as well as those requiring continuous

kidney replacement therapy (CKRT). Despite the potential of

these advanced membranes, clinical trials aimed at demonstrating

their superiority have thus far yielded disappointing results. Further

research is needed to fully assess their efficacy and optimize their

clinical applications. Microporous silicone membranes, particularly

silicon nanopore membranes (SNMs), are under development and

evaluation for use in innovative wearable and implantable artificial

kidney projects (103, 104). These membranes have uniform

nanopores, typically ranging from 5 to 10 nanometers in size,

which are critical for effectively filtering uremic toxins from the

blood. However, the low porosity of these membranes (≤1%)

presents a challenge. To address this, advances such as arrays of

nanoslits are being explored to enhance permeability without

compromising selectivity for small solutes. SNMs have shown

promise in reducing the surface area needed for dialysis, which is

a key factor in the miniaturization of artificial kidneys, potentially

paving the way for the development of implantable devices. Trilayer

interlinked graphene oxide membrane represents a cutting-edge

advancement in dialysis technology, capitalizing on graphene’s

unique properties to improve separation performance (105).
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Laboratory tests have demonstrated that these membranes can

achieve high permeability and selectivity, offering potential

advantages in biocompatibility and toxin removal efficiency

compared to traditional polymeric membranes. These emerging

membrane technologies present significant disruptive potential for

enhancing renal replacement therapy. However, further work is

needed in scaling up manufacturing processes and conducting

outcome-based studies before these innovations can be fully

integrated into the therapeutic arsenal of renal replacement therapy.

Innovative processes aimed at modifying membrane surface

reactivity, such as stabilizing polyvinylpyrrolidone (PVP) on the

blood-contacting surface, are crucial for reducing protein

adsorption and enhancing biocompatibility (106): While

conventional membranes elute PVP into the bloodstream (107), a

recent approach stabilizes PVP with a-tocopherol (106). This

modification creates a stable hydro layer at the inner surface,

repelling excessive adsorption of proteins (107), enhancing

biocompatibility, and maintaining high solute permeability

throughout the treatment session (108).

Clinical evaluation and market introduction of innovations

require evidence-based medicine (109). Real-world evidence is

often used due to the time and cost challenges of interventional

trials (110, 111). ECC and vascular access patency have been an

issue (112), (113) that led to the exploration of alternative

anticoagulation strategies, such as heparin-free MHD and

membrane modification with fluorinated macromolecules (114).

Dialyzer fibers present fluorinated end groups to create a surface

that minimizes protein adsorption, platelet adhesion, and platelet

activation. Evaluation of fluorinated macromolecule-modified

dialyzers reveals promising results in reducing thrombus

formation and bacterial adhesion (115), (116).
Frontiers in Nephrology 07
Efforts to improve HD membrane biocompatibility (117)

historically relied on trial-and-error methods, often involving

costly and time-intensive laboratory evaluations (118). A

mathematical model based on morphology, chemistry, and

interaction affinity of two membranes, along with in vivo and in

vitro data (119), accurately predicted inflammatory biomarker

release during HD therapy (120). Incorporating clinical operating

conditions, the model´s applicability was extended to various

membrane materials and facilitates the prediction and in vitro

validation of inflammatory responses associated with synthetic

membranes. The model offers a valuable tool to guide the

development of novel materials and support evidence-based

membrane synthesis (119, 120).
1.6 Emerging trends and future frontiers

Over decades, MHD operated by size-exclusion-based removal

of uremic toxins across semipermeable membranes. Various

avenues to improve HD strategies have been explored and

presented at the symposium.

Wi th a porous inner l ayer o f po lye thersu l fone /

polyvinylpyrrolidone (PES/PVP) (121) and an outer layer with

activated carbon, Mixed Matrix fiber Membranes (MMMs)

present a promising innovation (121–124) of high-flux

membranes that showed limitations in protein-bound uremic

toxin (PBUT) removal. MMMs offer effective filtration through

diffusion, convection, and adsorption, facilitating MHD with

reduced dialysate amounts. They provide high flux, low protein

adsorption, low albumin leakage, and excellent hemocompatibility

(115, 121), and may protect patients by adsorbing bacterial
FIGURE 2

Principle of a bioartificial kidney. The living membrane of the BAK consists of human proximal tubule epithelial cells (PTEC) cultured on hollow
membranes. These cells are capable of active transport of uremic toxins and nutrients and secretion of bioactive molecules. Modified from Van
Gelder et al.(129).
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pyrogens from the dialysate (125). They also show potential for urea

removal from dialysate (126) suggesting applications in portable

artificial kidney systems.

Efforts to engineer cell-based kidney replacement therapy focus

on creating a bioartificial kidney (BAK) replicating key functions of

native kidneys, with uremic waste removal as a primary objective

(127, 128). Human conditionally immortalized proximal tubular

epithelial cell (ciPTEC) lines show promise for BAK development

(Figure 2) (124), with the ability of active organic cation transport

(130, 131), secretory clearance of albumin-bound uremic toxins and

albumin reabsorption. Endocrine functions like secretion of the

active form of vitamin D, auto-immune and inflammatory

response, and tumorigenic and oncogenic effects have also been

investigated (132–134). Absent alloo-stimulatory effects and

ciPTEC monolayer stability indicate safety for BAK application,

but challenges such as cell sourcing, organ scaffolding, and immune

response must be addressed before clinical adaptation for human

treatment (135, 136).

Several research groups are advancing both wearable and

implantable artificial kidneys as viable alternatives to

conventional MHD (105). Notable among these efforts is the

KidneyX project in the US. Wearable artificial kidneys (WAKs)

are designed to be lightweight and portable, offering continuous

dialysis and enhanced patient mobility. Implantable artificial

kidneys (IAKs) aim to replace failing kidneys through surgical

implantation of miniaturized artificial kidney (e.g., silicone

nanoporous slit membranes and advanced housing and

connecting materials). These devices promise a more permanent

and transformative solution. Despite significant technological

advancements, challenges such as device size, biocompatibility,

vascular access, bladder connection, toxin removal efficiency, and

long-term functionality still need to be addressed through clinical

trials. Additionally, recent progress in the transplantation of

genetically modified porcine kidneys has shown promising results

and is approaching clinical application (137, 138).

Artificial intelligence (AI) applications in nephrology, though

scarce, show promise (139, 140). Deep learning, a subset of machine

learning, involves multi-layered neural networks learning from

extensive data (141). The AI application process uses problem

definition, data preparation, model building, and data validation

steps. In CKD care AI has been successfully applied to predict

clinical events, to provide treatment decision aids for optimal drug

prescription in anemia control, and to identify patterns for event

development (e.g., classification of phenotypical clusters of

arteriovenous fistula aneurysms) (142). Optimized machine

learning models could enhance risk identification and drive pre-

emptive interventions (143). While AI in dialysis practice is in its

infancy, more research is needed for consolidated aids in clinical

decision-making, and future applications may offer real-time,

continuous recommendations for optimal kidney care

outcomes (144).

Emerging trends in HD address the growing demand for kidney

replacement therapies and the limitations of the current provider

system (145). Therapeutic advances were associated with parallel
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reductions in short-term risk of death and major adverse CV events

(143). More frequent and longer MHD sessions show improvements

in CV markers (146, 147), and flexible care models, including home

or satellite HD and incremental, extended, and shared care, enhance

treatment options (135, 148, 149). Wearable artificial kidneys aim for

continuous blood purification and patient autonomy, but challenges

like electrolyte balance (150) and suitable membrane selection (151)

need to be addressed. Further investigation into preserving residual

kidney function and modulating gut microbiota are exciting

prospects for shaping the future of dialysis.

This future cannot be designed without considering the future of

our planet. Dialysis therapies come at an enormous environmental

cost due to their water consumption, greenhouse gas emissions, and

waste production. Policymakers, manufacturers, providers,

healthcare providers, and (future) patients need to put efforts into

implementing urgent environmental changes which must include but

are not limited to dialysate regeneration, dialysate flow reduction,

water distillation systems for dialysate production, and biodegradable

and bio-based polymers (150, 152).
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28. Nubé MJ, Peters SAE, Blankestijn PJ, Canaud B, Davenport A, Grooteman MPC,
et al. Mortality reduction by post-dilution online-haemodiafiltration: a cause-specific
analysis. Nephrol Dial Transplant. (2017) 32(3):548–55. doi: 10.1093/ndt/gfw381

29. Peters SA, Bots ML, Canaud B, Davenport A, Grooteman MP, Kircelli F, et al.
Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled
individual participant data analysis from four randomized controlled trials. Nephrol
Dialysis Transplant. (2016) 31:978–84. doi: 10.1093/ndt/gfv349

30. Grooteman MP, Van Den Dorpel MA, Bots ML, Penne EL, Van Der Weerd NC,
Mazairac AH, et al. Effect of online hemodiafiltration on all-cause mortality and
cardiovascular outcomes. J Am Soc Nephrol. (2012) 23:1087–96. doi: 10.1681/
ASN.2011121140

31. Ok E, Asci G, Toz H, Ok ES, Kircelli F, Yilmaz M, et al. Mortality and
cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-
flux dialysis: results from the Turkish OL-HDF Study. Nephrol Dial Transplant. (2013)
28:192–202. doi: 10.1093/ndt/gfs407

32. Morena M, Jaussent A, Chalabi L, Leray-Moragues H, Chenine L, Debure A,
et al. Treatment tolerance and patient-reported outcomes favor online
hemodiafiltration compared to high-flux hemodialysis in the elderly. Kidney Int.
(2017) 91:1495–509. doi: 10.1016/j.kint.2017.01.013

33. Canaud B, Barbieri C, Marcelli D, Bellocchio F, Bowry S, Mari F, et al. Optimal
convection volume for improving patient outcomes in an international incident dialysis
cohort treated with online hemodiafiltration. Kidney Int. (2015) 88:1108–16.
doi: 10.1038/ki.2015.139

34. Blankestijn PJ, Vernooij RWM, Hockham C, Strippoli GFM, Canaud B,
Hegbrant J, et al. Effect of hemodiafiltration or hemodialysis on mortality in kidney
failure. New Engl J Med. (2023) 389(8):700–9. doi: 10.1056/NEJMoa2304820

35. Blankestijn PJ, Fischer KI, Barth C, Cromm K, Canaud B, Davenport A, et al.
Benefits and harms of high-dose haemodiafiltration versus high-flux haemodialysis: the
comparison of high-dose haemodiafiltration with high-flux haemodialysis (CONVINCE)
trial protocol. BMJ Open. (2020) 10:e033228. doi: 10.1136/bmjopen-2019-033228

36. Vernooij RW, Bots ML, Strippoli GF, Canaud B, Cromm K, Woodward M, et al.
CONVINCE scientific committee. CONVINCE in the context of existing evidence on
haemodiafiltration.Nephrol Dial Transplant. (2022) 37(6):1006–13. doi: 10.1093/ndt/gfac019

37. Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease.
Blood purification. (2015) 39:84–92. doi: 10.1159/000368940

38. Machowska A, Carrero JJ, Lindholm B, Stenvinkel P. Therapeutics targeting
persistent inflammation in chronic kidney disease. Trans Res. (2016) 167:204–13.
doi: 10.1016/j.trsl.2015.06.012

39. Kooman JP, Dekker MJ, Usvyat LA, Kotanko P, Van Der Sande FM, Schalkwijk
CG, et al. Inflammation and premature aging in advanced chronic kidney disease. Am J
Physiology-Renal Physiol. (2017) 313:F938–50. doi: 10.1152/ajprenal.00256.2017

40. Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease
and dialysis. Nephrol Dialysis Transplant. (2018) 33:iii35–40. doi: 10.1093/ndt/gfy175

41. Carrero JJ, Stenvinkel P. Inflammation in end-stage renal disease—what have we
learned in 10 years? Semin Dialysis. (2010) 23(5):498–509. doi: 10.1111/j.1525-
139X.2010.00784.x

42. Mihai S, Codrici E, Popescu ID, Enciu A-M, Rusu E, Zilisteanu D, et al.
Inflammation-related patterns in the clinical staging and severity assessment of
chronic kidney disease. Dis Markers. (2019) 2019. doi: 10.1155/2019/1814304

43. Mihai S, Codrici E, Popescu ID, Enciu A-M, Albulescu L, Necula LG, et al.
Inflammation-related mechanisms in chronic kidney disease prediction, progression,
and outcome. J Immunol Res. (2018) 2018. doi: 10.1155/2018/2180373
Frontiers in Nephrology 10
44. Vanholder RC, Glorieux GL, De Smet RV. Back to the future: middle molecules,
high flux membranes, and optimal dialysis. Hemodialysis Int. (2003) 7:52–7.
doi: 10.1046/j.1492-7535.2003.00004.x

45. Lau WL, Kalantar-Zadeh K, Vaziri ND. The gut as a source of inflammation in
chronic kidney disease. Nephron. (2015) 130:92–8. doi: 10.1159/000381990

46. Carrero JJ, Stenvinkel P. Persistent inflammation as a catalyst for other risk
factors in chronic kidney disease: a hypothesis proposal. Clin J Am Soc Nephrol. (2009)
4:S49–55. doi: 10.2215/CJN.02720409

47. Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels P, et al.
Accelerated vascular aging in chronic kidney disease: the potential for novel therapies.
Circ Res. (2023) 132:950–69. doi: 10.1161/CIRCRESAHA.122.321751

48. Dai L, Qureshi AR, Witasp A, Lindholm B, Stenvinkel P. Early vascular ageing
and cellular senescence in chronic kidney disease. Comput Struct Biotechnol J. (2019)
17:721–9. doi: 10.1016/j.csbj.2019.06.015

49. Tian YE, Cropley V, Maier AB, Lautenschlager NT, Breakspear M, Zalesky A.
Heterogeneous aging across multiple organ systems and prediction of chronic disease
and mortality. Nat Med. (2023) 29:1221–31. doi: 10.1038/s41591-023-02296-6

50. Stenvinkel P, Chertow GM, Devarajan P, Levin A, Andreoli SP, Bangalore S,
et al. Chronic inflammation in chronic kidney disease progression: role of nrf2. Kidney
Int Rep. (2021) 6:1775–87. doi: 10.1016/j.ekir.2021.04.023

51. Dai L, Schurgers LJ, Shiels PG, Stenvinkel P. Early vascular ageing in chronic
kidney disease: impact of inflammation, vitamin K, senescence and genomic damage.
Nephrol Dialysis Transplant. (2020) 35:ii31–7. doi: 10.1093/ndt/gfaa006

52. Franco I, Helgadottir HT, Moggio A, Larsson M, Vrtačnik P, Johansson A, et al.
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