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Acute kidney injury (AKI) in pediatric and neonatal populations poses significant

diagnostic and management challenges, with delayed detection contributing to

long-term complications such as hypertension and chronic kidney disease.

Recent advancements in artificial intelligence (AI) offer new avenues for early

detection, risk stratification, and personalized care. This paper explores the

application of AI models, including supervised and unsupervised machine

learning, in predicting AKI, improving clinical decision-making, and identifying

subphenotypes that respond differently to interventions. It discusses the

integration of AI with existing risk scores and biomarkers to enhance predictive

accuracy and its potential to revolutionize pediatric nephrology. However,

barriers such as data quality, algorithmic bias, and the need for transparent and

ethical implementation are critical considerations. Future directions emphasize

incorporating biomarkers, expanding external validation, and ensuring equitable

access to optimize outcomes in pediatric AKI care.
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Introduction and background

Acute kidney injury (AKI) is an important diagnosis in hospitalized children as it is a

frequently missed complication (1). AKI affects about 26% of hospitalized children based on

the KDIGO criteria, 24% when using only the serum creatinine (SCr) KDIGO criteria, and

31% when applying both the urine output (UOP) and SCr KDIGO criteria (2). Pediatric

patients who experience mild or moderate AKI are at increased risk of developing

hypertension, proteinuria, and chronic kidney disease in adulthood (3, 4). KDIGO defines

AKI based on SCr and UOP, an imperfect measurement (5). SCr reflects changes in

glomerular filtration rate (GFR) and may take 24–36 hours to rise after a significant renal

injury. These delays in the current gold standard diagnostic potentially postpone timely care.

Neonatal AKI is a distinct form of pediatric AKI, attributed to the unique physiology of

neonatal kidneys and specific risk factors in this population, with NICU incidence rates

ranging from 8% to 63% (6). Neonates who experience AKI face a higher risk of developing
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hypertension, chronic kidney disease, and proteinuria later in life

(4). The Assessment of Worldwide Acute Kidney Injury

Epidemiology in Neonates study further demonstrated that AKI is

independently linked to longer NICU stays and higher mortality

rates (7). Several conditions heighten the risk of neonatal AKI,

including low birth weight, early gestational age/prematurity,

hypoxic events, congenital anomalies of the kidney and urinary

tract, and hypoperfusion/ischemia (8). Secondary risk factors

include perinatal asphyxia, sepsis, congenital heart disease (often

requiring cardiac surgery), and the increased use of nephrotoxic

medications such as antimicrobials and NSAIDs (9).

The use of artificial intelligence (AI) as a method of AKI risk

stratification and detection via clinical decision tools is becoming

increasingly common. As technology advances, AI-driven AKI risk

prediction models for pediatric and neonatal populations offer the

potential to develop new risk scores and measurement tools that can

identify children at risk for AKI earlier and more accurately. This

white paper serves to depict current forms of AI, potential uses for

AI in the diagnosis and management of pediatric AKI, and

considerations for using AI.
AI types

Machine learning is a field centered on enabling computer

systems to enhance their performance through exposure to data,

without relying on explicitly programmed instructions.

Fundamentally, it involves the automatic detection of patterns in

data, which are then used to make predictions (10). Deep learning,

particularly convolutional neural networks, is an evolving field of AI

that models complex data relationships and automatically detects

features from large labeled datasets (11). Applied to kidney diseases,

these methods have shown high accuracy and robustness across

various imaging modalities. Natural language processing can

analyze clinical notes to extract relevant information, enabling

efficient strategies and assessments that improve diagnostic

accuracy and save time (12).

Supervised learning is a typeofmachine learningwhere algorithms

are trained using labeled data, meaning that the training dataset

includes both features and their corresponding outcomes. The goal is

to build a model that can accurately predict outcomes based on new

data. Types of AI supervised learning algorithms include advanced

non-linear machine learning techniques, including random forest,

extreme gradient boosting, broad learning systems, elastic net final,

and artificial neural networks. A systematic review in adult patients

found that the broad learning system and elastic net final models had

the highest pooled area under the curve (AUC) of 0.852 for predicting

AKImortality (13).Aproposed clinicalmodelbasedon14-15variables

of various AI models had the highest negative predictive value,

indicating its potential as a rule-out tool. These algorithms have

shown potential to improve prognostic accuracy by incorporating

complex variables andutilizing large datasets likeMedical Information

Mart for Intensive Care III and electronic health records, offering

promise in reducing mortality and poor outcomes in AKI patients.

Notably, random forest can be applied to a wide range of prediction

issues using a relatively small number of tuning parameters, compared
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to othermethods (14). Chiofolo et al. used a continuous random forest

algorithm in adults to achieve an AUROC of 0.88 on validation, with

92% sensitivity, 68% specificity, and detection of 30% of AKI cases at

least 6 hours before onset, while for AKI stages 2-3, it had 91%

sensitivity, 71% specificity, and detected 53% of cases at least 6 hours

before onset (15). Liu et al. reported that an XGBoost model for

predictinghospitalmortality in adultAKIpatients achieved thehighest

performance with an AUROC of 0.796 (p < 0.01), an F1 score of 0.922

(p < 0.01), and an accuracy of 0.860 (16).

Unsupervised learning, another subtype of machine learning, is

used to analyze and cluster data without predefined labels, meaning

that there are no outcomes in the training data (17). Algorithms like

k-Means, deep belief network/convolutional neural network are

used. Le et al. used a convolutional neural network in adults to

achieve an AUROC of 0.86 and PPV of 0.24, outperforming

XGBoost and SOFA in predicting AKI 48 hours before onset,

without relying on serum creatinine levels (18). Though less

common in healthcare, unsupervised learning is useful for tasks

that require identifying natural groupings and hidden patterns

within data. Semi-supervised machine learning uses a mix of

labeled and unlabeled data, training on the labeled portion while

predicting and learning from the unlabeled data (19).

Reinforcement learning, distinct from both supervised and

unsupervised learning, involves learning through rewards, similar

to psychological conditioning (20).

Most commonly, current models for AKI prediction use

supervised learning; however, unsupervised models hold great

potential in the future of AKI risk scores. The basics of AI

algorithms and how they function, especially the difference

between supervised and unsupervised learning, is particularly

important to understand prior to their usage in pediatric AKI.
Considerations for the usage of AI in
pediatric nephrology

Recently, there have been many AI algorithms developed, with

variations in quality and clinical effectiveness (21). The TRIPOD

Initiative provides guidelines for transparent reporting in the creation

and validation of such models for diagnostic or prognostic purposes

(22). However, there are no widely accepted guidelines surrounding

AI development and usage in the healthcare setting. AI usage should

be ethical, transparent, and safe, reducing disparities in healthcare,

protecting privacy, and emphasizing patient care (23).
AI applications in pediatric AKI

AI-driven risk prediction scores for AKI have been developed

across clinical areas such as critical care, surgery, and contrast-induced

nephropathy to identify at-risk patients and guide clinical decisions

(16, 24, 25). In pediatric nephrology, there have been a fewer number of

AI algorithms developed that look solely at the pediatric population.

Improvements in AI algorithms are also being developed. For

example, time series data analysis appears to be beneficial for AKI

prediction models to reflect the temporal information between
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variables (26). This allows the clinicians to personalize treatment

based on the length of time each patient stays in a hospital or

intensive care unit can differ from person to person, and variations

in laboratory values and vital signs that measured continuously like

heart rate to laboratory values that are measured on an as-

needed basis.

AI can also be used for risk stratification. For example, an AI

algorithm could be applied to a validated risk scores such as the

Kidney Failure Risk Equation, which estimates the 2- and 5-year

risk of kidney failure using age, sex, eGFR, and urinary albumin-

creatinine ratio (UACR) (27). A random forest model, applied with

the simplified acute physiology score II, achieved a Brier score of

0.085 (95% CI: 0.084-0.086), an AUROC of 0.866 (95% CI: 0.862-

0.870), and an accuracy of 0.728 (95% CI: 0.715-0.741) (28). By

incorporating additional variables such as genetic data, lifestyle

factors, and real-time monitoring of patient health metrics, the AI

algorithm could provide more personalized and timely

interventions. AI integrated into hospital electronic health records

may also enhance clinical decision-making by analyzing patient

data to provide evidence-based recommendations, predict

outcomes, detect critical events early, and alert healthcare

professionals to potential risks, ultimately improving care quality

and reducing mortality (29).
Identifying AKI subphenotypes

The use of AI has proven effective in specific clinical settings,

such as hospital-acquired and postoperative AKI, cancer patients

with AKI, traumatic injuries, and critical illness, by identifying sub-

phenotypes within AKI that may respond differently to treatment

based on underlying causes like ischemia, inflammation, or

nephrotoxin exposure (30, 31). Moreover, unsupervised machine

learning approaches could be used to stratify patients into

subgroups with similar characteristics and risks.

For example, in a study that used importance matrix plots,

creatinine, platelets, LDH, and diuresis were among the most

influential factors across classifications (32). The consistent

significance of platelets and LDH in AKI is notable, possibly due

to the role of LDH in indicating liver congestion related to right

ventricular dysfunction and its importance as a marker of systemic

perfusion and potential hemolysis. AI has the potential to advance

personalized care by incorporating individual patient lab values into

tailored algorithms, enabling more precise and customized

treatment strategies. Additionally, Bhatraju et al. identified two

molecularly distinct AKI subphenotypes with different clinical

outcomes and responses to vasopressin therapy (32).
Implementing AI for use in
pediatric nephrology

Alongside AI models for AKI prediction, numerous risk

stratification tools and alerting systems have proven effective in

predicting AKI. Examples include the renal angina index (RAI)

score, furosemide stress test, NINJA study, and electronic health
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record (EHR) alerts (33–36). Deng et al. used XGBoost and logistic

regression to predict adverse outcomes in 1,394 pediatric patients

with AKI, achieving an AUC of 0.810 and 0.786 for 30-day

outcomes, and 0.851 and 0.759 for 90-day outcomes, which

included death, new kidney replacement therapy, and chronic

dialysis (37). Dong et al. used a machine learning model to

predict early serum creatinine-based AKI in 16,863 PICU and

cardiothoracic ICU patients, achieving a median lead time of 30

hours and an AUC of 0.89 for predicting stage 2/3 AKI before

detection by conventional criteria (38). The integration of these

published and validated risk scores with AI (mainly machine

learning) offers earlier and more precise support in routine

clinical decisions. Similarly to the LOGIC score utilized for

optimizing insulin dosing, advanced AI tools may aid nurses in

detecting subtle changes in fluid balance and creatinine levels,

thereby enhancing AKI detection earlier (39).

AI models can also be developed to predict AKI in subsets of

high-risk pediatric patients, such as those undergoing

hematopoietic stem cell transplantation, by identifying early

patterns in risk-associated variables using neural networks (40).

Risk factors for AKI in HSCT patients include patient

characteristics (female sex, pre-transplant serum creatinine > 0.7

mg/dL, post-transplant weight gain > 2 kg, ICU admission),

comorbidities (diabetes mellitus, hypertension, veno-occlusive

disease, graft versus host disease grades 3-4, sepsis, jaundice, lung

toxicity), and medication usage (etoposide-based induction,

amphotericin B, aminoglycosides, calcineurin inhibitors,

intravenous immunoglobulin). A proposed unsupervised AI

model would utilize long short-term memory networks to create

recurrent data representations as opposed to a supervised model

due to the limited clinical understanding of AKI pathogenesis

following hematopoietic stem cell transplantation.

The STARZ score, a validated neonatal AKI risk score,

incorporates duration of stay in NICU, age at NICU entry, birth

weight, the lowest temperature in the first twelve, use of caffeine,

urine output in the first twelve hours, any baseline maternal/antenatal

characteristics, occurrence of sepsis, and evidence offluid overload in

the first twelve hours (41). An AKI Neonatal Mortality Calculator,

with a custom artificial neural network built with a Keras sequential

model that incorporates the STARZ neonatal risk score, delivered

impressive results with an AUC-ROC of 0.9859, accuracy of 0.9731,

sensitivity of 0.9657, and specificity of 0.9805 (42).

Similarly, the Random Forest and XGBoost models achieved

comparable performance metrics. AI can also be used to further

analyze studies in the pediatric population. For example, in preterm

neonates with AKI, mortality was independently associated with

furosemide treatment in an analysis of the TINKER registry (43). AI

can be used to compile a wide lens analysis to analyze the context of

fluid overload, simultaneous use of other nephrotoxic agents,

creatinine surveillance, other AKI mitigation strategies, specific

indications, duration of use, and dosage and timing of furosemide

use based on study data and assist in the formation of clinical

guidelines. An example of the development and implementation of

an AI pediatric AKI tool is shown in Figure 1. Machine learning-

based models can assist clinicians in making informed decisions for

critically ill patients with severe AKI by predicting adverse
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outcomes, including mortality and the risk of developing chronic

kidney disease after discharge (44).
Other uses of AI in pediatric AKI

AI is driving significant advancements in renal pathology and

clinical care related to AKI, with applications ranging from

histopathological analysis to therapeutic optimization and patient

monitoring. A segmentation model with a MobileNetv3-

Large backbone demonstrated high accuracy in identifying

histopathological structures of acute renal tubular injury in

mouse samples, achieving an overall Dice coefficient (a

performance measure of segmentation algorithms) of 0.877,

highlighting the potential of deep learning in advancing renal

pathology evaluation (45). In patients undergoing kidney

replacement therapy for AKI, AI models could integrate data

from electronic health records, including fluid balance, imaging

results, physiologic waveform data, and continuous kidney

replacement therapy machine data, to assist clinicians in decision-

making (Figure 2). In adults, an AI model achieved an area under

the curve (AUC) of 0.70 in predicting kidney replacement therapy-

free survival times for AKI patients (46). In adults, an AI model had

an AUC of 0.70 in predicting kidney replacement therapy free

survival times in patients with AKI (47).

AI-driven therapeutic strategies can guide drug prescriptions,

reduce variability, increase the proportion of patients achieving

target outcomes, and minimize errors (48). AI-driven tools in

dialysis monitoring may optimize treatment parameters and

improve outcomes like Kt/V, creatinine clearance, and blood

pressure management without increasing patient burden (49, 50).
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Additionally, machine learning models can enhance clinical trials by

identifying high-risk patients who may benefit from novel therapies

and excluding those unlikely to respond. AI-based technologies may

evenbeable topredict the functionsofnewbiomarkersordrugs to treat

AKI (51). These objectives are further supported by the “digital twins”

approach—virtual patient representations created from multimodal

data—which offers new opportunities for personalized care and may

allow for identification of patients who would most benefit from a

nephrologist consult (52).
Limitations of AI

It is important for clinicians to understand the capabilities and

limitations of AI, and familiarize themselves with the technology

and tools (23). A major limitation of using machine learning and

deep learning in healthcare is a need for high-quality, large-scale

training and testing data, which is essential for reliable and

reproducible predictions. Since these models learn from existing

data, quality is crucial. However, feature-rich datasets are often

scarce, may represent only a narrow population, and in many cases,

are incomplete and inconsistent (53).

All large datasets have missing or erroneous data, which can lead to

bias if not random (54). For clinical relevance, inputs and outcomes

must be specific and measurable, such as defining the time frame and

severity for a sepsis model. Algorithmic bias occurs when an algorithm

worsens existing health disparities, making it crucial to carefully select

training data and models (55). The data should reflect the target

population, with performance evaluated across subgroups.

Generalizability depends on the source of the data and transparency

about its limitations. To truly demonstrate the generalizability of AI
FIGURE 1

Workflow of AI integration in pediatric AKI clinical decision support. Created in BioRender. Hu, J. (2025) https://BioRender.com/b08k880.
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algorithms, external validation must be conducted using

independent target populations that were not part of the original

training data (56).
Future directions

The limited available literature indicates that risk scores can be

readily developed and validated using electronic health record (EHR)

data, demonstrating high accuracy and generalizability (57). Modern

AI applications can predict AKI before changes in serum creatinine, a

century-old marker of glomerular filtration. Combining these
Frontiers in Nephrology 05
advanced risk-assessment scores with E-alerts, care bundles, and

kidney-focused interventions (such as avoiding nephrotoxins) may

reduceAKI severity and its associatedmorbidityandmortality. Finally,

incorporating biomarkers into AI models can enhance their accuracy

and improve predictive capabilities, such as neutrophil gelatinase-

associated lipocalin (NGAL), one of the most studied biomarkers in

pediatricAKI, with urinaryNGALpredictingAKI 48hours in advance

in pediatric patients after cardiac surgery (58). Other biomarkers

include cystatin C, which was found to be superior to serum

creatinine for estimating GFR in neonates, TIMP-2 and IGFBP, and

beta-2 microglobulin (59–61). These biomarkers may improve the

accuracy of AI algorithms, but require further studies. Given the
FIGURE 2

Framework for AI-enabled interventions for kidney replacement therapy in children with AKI.
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limited number of pediatric AKI studies, future research should

emphasize multi-center data collaboration in developing AI tools

and creating guidelines to ensure AI efficacy, patient privacy,

and equity.
Conclusions

The use of AI in predicting and managing AKI in pediatric and

neonatal populations represents a significant advancement in

clinical care. AI models, particularly machine learning algorithms,

have shown great promise in improving early detection, risk

stratification, and predicting adverse outcomes in AKI patients.

By leveraging both labeled and unlabeled data, AI tools can enhance

the accuracy and timeliness of AKI predictions, offering clinicians

crucial insights that can improve patient outcomes, reduce

complications, and personalize care. However, the integration of

AI into routine clinical practice requires careful consideration of its

limitations, the need for transparency, and adherence to ethical

guidelines to ensure patient safety and equity.

AI-driven approaches are poised to revolutionize pediatric

nephrology by enhancing decision support systems and

complementing traditional clinical practices. Future directions should

focus on refining these models to increase their predictive power,

improving their integration with existing clinical tools, and expanding

their application across diverse patient populations. By addressing

current limitations and ensuring alignment with ethical standards, AI

has the potential to transform AKI management, ultimately improving

care delivery and reducing the burden of kidney disease in children

and neonates.
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