

[image: Cover: Development and validation of a comprehensive machine learning framework for a diagnostic model of uremia based on genes involved in major depressive disorder]




  

Table of Contents

  
    	Cover

    	Development and validation of a comprehensive machine learning framework for a diagnostic model of uremia based on genes involved in major depressive disorder 
    
      	Background

      	Methods

      	Results

      	Conclusion

      	1 Introduction

      	2 Methods 
      
        	2.1 Data collection

        	2.2 Removal of batch effect

        	2.3 Determination of DEGs

        	2.4 Enrichment analysis of common genes in uremia with MDD

        	2.5 Immune cell infiltration

        	2.6 Machine learning algorithms

        	2.7 Candidate drug identification

        	2.8 Statistical analysis

      


      	3 Results 
      
        	3.1 Data processing

        	3.2 Identification of differential expression associated with uremia and MDD

        	3.3 Functional enrichment of the shared genes

        	3.4 Analysis of immune cell infiltration in uremia and MDD

        	3.5 Identification of diagnostic hub genes by machine learning and establishment of a diagnostic model for MDD-associated uremia

        	3.6 Subgroup analysis of uremia diagnostic model

        	3.7 Comparison of uremia diagnostic models

        	3.8 Candidate drug identification

      


      	4 Discussion

      	5 Limitations

      	6 Conclusions

      	Data availability statement

      	Ethics statement

      	Author contributions

      	Funding

      	Acknowledgments

      	Conflict of interest

      	Generative AI statement

      	References

    


  

Landmarks

  
    	Cover

    	Table of Contents

    	Start of Content


  


Print Page List

  
    	 Page 01. 

    	 Page 02. 

    	 Page 03. 

    	 Page 04. 

    	 Page 05. 

    	 Page 06. 

    	 Page 07. 

    	 Page 10. 

    	 Page 08. 

    	 Page 09. 

    	 Page 11. 

    	 Page 12. 

    	 Page 13. 

    	 Page 14. 

    	 Page 15. 

  




ORIGINAL RESEARCH

published: 02 October 2025

doi: 10.3389/fneph.2025.1576349

[image: Frontiers: Stamp Date]


Development and validation of a comprehensive machine learning framework for a diagnostic model of uremia based on genes involved in major depressive disorder


Kaiyao Jiang 1,2,3, Chi Zhang 4, Cheng Shen 1, Xingxing Fang 5, Huaxing Huang 5 and Bing Zheng 1*


1Department of Urology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China, 2Jiangsu Nantong Urological Clinical Medical Center, Nantong, Jiangsu, China, 3Department of Emergency Medicine, the Afffliated Suqian Hospital of Xuzhou Medical University, Suqian, China, 4Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China, 5Department of Nephrology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China




Edited by:
Wenlin Yang, University of Florida, United States

Reviewed by:
Alessandro Domenico Quercia, Nephrology and Dialysis ASLCN1, Italy
Shinsuke Hidese, Teikyo University, Japan

*Correspondence: 

Bing Zheng
 ntzb2008@163.com


Received: 13 February 2025

Accepted: 18 September 2025

Published: 02 October 2025

Citation:
Jiang K, Zhang C, Shen C, Fang X, Huang H and Zheng B (2025) Development and validation of a comprehensive machine learning framework for a diagnostic model of uremia based on genes involved in major depressive disorder. Front. Nephrol. 5:1576349. doi: 10.3389/fneph.2025.1576349






Background

Major depressive disorder (MDD) and uremia are two chronic wasting diseases that have interactive effects and significantly aggravate patients’ distress. However, the molecular basis linking these diseases remains poorly investigated.





Methods

Various machine learning algorithms were used to analyze transcriptome data from the Gene Expression Omnibus (GEO) datasets, including those from MDD and uremia patients, to develop and validate our model. After removing batch effects, differentially expressed genes (DEGs) were identified between each disease group and the control group. Functional enrichment analysis was then performed at the intersection of DEGs from the two diseases. In addition, single-sample gene set enrichment analysis (ssGSEA) quantitative immune infiltration analysis was conducted. The optimal diagnostic model of uremia was constructed by analyzing and verifying the training set with multiple combinations of 12 machine learning algorithms. Finally, potential drugs for uremia were identified using the “Enrichr” platform.





Results

According to enrichment analysis, a total of seven key genes closely related to MDD and uremia, mainly involved in the immune process, were identified. Immune infiltration analysis showed that MDD and uremia had different profiles of immune cell infiltration compared to healthy controls. Powerful diagnostic markers of seven genes (IL7R, CD3D, RETN, RAB13, TNNT1, HP, and S100A12) were constructed from these genes, and all showed better performance than published uremia diagnostic models. In addition, decitabine and nine other agents were found to be potential agents for the treatment of uremia.





Conclusion

Our study combined bioinformatics techniques and machine learning methods to develop a diagnostic model for uremia, focusing on common genes between MDD and uremia.
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1 Introduction

Major depressive disorder (MDD) is a prevalent psychiatric disorder with a significant global impact, causing substantial disability and affecting everyday functioning (1). Its clinical symptoms include persistent depressed mood, anhedonia, fatigue, feelings of worthlessness, and impaired cognitive performance (2). Major depression is estimated to have a lifetime prevalence of up to 19% (3), placing a significant burden on society (4). It remains a challenge in the treatment of as many as half of the cases (5). Based on previous studies, uremia has a significant association with MDD. For example, studies conducted by Heng-Jung Hsu et al. showed that the incidence of depressive disorders was significantly higher in uremia patients (6). Depression can have a serious impact on people’s lives, even letting people give up life, so it is urgent to explore the association between uremia and depression.

Uremia is the final stage of chronic renal failure. It is clinically characterized by abnormal water, electrolyte, acid, and base balance and increased levels of metabolites (e.g., creatinine and urea) in the blood (7). The uremic phase is often associated with some secondary conditions and complications of chronic kidney disease (CKD), including renal function, circulatory system, endocrine, and metabolic disorders, as well as neuromuscular dysfunction and cognitive impairment (8, 9). Among them, MDD is a more common complication of uremia. Uremia is a chronic wasting disease that usually requires hemodialysis treatment, and since the introduction of dialysis, the mental health of hemodialysis patients has been the focus of research (10, 11). Kimmel et al. (12) demonstrated that persistent depression is a risk factor for death in hemodialysis patients. Therefore, it is crucial to construct a diagnostic model of uremia associated with major depression to control it in time at an early stage and reduce mortality. However, the diagnosis of Uremia mainly depends on serum creatinine and glomerular filtration rate, which makes the diagnosis of Uremia very lacking. In addition, although many genetic markers have been investigated, such as CNOT8, MST4, PPP2CB, PCSK7, and RBBP4, none of them could demonstrate enough specificity and sensitivity for clinical applications (13). Others have shown a bidirectional relationship between depression and physical diseases such as chronic kidney disease (14). Therefore, it is particularly important to construct a better diagnostic model that can be applied in clinical practice through the relationship between depression and chronic kidney disease for the early detection of uremia.

Bioinformatics and machine learning techniques have evolved significantly over the last decade, and this is how we can investigate potential biomarkers and therapeutics for diseases (15–18). In this study, we used multiple integrated bioinformatics tools to reveal hub genes and underlying mechanisms linking uremia and MDD by analyzing data from three uremia datasets and three MDD datasets selected from the Gene Expression Omnibus (GEO) database. We explored immune cell infiltration in uremia and MDD. In addition, 113 combined machine learning algorithm frameworks were used to construct a uremia diagnostic model.




2 Methods



2.1 Data collection

Appropriate datasets were filtered from the GEO database. First, datasets of transcriptomes for major depression and uremia or end-stage renal disease were searched. Then, because multiple datasets were included, the data in the dataset were kept as much as possible above 6. Finally, it was ensured that the included dataset was suitable for machine learning methods. Following the above steps, the following six datasets were obtained from the National Center for Biotechnology Information (NCBI) GEO (https://www.ncbi.nlm.nih.gov/geo/): GSE37171, GSE38750, GSE43484, GSE52790, GSE76826, and GSE98793 (9, 19–23). These datasets are described in detail in Table 1 and include the microarray platform, panel, and number of samples.


Table 1 | Basic information of GEO datasets used in the study.
	ID
	GSE series
	Disease
	Samples
	Source types
	Platform



	1
	GSE37171
	Uremia
	63 uremia patients and 20 normal controls
	Whole blood
	GPL570


	2
	GSE38750
	Uremia
	15 uremia patients and 19 normal controls
	Iliac artery and renal artery
	GPL571


	3
	GSE43484
	Uremia
	3 uremia patients and 3 normal controls
	Monocyte
	GPL571


	4
	GSE52790
	MDD
	10 MDD patients and 12 normal controls
	Peripheral blood
	GPL17976


	5
	GSE76826
	MDD
	20 MDD patients and 12 normal controls
	Blood
	GPL17077


	6
	GSE98793
	MDD
	128 MDD patients and 64 normal controls
	Whole blood
	GPL570





GEO, Gene Expression Omnibus; MDD, major depressive disorder.






2.2 Removal of batch effect

Before performing analysis, we merged the three MDD datasets mentioned in Table 1 (GSE52790, GSE76826, and GSE98793). We then corrected batch effects using the “ComBat” function in the “sva” package (version 3.52.0) (24). We used principal component analysis (PCA) analysis to assess the validity of this correction. Using the same method, we then corrected three uremia cohorts (GSE37171, GSE38750, and GSE43484).





2.3 Determination of DEGs

In the analysis of the MDD and uremia datasets, the “Limma” package (25) within the R software was employed to identify differentially expressed genes (DEGs). Our selection criteria, requiring |log2FC| > 0.25 and p-value <0.05, ensured a comprehensive and accurate analysis. The outcomes were visually represented through compelling volcano plots, and the shared part of the two sets of DEGs was effectively depicted using Venn diagrams. To further investigate the shared genes, Protein-Protein Interaction Networks (PPI) networks were confidently generated using GeneMANIA, facilitating an insightful exploration of their associations (http://genemania.org/).




2.4 Enrichment analysis of common genes in uremia with MDD

To gain insights into the biological functions and mechanistic pathways of common genes, we utilized the “org.Hs.eg.db”, “ggplot2”, “clusterProfiler”, “enrichplot”, “GSEABase”, and “DOSE” packages to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, as well as Disease Ontology Semantic and Enrichment (DOSE). p < 0.05 for enrichment assessment was considered significant.




2.5 Immune cell infiltration

The quantification of 23 infiltrating immune cells in both diseases was conducted using single-sample gene set enrichment analysis (ssGSEA). Then, the differential expression of immune cells in normal and uremia patients was further studied and analyzed.




2.6 Machine learning algorithms

Twelve machine learning algorithms were used to construct 113 different models: Lasso, Ridge, Stepglm, XGBoost, Random Forest (RF), Elastic Net (Enet), Partial Least Squares Regression for Generalized Linear Models (plsRglm), Generalized Boosted Regression Modeling (GBM), NaiveBayes, Linear Discriminant Analysis (LDA), Generalized Linear Boosting (glmBoost), and Support Vector Machine (SVM). First, the raw data were preprocessed to eliminate the influence of different feature scales. Then, the dataset was randomly divided into training and testing sets, 70% of which were training sets and 30% of which were testing sets. During the model training phase, a variety of machine learning algorithms were used to evaluate their performance. These models were trained on the training set, and the hyperparameters were optimized using cross-validation. During the model evaluation phase, Area Under Curve (AUC) values were calculated for each model using the test set (threshold set at 0.7) to measure their classification performance. Finally, AUC values were calculated for each model using the RunEval function, and heat maps were generated using the SimpleHeatmap function to visualize the performance of each model. The model with the highest AUC value was selected as the best model (26). In addition, calibration curves were used to assess the predictive performance of our diagnostic model, Decision Curve Analysis (DCA) curves were generated to assess the clinical utility of the model, and Nomo plots were also generated to calculate the probability of disease occurrences. Finally, the DeLong test was used to compare our model’s diagnostic performance with that of two existing uremia diagnostic models (13, 27).




2.7 Candidate drug identification

To explore drugs that may target the mechanisms of action in uremia and MDD, we utilized the Drug Signatures Database (DSigDB) within the Enrichr web platform (https://maayanlab.cloud/Enrichr/).




2.8 Statistical analysis

Statistical analyses were performed using the R software version 4.4.1. An unpaired Student’s t-test compared differences between the two groups. p < 0.05 was considered statistically significant.





3 Results



3.1 Data processing

The study design flowchart is shown in Figure 1. Original MDD and control transcriptome data were obtained from GEO, integrated after removing batch effects, and standardized MDD case and control processing cohorts were generated (Figures 2A, B). Similarly, the post-batch corrections of the original uremia and control cohorts were combined (Figures 2C, D) to obtain a standardized validation cohort with markedly reduced batch effects.

[image: Flowchart illustrating a computational framework for disease gene analysis and diagnostic model development. Two databases, Uremia and MDD, each undergo analysis to identify differentially expressed genes (DEGs). The intersection of these DEGs reveals seven shared genes, which undergo PPI network and enrichment analysis. These genes are used in a 113-combination machine learning framework to develop a diagnostic model (Lasso + GBM). The model is validated using a 70/30 training/testing database split and compared with clinical features, other models, and candidate drugs.]
Figure 1 | The flowchart of the study.

[image: Four scatter plots depicting Principal Component Analysis (PCA) before and after batch correction. Plot A and C show three types of samples (GSE52790, GSE67826, GSE98793 and GSE37171, GSE38750, GSE43484, respectively) before correction, with distinct clusters. Plot B and D show the same samples after batch correction, where clusters are more overlapping and centrally aligned. Legend indicates sample types by color and shape.]
Figure 2 | The integration of MDD datasets and uremia datasets. (A) PCA of three raw MDD datasets without batch effect correction. (B) PCA of the integrated MDD dataset after batch effect correction. (C) PCA of three original uremia datasets before batch effect correction. (D) PCA for the combined uremia dataset after batch effect correction. MDD, major depressive disorder.




3.2 Identification of differential expression associated with uremia and MDD

Based on the relationship between MDD and uremia, limma analysis was performed for the uremia (GSE37171, GSE38750, and GSE43484) and MDD (GSE52790, GSE76826, and GSE98793) cohorts to identify causative genes for MDD-associated uremia. Among the 4,209 DEGs detected in the uremia cohort, 1,871 genes showed upregulated expression, while 2,338 were downregulated (Figure 3A). The MDD cohort yielded 25 DEGs, 15 of which were upregulated and 10 downregulated (Figure 3B). The DEGs of uremia and MDD were intersected to obtain seven shared genes for constructing a diagnostic model of uremia (Figure 3C).

[image: Panel A shows a volcano plot with blue and red dots representing downregulated and upregulated genes, respectively, on a log scale of fold change. Panel B displays a similar plot with fewer significant changes. Panel C is a Venn diagram showing overlap between uremia and major depressive disorder (MDD) with seven genes in common, 4202 unique to uremia, and 18 unique to MDD.]
Figure 3 | Identification of DEGs. (A) Volcano plots describing DEGs between uremia and healthy controls. (B) Volcano plots showing DEGs between MDD and healthy controls. (C) Venn diagram revealing seven DEGs shared between uremia and MDD. DEGs, differentially expressed genes; MDD, major depressive disorder.




3.3 Functional enrichment of the shared genes

The PPI networks of the shared genes were established from the GeneMANIA database (Figure 4A), and then GO, KEGG, and DOSE were used for functional enrichment analysis and to search for potential pathogenic mechanisms. GO enrichment analysis showed overexpression of biological processes, including defense response to bacterium, T-cell differentiation in the thymus, cell killing, gonad development, development of primary sexual characteristics, negative regulation of T cell-mediated cytotoxicity, response to insulin, positive regulation of T-cell differentiation in the thymus, positive regulation of steroid hormone secretion, and luteinization. Enriched cellular components included endocytic vesicle, clathrin-coated vesicle, coated vesicle, secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen, specific granule lumen, clathrin-coated endocytic vesicle membrane, clathrin-coated endocytic vesicle, and clathrin-coated vesicle membrane. Overexpressed molecular functions included receptor for advanced glycation end products (RAGE) receptor binding, tropomyosin binding, copper ion binding, calcium-dependent protein binding, antioxidant activity, cytokine receptor activity, hormone activity, immune receptor activity, serine-type endopeptidase activity, and antigen binding (Figure 4B). KEGG pathway analysis further revealed primary immunodeficiency, hematopoietic cell lineage, PD-L1 expression and PD-1 checkpoint pathway in cancer, Th1 and Th2 cell differentiation, Chagas disease, and T-helper 17 (Th17) cell differentiation (Figure 4C). Disease Ontology Semantic and Enrichment analysis also showed Kawasaki disease, lymphadenitis, lymph node disease, atherosclerosis, arteriosclerotic cardiovascular disease, lymphatic system disease, arteriosclerosis, pulmonary artery disease, pulmonary embolism, human immunodeficiency virus infectious disease, inflammatory bowel disease, severe combined immunodeficiency, gestational diabetes, liver cirrhosis, intrinsic cardiomyopathy, combined immunodeficiency, intestinal disease, acute myocardial infarction, sarcoidosis, myocardial infarction, cardiomyopathy, non-alcoholic fatty liver disease, neuropathy, hypertrophic cardiomyopathy, middle cerebral artery infarction, hypersensitivity reaction type IV disease, coronavirus infectious disease, hypersensitivity reaction disease, colitis, and hyperglycemia (Figure 4D).

[image: Panel A shows a network diagram with nodes representing proteins colored by function, indicating co-expression and co-localization. Panel B presents a bar chart of biological processes with varying significance levels, indicated by color. Panel C displays a bar chart with counts of pathways related to immune and cell differentiation, colored by p-value. Panel D shows another bar chart listing diseases with significance levels, also color-coded by p-value.]
Figure 4 | PPI network analysis and enrichment analysis. (A) PPI network of seven shared genes constructed using GeneMANIA. (B) Bar plots of GO enrichment analysis results for biological process, cellular component, and molecular function. (C) Bar plots of KEGG pathway enrichment analysis. (D) Bar plots of Disease Ontology enrichment analysis.




3.4 Analysis of immune cell infiltration in uremia and MDD

The enrichment analysis of the shared genes between uremia and MDD showed a significant association with immune cell infiltration and the development of inflammation. ssGSEA was used to describe the composition of immune cell subsets in the uremia and MDD cohorts. MDD samples exhibited decreased activated CD8 T cells and increased activated dendritic cells relative to control samples (Figure 5A). The box plot (Figure 5B) indicates that compared to controls, in the uremia cohort, activated dendritic cells, macrophages, monocytes, natural killer cells, and type 17 T-helper cell proportion increased, while activated CD4 T cells, immature dendritic cells, natural killer T cells, plasmacytoid dendritic cells, T follicular helper cells, type 2 T-helper cells, and gamma delta T-cell abundance decreased.

[image: Box plots comparing fractions of various cell types under control (blue) and treatment (red) conditions. Two panels, A and B, show different sets of cell types on the x-axis, with fractions on the y-axis. Panel A highlights higher levels in treatment groups for several cell types. Panel B also shows differences, with multiple significant changes marked by asterisks above specific cell types. Legends indicate color coding for control and treatment.]
Figure 5 | Immunological features of MDD and uremia. (A) Boxplots comparing immune cell abundances between MDD and controls. (B) Boxplots comparing immune cell abundances between uremia and controls. *** p < 0.001,** p < 0.01, and *p < 0.05. MDD, major depressive disorder.





3.5 Identification of diagnostic hub genes by machine learning and establishment of a diagnostic model for MDD-associated uremia

The most robust diagnostic model, based on seven shared genes, was constructed by reducing selection bias using 113 combinations of 12 machine learning algorithms. The analysis was performed on a training dataset that randomly assigned 70%, and the remaining 30% test set was used to evaluate the predictive performance of diagnostic models (Figures 6A, B). By integrating the Lasso and GBM algorithms, the final model that showed the best performance was built. The AUC value of the Receiver Operating Characteristic (ROC) curve was obtained to be 0.941, and the constructed model had superior predictive performance. The Lasso + GBM algorithm identified seven key genes (IL7R, CD3D, RETN, RAB13, TNNT1, HP, and S100A12). The calibration curve of our diagnostic model, such as 6C, the bias-corrected line obtained by bootstrap sampling, was close to the ideal diagonal of the cohort, visually showing that the predicted probability of the model was highly consistent with the actual observed probability, and once again proved the accuracy of the model. A DCA curve analysis was also conducted (Figure 6D), the curve shows that from a threshold probability of approximately 0.2, the net gain of intervention according to the prediction model begins to be significantly higher than that of complete intervention or no intervention. Although the net gain decreases with increasing threshold probability values, it is still significantly stronger than that of intervention with full or no, so it can be seen that this model has a practical application value. Finally, as shown in Figure 6E, the integration analysis of the seven genes established a Nomo plot, facilitating a more convenient estimation of the probability of having uremia based on patient test results in clinical practice.

[image: Composite image with five panels: A) Table of models with AUC values, highlighting “Lasso+GBM” with the highest AUC. B) ROC curve showing an AUC of 0.941 with a confidence interval. C) Calibration plot comparing predicted and actual probabilities. D) Decision curve analysis highlighting net benefit over threshold probabilities. E) Nomogram with variables like S100A12, RETN, and others contributing to disease risk.]
Figure 6 | Diagnostic performance of our model. (A) A total of 113 machine learning algorithm combinations evaluated by 10-fold cross-validation. (B) ROC curves for the training cohort. (C) Calibration curve for the training cohort. (D) DCA curves for the training cohort. (E) Nomo plot of the training cohort.




3.6 Subgroup analysis of uremia diagnostic model

We performed a subgroup analysis of the predictive model that demarcated age by 50 (Figures 7A–D). In contrast, the diagnostic performance of the predictive model was higher in the age > 50 group, with AUC values reaching 0.962 (Figure 7C), and ROC curve analysis was also performed for each gene. It can be seen that S100A12 has the highest predicted AUC value regardless of age (Figure 7D). In addition to age, we also analyzed gender (Figures 7E–H). We found that the accuracy of predicting men was higher than that of women, but weaker than that of the overall prediction model (Figures 7E, G). Then, we analyzed each gene (Figures 7F, H) and found that S100A12 still had the highest AUC value.

[image: ROC curves display predictive model performance by age and gender. Panels A, C, E, G show AUC values for age under 50 (0.877), over 50 (0.962), males (0.928), and females (0.904) with confidence intervals. Panels B, D, F, H compare multiple markers: S100A12, RETN, HP, CD3D, RAB13, TNNT1, and IL7R, with varying AUCs across age and gender categories.]
Figure 7 | ROC curves for model in subgroups. (A, B) ROC curves for the young (age ≤ 50 years) subgroup of model (A) and each gene (B). (C, D) ROC curves for the old (age > 50 years) subgroup of model (C) and each gene (D). (E, F) ROC curves for the male subgroup of model (E) and each gene (F). (G, H) ROC curves for the female subgroup of model (G) and each gene (H).




3.7 Comparison of uremia diagnostic models

Because of the developments of bioinformatics and big data research technology, many diagnostic models for uremia have recently been developed that combine machine learning methods. Comprehensively comparing the performance of our model with that of other models, it was found that our prediction model performed better than both of them in comparison with the Zeng model (13) of network-based variable selection method (Figure 8A) and the Xi model (27) analysis of cellular senescence-associated genes (Figure 8B).

[image: Panel A illustrates a Receiver Operating Characteristic (ROC) curve comparing Score and Xi, showing an AUC of 0.933 for Score and 0.825 for Xi with a P-value of 1.7e-05. Panel B shows a ROC curve comparing Score and Zeng, with an AUC of 0.933 for Score and 0.800 for Zeng, and a P-value of 6.1e-07. Both panels depict sensitivity against 1-specificity with shaded areas under the curves.]
Figure 8 | Comparison of diagnostic gene expression features in uremia. (A) ROC curves comparing our model to Xi et al. model in the uremia dataset. (B) ROC curves comparing our model with the Zeng et al. model in the uremia dataset.




3.8 Candidate drug identification

Genes in diagnostic models were analyzed using the DSigDB drug database on Enrichr to find potential targeted drugs. The top 10 candidates were decitabine, retinol, atorvastatin, liothyronine, hexachloroethane, cholesterol, simvastatin and niacin, hydrocortisone, dexamethasone, and caspan (Table 2).


Table 2 | Uremia and major depressive disorder (MDD) gene-targeted drugs.
	Term
	p-Value
	Odds ratio
	Combined score
	Genes



	Decitabine
	0.01931202
	7.594323873
	29.97500571
	TNNT1; RAB13; IL7R


	Retinol
	9.29E−04
	59.72932331
	417.0006812
	HP; RETN


	Atorvastatin
	0.0010413
	56.3177305
	386.7499407
	TNNT1; RETN


	Liothyronine
	0.001770571
	42.82810811
	271.3783008
	HP; RETN


	Hexachloroethane
	0.001827075
	42.13829787
	265.6836032
	HP; RETN


	Cholesterol
	0.001827075
	42.13829787
	265.6836032
	HP; RETN


	Simvastatin and niacin
	0.001884438
	41.47015707
	260.1889826
	TNNT1; RETN


	Hydrocortisone
	0.001981945
	40.40204082
	251.4492303
	HP; RETN


	Dexamethasone
	0.008655043
	18.68639618
	88.75315333
	HP; IL7R


	Caspan
	0.029904067
	9.522084367
	33.42023831
	TNNT1; RAB13











4 Discussion

Both uremia and MDD have a significant impact on the physical and mental health of patients, and extensive research has been conducted on the relationship between these two diseases (28, 29). However, further investigation is necessary to explore the genetic interaction between them.

The emergence of microarray and sequencing technologies has facilitated the exploration of disease processes and molecular landscapes. Furthermore, the increasing development of bioinformatics analysis and machine learning has allowed us to analyze massive datasets, explore meaningful biomarkers, understand the potential mechanisms of action of diseases, and develop promising therapeutic drugs. These advancements offer valuable perspectives on the advancement and novel avenues of complex diseases (30–32). As far as we know, this is the first study to use 12 machine learning algorithms combined with biological information to reveal MDD-associated uremic pathogenic genes. Furthermore, as our diagnostic model predominantly utilizes blood specimens from patients, assessing the levels of diagnostic genes in the blood can help estimate the risk of uremia. This offers a clinically easy-to-perform method for diagnosis. In conclusion, the diagnostic model we explored holds significant promise for achieving early screening of uremia patients and interventions, thereby improving the outcomes of uremia patients.

A total of 4,209 DEGs between uremia and normal, and 25 DEGs between MDD and normal were analyzed using GEO’s dataset. DEGs at the intersection of uremia and MDD were taken to obtain seven common risk genes. PPI networks were constructed using GeneMANIA. GO and KEGG enrichment analyses were then performed, and some biological behaviors and action pathways were found, suggesting a potential mechanism for uremia development and MDD development. GO enrichment analysis highlighted factors such as defense response to bacterium, T-cell differentiation in the thymus, cell killing, gonad development, development of primary sexual characteristics, negative regulation of T cell-mediated cytotoxicity, response to insulin, positive regulation of T-cell differentiation in the thymus, positive regulation of steroid hormone secretion, and luteinization. Enriched cellular components included endocytic vesicle, clathrin-coated vesicle, coated vesicle, secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen, specific granule lumen, clathrin-coated endocytic vesicle membrane, clathrin-coated endocytic vesicle, and clathrin-coated vesicle membrane. Overexpressed molecular functions included RAGE receptor binding, tropomyosin binding, copper ion binding, calcium-dependent protein binding, antioxidant activity, cytokine receptor activity, hormone activity, immune receptor activity, serine-type endopeptidase activity, and antigen binding. In addition, KEGG pathway analysis showed significant enrichment of pathways associated with primary immunodeficiency, hematopoietic cell lineage, PD-L1 expression and PD-1 checkpoint pathway in cancer, Th1 and Th2 cell differentiation, Chagas disease, and Th17 cell differentiation.

In the KEGG enriched pathway, there is a potential association between Th17 differentiation and the onset of uremia and MDD. Research indicates a significant increase in Th17 cells in the peripheral blood of MDD patients (33). Similarly, uremia patients show a discernible rise in these immune cells when compared to healthy controls, suggesting a possible correlation between uremia and the upregulation of Th17 cells (34). The lack of significant change in their levels following dialysis in observed patients does not exclude the potential for uremia progression linked to immune activation. Further comprehensive studies are necessary to clarify this relationship. Notably, previous research has shown that these cells play a role in advancing atherosclerosis (35, 36). Interleukin-17 (IL-17), produced by Th17 cells, has synergistic effects with tumor necrosis factor-α (TNF-α), which contributes to the pathogenesis of atherosclerotic vascular diseases by creating a pro-inflammatory microenvironment (37). The proliferation of these immune cells could not only contribute to the onset of uremia but also increase susceptibility to cardiovascular complications in affected patients. It is well established that they play a significant role in mediating autoimmunity (38, 39), which suggests that uremia may have some relationship with the primary immunodeficiency pathway. Additionally, Disease Ontology Semantic and Enrichment analysis indicates that uremia may be complicated by Kawasaki disease, lymph node disease, arteriosclerosis disease, pulmonary artery disease, pulmonary embolism, human immunodeficiency virus disease, and inflammatory bowel disease.

The occurrence and development of uremia may be associated with immune activation (40), so we analyzed the immune expression of uremia and found that in patients with uremia, activated dendritic cells, macrophages, monocytes, natural killer cells, and type 17 T-helper cell proportion increased, while activated CD4 T cells, immature dendritic cells, natural killer T cells, plasmacytoid dendritic cells, T follicular helper cells, type 2 T-helper cells, and gamma delta T-cell abundance decreased. Our immune cell analysis is also consistent with previous studies suggesting that several immune cells, including dendritic cells and macrophages, are activated and may contribute to the development of CKD or even uremia (41–43). Our analysis also suggests a decrease in several immune cells, possibly because the immune system of uremia patients is overactivated but functionally compromised. Still, few relevant studies prompt us to investigate the immune cell infiltration and mechanisms of uremia further.

Uremia is now being diagnosed at a more advanced stage, prompting a heightened emphasis on early detection and disease management. The application of machine learning techniques to construct diagnostic models for diseases and predict patient survival has gained significant attention. Nevertheless, successfully translating these methods into clinical practice while ensuring diagnostic and predictive accuracy presents a notable challenge. Certain studies have developed diagnostic models for uremia using specific algorithms and conducted screenings for differential genes. However, it is important to note that these endeavors may be susceptible to personal biases and inherent preferences (26, 44). Thus, we employed 113 combinations of 12 machine learning algorithms to compare their diagnostic performance and identify the best model that mitigates bias caused by these factors, and ultimately, we determined Lasso + GBM as the best model. This study approach significantly reduces the complexity of research and uncovers the most representative patterns, enabling the development of a streamlined and more meaningful model. To further analyze the performance of prediction models constructed using multiple machine learning algorithms, we selected two published uremic diagnostic models that associate with different functional genes. One was Zeng’s model (13), which included two GEO datasets, GSE37171 and GSE70528, and associated modules were identified using the Weighted gene co-expression network analysis (WGCNA) method, followed by Lasso regression, to identify five genes predictive of end-stage renal disease. The other was Xi’s model (27), which incorporated the GEO dataset GSE37171 to screen five predictive genes of end-stage renal disease associated with cellular senescence through a PPI interaction network. As can be seen from the results, our prediction model performs significantly better than the other two models. However, our model has two more genes than the other models, and this increase in the number of genes may bring a little difficulty in clinical practice. Future efforts should, therefore, focus on the simple and efficient analysis of more models, ensuring superior predictive performance and enabling widespread implementation in clinical settings.

It is important to note that in a previous study, haptoglobin (HP) in seven model genes that comprise our diagnostic model is linked to hemolytic uremia (45). Mouse experiments have shown that mice with hemolytic uremic syndrome (HUS) lacking haptoglobin have a 25% reduction in survival compared with normal mice. When low doses of haptoglobin were administered to Shiga toxin-challenged wild-type mice, it reduced renal platelet deposition and neutrophil recruitment, suggesting that haptoglobin has beneficial effects, at least partly. Additionally, S100A12 has been found to be a strong predictor of cardiovascular mortality in end-stage renal disease (46–48). It has been discovered that RAGE triggers pro-inflammatory pathways upon the activation of S100A12, and the S100/RAGE interaction accelerates the development of cardiac hypertrophy and diastolic dysfunction in mouse models of CKD (49), further increasing mortality in uremia patients. TNNT1 has been associated with myopathy and even some cancers, but there are no definitive results on the mechanisms affecting uremia, which need to be further investigated. RAB13, which is mainly associated with the trafficking of intracellular material and the functional regulation of organelles, is similar to TNNT1, and the relationship to the role of uremia is unknown. IL7R and CD3D have been found to have a possible relationship with nephropathy, especially diabetic nephropathy, in previous studies, and similarly, RETN (resistin) has been found to play a role in diabetic nephropathy as well as renal insufficiency, but unfortunately, studies have not involved pathogenesis, and basic experiments are also needed for further exploration. Recently, experts have found common pathways and protein expressions in the central nervous system (CNS) and kidney, including glutamate signaling (50), nephrin expression (51), and podocalyxin expression (52), which also serve as the basis of our study. Through these findings, it is understood that brain-derived neurotrophic factor (BDNF), which is primarily produced in the nervous system, is also secreted by the kidneys. To investigate BDNF function in vivo, Endlich et al. knocked down BDNF in zebrafish larvae and found that it led to decreased expression of podocin and nephrin, as well as enlarged Bowman’s spaces, glomerular telangiectasia, and podocyte loss. These structural changes were associated with an increased urinary albumin–creatinine ratio. Based on these findings, BDNF has been suggested as a novel potential biomarker of glomerular kidney injury (53). BDNF is associated with sarcopenia (54), insulin resistance (55), depression (56), and inflammation (57). Because all these adverse conditions are also present in CKD patients, and BDNF is expressed in glomeruli and tubules, Trk receptors (TrkB and TrkC) are expressed in proximal and distal tubules, as well as in collecting duct epithelial cells (58). It can be speculated that BDNF may be a potential marker of CKD. Many researchers have investigated the relationship between depression and BDNF in CKD. Sun et al. showed that the uremic toxin indoxyl sulfate is associated with mood disorders and neurodegeneration and has an inhibitory effect on BDNF expression in unilateral nephrectomized mice (59). Similar results showed that p-cresol sulfate (PCS) levels were increased and BDNF was decreased in C57/BL/6 mice after unilateral nephrectomy, and these changes were often accompanied by depression-like, anxiety-like, and cognitive impairment behaviors (60). However, studies on depression and BDNF have not been consistent, and Alshogran et al. showed that BDNF concentrations did not correlate with depression scores (61). Overall, BDNF may reflect a promising marker for depression screening in CKD. The investigation of BDNF is mainly in the screening of depression, and whether it is a biomarker of CKD or even uremia still needs to be further explored.

At present, the treatment of uremia is scarce and expensive, and the development of new therapeutic drugs is not easy. Therefore, the use of the DSigDB database to find potential therapeutic agents against uremia-related causative genes provides new insights into the treatment of uremia. Importantly, it not only shortens the time but also significantly reduces the cost of developing drugs. Previous studies have shown that uremic toxins may inhibit Klotho expression by promoting increased DNA methyltransferase expression and DNA hypermethylation (62). At the same time, Klotho, as a renoprotective factor (63, 64), is significantly decreased in uremia patients (65). Decitabine prevents early kidney damage by inhibiting DNA methyltransferases, reducing methylation of DNA, and increasing Klotho expression (66). Of course, when it progresses to end-stage renal disease, dialysis is the main treatment, and different dialysis methods will also cause various injuries to patients (67), which is also the direction to be explored in the future.




5 Limitations

Our study has several limitations. Despite including three datasets from the GEO database to mitigate the impact of a single sample, the volume of collected data requires augmentation due to the numerous models we analyzed. Furthermore, while we successfully validated our model’s predictive performance, additional experimental studies are needed to further confirm our biomarkers and mechanisms of action.




6 Conclusions

Our research establishes a novel molecular framework for the early diagnosis of uremia, especially in patients diagnosed with MDD. Furthermore, we have conducted extensive model analyses and identified an optimal diagnostic model, which provides valuable insights for more comprehensive and effective diagnostic gene analysis.





Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.





Ethics statement

Ethical approval was not required for the studies involving humans because publicly available datasets were used for this study. The studies were conducted in accordance with the local legislation and institutional requirements. The human samples used in this study were acquired from the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) data (GSE37171, GSE38750, GSE43484, GSE52790, GSE76826, and GSE98793). Written informed consent to participate in this study was not required from the participants or the participants’ legal guardians/next of kin in accordance with the national legislation and the institutional requirements.





Author contributions

KJ: Writing – original draft. CZ: Writing – original draft. CS: Writing – original draft. XF: Writing – original draft. HH: Writing – original draft. BZ: Writing – original draft, Writing – review & editing.





Funding

The authors declare financial support was received for the research and/or publication of this article. The authors declare that the following financial support was received for the publication of the study herein. Yaodong Shenzhou - Pharmaceutical Research Capacity Building Fund Project (2024-KY002-01), Nantong University, Clinical Medicine Special Scientific Research Fund Project (2024LQ019), Young Project of Health Commission of Nantong City(QN2022017).




Acknowledgments

We are grateful to the Second Affiliated Hospital of Nantong University for their support of this work and the public GEO database.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Generative AI statement

The authors declare that no generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.





References

	 Malhi GS, Mann JJ. Depression. Lancet. (2018) 392:2299–312. doi: 10.1016/S0140-6736(18)31948-2, PMID: 30396512


	 Regier DA, Kuhl EA, Kupfer DJ. The dsm-5: classification and criteria changes. World Psychiatry. (2013) 12:92–8. doi: 10.1002/wps.20050, PMID: 23737408


	 Shorey S, Ng ED, Wong C. Global prevalence of depression and elevated depressive symptoms among adolescents: a systematic review and meta-analysis. Br J Clin Psychol. (2022) 61:287–305. doi: 10.1111/bjc.12333, PMID: 34569066


	 Greenberg PE, Fournier AA, Sisitsky T, Pike CT, Kessler RC. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry. (2015) 76:155–62. doi: 10.4088/JCP.14m09298, PMID: 25742202


	 Zhdanava M, Pilon D, Ghelerter I, Chow W, Joshi K, Lefebvre P, et al. The prevalence and national burden of treatment-resistant depression and major depressive disorder in the United States. J Clin Psychiatry. (2021) 82:20m13699. doi: 10.4088/JCP.20m13699, PMID: 33989464


	 Hsu HJ, Yen CH, Chen CK, Wu IW, Lee CC, Sun CY, et al. Association between uremic toxins and depression in patients with chronic kidney disease undergoing maintenance hemodialysis. Gen Hosp. Psychiatry. (2013) 35:23–7. doi: 10.1016/j.genhosppsych.2012.08.009, PMID: 23044245


	 Meyer TW, Hostetter TH. Uremia. N Engl J Med. (2007) 357:1316–25. doi: 10.1056/NEJMra071313, PMID: 17898101


	 Vanholder R, Massy ZA. Progress in uremic toxin research: an introduction. Semin Dial. (2009) 22:321–2. doi: 10.1111/j.1525-139X.2009.00573.x, PMID: 19708974


	 Scherer A, Günther OP, Balshaw RF, Hollander Z, Wilson-McManus J, Ng R, et al. Alteration of human blood cell transcriptome in uremia. BMC Med Genomics. (2013) 6:23. doi: 10.1186/1755-8794-6-23, PMID: 23809614


	 De-Nour AK, Czaczkes JW. The influence of patient’s personality on adjustment to chronic dialysis. J Nerv. Ment Dis. (1976) 162:323–33. doi: 10.1097/00005053-197605000-00003, PMID: 816993


	 De-Nour AK, Czaczkes JW. Bias in assessment of patients on chronic dialysis. J Psychosom. Res. (1974) 18:217–21. doi: 10.1016/0022-3999(74)90025-7, PMID: 4455868


	 Kimmel PL, Peterson RA, Weihs KL, Simmens SJ, Alleyne S, Cruz I, et al. Multiple measurements of depression predict mortality in a longitudinal study of chronic hemodialysis outpatients. Kidney Int. (2000) 57:2093–8. doi: 10.1046/j.1523-1755.2000.00059.x, PMID: 10792629


	 Zeng X, Li C, Li Y, Yu H, Fu P, Hong HGG, et al. A network-based variable selection approach for identification of modules and biomarker genes associated with end-stage kidney disease. Nephrology. (2020) 25:775–84. doi: 10.1111/nep.13655, PMID: 31464346


	 Katon WJ. Epidemiology and treatment of depression in patients with chronic medical illness. Dialogues Clin Neurosci. (2011) 13:7–23. doi: 10.31887/DCNS.2011.13.1/wkaton, PMID: 21485743


	 Zhou Y, Shi W, Zhao D, Xiao S, Wang K, Wang J. Identification of immune-associated genes in diagnosing aortic valve calcification with metabolic syndrome by integrated bioinformatics analysis and machine learning. Front Immunol. (2022) 13:937886. doi: 10.3389/fimmu.2022.937886, PMID: 35865542


	 Yang Q, Li B, Tang J, Cui X, Wang Y, Li XF, et al. Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data. Brief. Bioinform. (2020) 21:1058–68. doi: 10.1093/bib/bbz049, PMID: 31157371


	 Fu J, Tang J, Wang Y, Cui X, Yang Q, Hong J, et al. Discovery of the consistently well-performed analysis chain for swath-ms based pharmacoproteomic quantification. Front Pharmacol. (2018) 9:681. doi: 10.3389/fphar.2018.00681, PMID: 29997509


	 Tang J, Mou M, Wang Y, Luo Y, Zhu F. Metafs: performance assessment of biomarker discovery in metaproteomics. Brief. Bioinform. (2021) 22:bbaa105. doi: 10.1093/bib/bbaa105, PMID: 32510556


	 Stubbe J, Skov V, Thiesson HC, Larsen KE, Hansen ML, Jensen BL, et al. Identification of differential gene expression patterns in human arteries from patients with chronic kidney disease. Am J Physiol.-Renal Physiol. (2018) 314:F1117–28. doi: 10.1152/ajprenal.00418.2017, PMID: 29412699


	 Al-Chaqmaqchi HA, Moshfegh A, Dadfar E, Paulsson J, Hassan M, Jacobson SH, et al. Activation of wnt/beta-catenin pathway in monocytes derived from chronic kidney disease patients. PLoS One. (2013) 8:e68937. doi: 10.1371/journal.pone.0068937, PMID: 23935909


	 Liu Z, Li X, Sun N, Xu Y, Meng YQ, Yang C, et al. Microarray profiling and co-expression network analysis of circulating lncrnas and mrnas associated with major depressive disorder. PLoS One. (2014) 9:e93388. doi: 10.1371/journal.pone.0093388, PMID: 24676134


	 Miyata S, Kurachi M, Okano Y, Sakurai N, Kobayashi A, Harada K, et al. Blood transcriptomic markers in patients with late-onset major depressive disorder. PLoS One. (2016) 11:e150262. doi: 10.1371/journal.pone.0150262, PMID: 26926397


	 Leday G, Vértes PE, Richardson S, Greene JR, Regan T, Khan S, et al. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol Psychiatry. (2018) 83:70–80. doi: 10.1016/j.biopsych.2017.01.021, PMID: 28688579


	 Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. (2012) 28:882–3. doi: 10.1093/bioinformatics/bts034, PMID: 22257669


	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic. Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007, PMID: 25605792


	 Qin H, Abulaiti A, Maimaiti A, Abulaiti Z, Fan G, Aili Y, et al. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J Transl Med. (2023) 21:588. doi: 10.1186/s12967-023-04468-x, PMID: 37660060


	 Xi YJ, Guo Q, Zhang R, Duan GS, Zhang SX. Identifying cellular senescence associated genes involved in the progression of end-stage renal disease as new biomarkers. BMC Nephrol. (2023) 24:231. doi: 10.1186/s12882-023-03285-0, PMID: 37553608


	 Smith MD, Hong BA, Robson AM. Diagnosis of depression in patients with end-stage renal disease. Comparative analysis. Am J Med. (1985) 79:160–6. doi: 10.1016/0002-9343(85)90004-X, PMID: 3895906


	 Halen NV, Cukor D, Constantiner M, Kimmel PL. Depression and mortality in end-stage renal disease. Curr Psychiatry Rep. (2012) 14:36–44. doi: 10.1007/s11920-011-0248-5, PMID: 22105534


	 Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng. (2006) 8:537–65. doi: 10.1146/annurev.bioeng.8.061505.095802, PMID: 16834566


	 Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, et al. Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn. (2011) 11:333–43. doi: 10.1586/erm.11.3, PMID: 21463242


	 Petrik J. Diagnostic applications of microarrays. Transfus. Med. (2006) 16:233–47. doi: 10.1111/j.1365-3148.2006.00673.x, PMID: 16879151


	 Chen Y, Jiang T, Chen P, Ouyang J, Xu G, Zeng Z, et al. Emerging tendency towards autoimmune process in major depressive patients: a novel insight from th17 cells. Psychiatry Res. (2011) 188:224–30. doi: 10.1016/j.psychres.2010.10.029, PMID: 21129782


	 Chung BH, Kim KW, Sun IO, Choi SR, Park HS, Jeon EJ, et al. Increased interleukin-17 producing effector memory t cells in the end-stage renal disease patients. Immunol Lett. (2012) 141:181–9. doi: 10.1016/j.imlet.2011.10.002, PMID: 22004873


	 Turner JE, Paust HJ, Steinmetz OM, Panzer U. The th17 immune response in renal inflammation. Kidney Int. (2010) 77:1070–5. doi: 10.1038/ki.2010.102, PMID: 20375986


	 Zhang J, Hua G, Zhang X, Tong R, DU X, Li Z. Regulatory t cells/t-helper cell 17 functional imbalance in uraemic patients on maintenance haemodialysis: a pivotal link between microinflammation and adverse cardiovascular events. Nephrology. (2010) 15:33–41. doi: 10.1111/j.1440-1797.2009.01172.x, PMID: 20377769


	 Csiszar A, Ungvari Z. Synergistic effects of vascular il-17 and tnfalpha may promote coronary artery disease. Med Hypotheses. (2004) 63:696–8. doi: 10.1016/j.mehy.2004.03.009, PMID: 15325020


	 Awasthi A, Murugaiyan G, Kuchroo VK. Interplay between effector th17 and regulatory t cells. J Clin Immunol. (2008) 28:660–70. doi: 10.1007/s10875-008-9239-7, PMID: 18810613


	 Eisenstein EM, Williams CB. The t(reg)/th17 cell balance: a new paradigm for autoimmunity. Pediatr Res. (2009) 65:26R–31R. doi: 10.1203/PDR.0b013e31819e76c7, PMID: 19218879


	 Hendrikx TK, van Gurp EAFJ, Mol WM, Schoordijk W, Sewgobind VDKD, Ijzermans JNMI, et al. End-stage renal failure and regulatory activities of cd4+cd25bright+foxp3+ t-cells. Nephrol. Dial. Transplant. (2009) 24:1969–78. doi: 10.1093/ndt/gfp005, PMID: 19193737


	 Meng XM, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. (2014) 10:493–503. doi: 10.1038/nrneph.2014.114, PMID: 24981817


	 Kitching AR. Dendritic cells in progressive renal disease: some answers, many questions. Nephrol. Dial. Transplant. (2014) 29:2185–93. doi: 10.1093/ndt/gfu076, PMID: 24739483


	 Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. (2019) 15:144–58. doi: 10.1038/s41581-019-0110-2, PMID: 30692665


	 Liu Z, Guo CG, Dang Q, Wang L, Liu L, Weng S, et al. Integrative analysis from multi-center studies identities a consensus machine learning-derived lncrna signature for stage ii/iii colorectal cancer. Ebiomedicine. (2022) 75:103750. doi: 10.1016/j.ebiom.2021.103750, PMID: 34922323


	 Pirschel W, Mestekemper AN, Wissuwa B, Krieg N, Kröller S, Daniel C, et al. Divergent roles of haptoglobin and hemopexin deficiency for disease progression of shiga-toxin-induced hemolytic-uremic syndrome in mice. Kidney Int. (2022) 101:1171–85. doi: 10.1016/j.kint.2021.12.024, PMID: 35031328


	 Nakashima A, Carrero JJ, Qureshi AR, Miyamoto T, Anderstam B, Barány P, et al. Effect of circulating soluble receptor for advanced glycation end products (srage) and the proinflammatory rage ligand (en-rage, s100a12) on mortality in hemodialysis patients. Clin J Am Soc Nephrol. (2010) 5:2213–9. doi: 10.2215/CJN.03360410, PMID: 20847094


	 Shiotsu Y, Mori Y, Nishimura M, Sakoda C, Tokoro T, Hatta T, et al. Plasma s100a12 level is associated with cardiovascular disease in hemodialysis patients. Clin J Am Soc Nephrol. (2011) 6:718–23. doi: 10.2215/CJN.08310910, PMID: 21258041


	 Shiotsu Y, Mori Y, Nishimura M, Hatta T, Imada N, Maki N, et al. Prognostic utility of plasma s100a12 levels to establish a novel scoring system for predicting mortality in maintenance hemodialysis patients: a two-year prospective observational study in Japan. BMC Nephrol. (2013) 14:16. doi: 10.1186/1471-2369-14-16, PMID: 23324110


	 Yan L, Mathew L, Chellan B, Gardner B, Earley J, Puri TSP, et al. S100/calgranulin-mediated inflammation accelerates left ventricular hypertrophy and aortic valve sclerosis in chronic kidney disease in a receptor for advanced glycation end products-dependent manner. Arterioscler Thromb Vasc Biol. (2014) 34:1399–411. doi: 10.1161/ATVBAHA.114.303508, PMID: 24855059


	 Armelloni S, Li M, Messa P, Rastaldi MPR. Podocytes: a new player for glutamate signaling. Int J Biochem Cell Biol. (2012) 44:2272–7. doi: 10.1016/j.biocel.2012.09.014, PMID: 23018105


	 Li M, Armelloni S, Ikehata M, Corbelli A, Pesaresi M, Calvaresi N, et al. Nephrin expression in adult rodent central nervous system and its interaction with glutamate receptors. J Pathol. (2011) 225:118–28. doi: 10.1002/path.2923, PMID: 21630272


	 Vitureira N, Andrés R, Pérez-Martínez E, Martínez A, Bribián A, Blasi J, et al. Podocalyxin is a novel polysialylated neural adhesion rotein with multiple roles in neural development and synapse formation. PLoS One. (2010) 5:e12003. doi: 10.1371/journal.pone.0012003, PMID: 20706633


	 Endlich N, Lange T, Kuhn J, Klemm P, Kotb AM, Siegerist F, et al. BDNF: mRNA expression in urine cells of patients with chronic kidney disease and its role in kidney function. J Cell Mol Med. (2018) 22:5265–77. doi: 10.1111/jcmm.13762, PMID: 30133147


	 Karim A, Iqbal MS, Muhammad T, Qaisar R. Evaluation of sarcopenia using biomarkers of the neuromuscular junction in Parkinson’s disease. J Mol Neurosci. (2022) 72:820–9. doi: 10.1007/s12031-022-01970-7, PMID: 35044622


	 Rozanska O, Uruska A, Zozulinska-Ziolkiewicz D. Brain-derived neurotrophic factor and diabetes. Int J Mol Sci. (2020) 21:841. doi: 10.3390/ijms21030841, PMID: 32012942


	 Brunoni AR, Lopes M, Fregni F. A systematic review and metaanalysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol. (2008) 11:1169–80. doi: 10.1017/S1461145708009309, PMID: 18752720


	 Laste G, Ripoll Rozisky J, de Macedo IC, Dos Santos VS, Custódio de Souza IC, Caumo W, et al. Spinal cord brainderived neurotrophic factor levels increase after dexamethasone treatment in male rats with chronic infammation. NeuroImmunoModulation. (2013) 20:119–25. doi: 10.1159/000345995, PMID: 23328256


	 Huber LJ, Hempstead B, Donovan MJ. Neurotrophin and neurotrophin receptors in human fetal kidney. Dev Biol. (1996) 179:369–81. doi: 10.1006/dbio.1996.0268, PMID: 8903353


	 Sun CY, Li JR, Wang YY, Lin SY, Ou YC, Lin CJ, et al. Indoxyl sulfate caused behavioral abnormality and neurodegeneration in mice with unilateral nephrectomy. Aging (Albany NY). (2021) 13:6681–701. doi: 10.18632/aging.202523, PMID: 33621199


	 Sun CY, Li JR, Wang YY, Lin SY, Ou YC, Lin CJ, et al. p-Cresol sulfate caused behavior disorders and neurodegeneration in mice with unilateral nephrectomy involving oxidative stress and neuroinfammation. Int J Mol Sci. (2020) 21:6687. doi: 10.3390/ijms21186687, PMID: 32932690


	 Alshogran OY, Khalil AA, Oweis AO, Altawalbeh SM, Alqudah MAY. Association of brain-derived neurotrophic factor and interleukin-6 serum levels with depressive and anxiety symptoms in hemodialysis patients. Gen Hosp Psychiatry. (2018) 53:25–31. doi: 10.1016/j.genhosppsych.2018.04.003, PMID: 29727764


	 Sun CY, Chang SC, Wu MS. Suppression of klotho expression by protein-bound uremic toxins is associated with increased dna methyltransferase expression and dna hypermethylation. Kidney Int. (2012) 81:640–50. doi: 10.1038/ki.2011.445, PMID: 22237753


	 Sugiura H, Yoshida T, Tsuchiya K, Mitobe M, Nishimura S, Shirota S, et al. Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol. Dial. Transplant. (2005) 20:2636–45. doi: 10.1093/ndt/gfi165, PMID: 16204278


	 Haruna Y, Kashihara N, Satoh M, Tomita N, Namikoshi T, Sasaki T, et al. Amelioration of progressive renal injury by genetic manipulation of klotho gene. Proc Natl Acad Sci U. S. A. (2007) 104:2331–6. doi: 10.1073/pnas.0611079104, PMID: 17287345


	 Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun. (2001) 280:1015–20. doi: 10.1006/bbrc.2000.4226, PMID: 11162628


	 Zhao Y, Zeng X, Xu X, Wang W, Xu L, Wu Y, et al. Low-dose 5-aza-2’-deoxycytidine protects against early renal injury by increasing klotho expression. Epigenomics. (2022) 14:1411–25. doi: 10.2217/epi-2022-0430, PMID: 36695107


	 Xiao F, Zhou L, Li Y, Zhang C, Liu Y, Yu H, et al. Comparison of brain gray matter volume changes in peritoneal dialysis and hemodialysis patients with chronic kidney disease: a VBM study. Front Neurosci. (2024) 18:1394169. doi: 10.3389/fnins.2024.1394169, PMID: 38737098







Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2025 Jiang, Zhang, Shen, Fang, Huang and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


OEBPS/Images/fneph-05-1576349-g001.jpg
“Limma " “Limma ”“
LogFC>0.25 LogFC>0.25
p <0.05 p <0.05

Intersection

7 Shared genes
Enrichment analysis
113-combination machine learning

computational framework

Piacnosticmedel 70% database as training dataset
(Lgasso+GBM) and 30% database as test dataset
(GSE37171, GSE38750. GSE43484)

PPI Network

Comparsion with Comparsion with :
clinical features other models Candlieie cluee






OEBPS/Images/fneph-05-1576349-g003.jpg
25-

[
(=]
™

Down
Not
P

Sig

..000 ]

L0 =

(len"d'fpe)oLBol-

.
(=]
B
=
|
e
()]
e o
o
<
-0
I
w0
|0
5
.\ =
(=]
)
e
oD
o o
& =
¥ 2
—
(=]
T





OEBPS/Images/fneph-05-1576349-g006.jpg
Actual probability

0.8

0.6

0.4

02

Points

S100A12 T T T T r T T T

RETN

HP

CD3D

RAB13

= T UL T

_ et Ideal

IL7R

Total Points T T T T

QimBras+Siepglm{fanmard
Lasso+Stepglim]forward]
Slepgimlforvard
Laseo+XCBoost
gimBoost+AGHoast
glmBoust+Enel{alpha=0.8]
glimRncst+Enet{alpha=0.8]
Enellaipha=0.5
glmEoost
gimisoost+Lasse
LassorgimBoost
Enet{aipha=0.9]
Enelfaipha=0.5
glmBoost+Enef{alpha=0.7]
Lnetaipha=0.5
glmBoost+Enetfaipha=0.4]
Lasso
glmBuocst+Enelfalpha=0.9]
Enefalpha=0.7]
aimBocst+Enelfalpha=0.5
Enet{alpha=0.2]
gimbocst+ Lnet alpha
Enelfalpha:
Ridge
almBocst+Enelalpha
Enet{alpha;
Lnet|alpha=
glmBoust+ Ridge
L&
QImBoos+LEA
Lassc+LDa
gimbacst+Lnefaipha=0.1
Lasen+plsRglm
gimBacst+plskRglm
plsRglm
MaiveBayes
Lasso+MaiveBayes
gimSocsi+HaiveBayes
SuM
glmBoos+5WM
Lasso+5Wh

L

0 C2od 0602

T T T T

Apparent
—— Bias—corrected

0.2 0.4

0.6 0.8 1.0

Predicted probability

o] 10 20 30 40 50 60 70

U Y S TS S HPU S PR |

Sensitivity
0.4

PRI TP T

6.5 7 7.5 8 8.5 9 85 10 105 11

5 56 64 7 76

r T T T 1
45 6 65 6 65 7 75 8 85

i e e
74 78 82 BB 9

66 7

TNNT1 L e e o e e e e o

12

1.0

0.8

0.6

0.2

0.0

100

125

H] 20 40 60 80 100 120 140 160

—

Risk of Disease T T T T T

0.1 03 05 07 08

200

1
0.89

1
220

Net Benefit

0.0

02 03 04 05 06

0.0 0.1

0.2

AUC: 0.941
95% Cl: 0.906-0.970

0.4 0.6
1 - Specificity

0.8

1.0

Model

T

Cost:Benefit Ratio

[ T I T |
0.0 0.2 04 0.6 0.8 1.0
Threshold probability
I T T T I
1:100 1:4 2:3 3:2 4:1 100:1





OEBPS/Images/fneph-05-1576349-g008.jpg
Sensitivity

0.4

1.0

0.8

0.6

0.2

0.0

0.0

0.2

Score VS Xi

—— Score, AUC=0.933
——  Xi, AUC=0.825

0.4 0.6 0.8 1.0
1 — Specificity

Sensitivity

0.4

1.0

0.8

0.6

0.2

0.0

0.0

0.2

Score VS Zeng

— Score, AUC=0.933
—— Zeng, AUC=0.800

0.4 0.6 0.8 1.0
1 - Specificity





OEBPS/Images/fneph-05-1576349-g005.jpg
-

P

o
1
; .uﬁu.
e =
'
e

.

R

e

S

ﬁl
= - =
E N
_..Iﬁoc
: T
e
E =

Type BR Control B Treat

. povs
ii
L] ]
.

-
=
w3
=
uonoel4

1.004
0.751

I
=

E

t
E S
¥
hﬂl

¥

="
b,

T

+
8.

Type - Control - Treat

=
=B
E:

1.00
0.75
5
0.25

uaipoe4





OEBPS/Images/crossmark.jpg
©

2

i

|





OEBPS/Images/fneph.2025.1576349_cover.jpg
& frontiers | Frontiers in Nephrology

Development and validation of a
comprehensive machine learning framework
for a diagnostic model of uremia based on
genes involved in major depressive disorder





OEBPS/Images/fneph-05-1576349-g002.jpg
A
Before batch correction
" &
-50 Type
8 GSES2790
a GSET7G826
-100 GSEQETI3
-150
0 200 400 600 800
PC1
C
Before batch correction
50 S
0
Type
GSE37171
GSE38750
-100 GSE43484
-150
-200 . s
0 100

PC2

After batch correction

Type
GSE52790
GSE76826
GSE98793

=30 0 30 60

After batch correction

-40 0 40

Type
GSE37171
GSE38750
GSE43484





OEBPS/Images/fneph-05-1576349-g007.jpg
Sensitivity

0.4

Sensitivity

0.4

Sensitivity

Sensitivity

0.4

1.0

0.8

0.6

0.2

0.0

1.0

0.8

0.6

0.2

0.0

1.0

0.8

0.6

0.2

0.0

Age<50

AUC: 0.877
95% CI: 0.790-0.945

4

0.0 0.2 0.4 0.6 0.8
1 - Specificity

Age>50

/AUC: 0.962
95% Cl: 0.918-0.993

,/‘

0.0 0.2 0.4 0.6 0.8
1 - Specificity

Male

1.0

1.0

AUC: 0.928
95% Cl: 0.867-0.976

0.0 0.2 0.4 0.6 0.8
1 - Specificity

Famale

AUC: 0.904
35% Cl: 0.814-0.971

0.0 0.2 04 06 0.8
1 - Specificity

1.0

1.0

Sensitivity

Sensitivity

Sensitivity

0.4

Sensitivity
0.4

e |
@ |
o
o |
o
S100A12, AUC=0.853
- RETN, AUC=0.759
HP, AUC=0.741
N CD3D, AUC=0.705
S ] RAB13, AUC=0.772
TNNT1, AUC=0.672
o | IL7R, AUC=0.599
(=]
T I T T I I
00 02 04 06 08 10
1 - Specificity
=
©
o
©
o
S100A12, AUC=0.925
= RETN, AUC=0.777
HP, AUC=0.866
” CD3D, AUC=0.670
S RAB13, AUC=0.776
TNNT1, AUC=0.810
o IL7R, AUC=0.841
S
00 02 04 06 08 10
1 - Specificity
o

0.8

0.6

S100A12, AUC=0.917
RETN, AUC=0.780
HP, AUC=0.810
CD3D, AUC=0.699
RAB13, AUC=0.737
TNNT1, AUC=0.707
IL7R, AUC=0.718

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

1.0

0.8

0.6

S100A12, AUC=0.832
RETN, AUC=0.744
HP, AUC=0.785
CD3D, AUC=0.667
RAB13, AUC=0.843
TNNT1, AUC=0.797
IL7R, AUC=0.711

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity





OEBPS/Images/fneph-05-1576349-g004.jpg
cefense maporse to bactenum -

A B T cell differentiabon in

Lhymus

izl killing -

goned development -
development of primary
sezual characterislics

negalive regulation of T
cell mediated cytoloxicity

43

1esponse b insulin -

positive regulation of T _
o=l differerdiation in thymus
pogitive regulation of
steroid hormere sacreion

luiteinization -

endocylic vesicle -
clathrin-coated vesicle -
cnater vesicle -
sotreiory granuks lumen -

Yuihie

cytoplasmic wesicle luman -

wesicke lumen -

ocd

Spectic granule lumen - acE

clathrin-coated endocytic
wesicle membrane

clathrin-caated endocytic
vesile

clathrin-coated vesicle
membrane

RAGE weeepdor binding -
fropomyesin binding -

capper ion binding -

caldum-depanident profein
binding

Nt it anbioaidant activity - =
e g W eemvluny genals hoven cytokine receptor activity - -
B Coloy = B pecifi grane harmone actnity -
W resnooss wo Tiagges
i — immune receptar activily -
& i, dudinsia serinu=lyoe urldowgtélszﬁl;_ -
Wbl Basmaal e e anfigen binding - -
W Wmeea] e esponss i 1 2 4 4
Count
C D Kawasaki disease

lymphadenitis
lymph node disease |

atherosclerosis |

arteriosclerotic |
cardiovascular disease

lymphatic system disease{

Primary immunodeficiency arteriosclerosisq

pulmonary artery disease

pulmanary embolism

human immunadeficiency virus |
infectious disease

inflammatory bowel disease

severe combined
immunadeficiency

gestational diabetes {

Hematopoietic cell lineage

: £ . pvalue
liver cirrhosis {
PD-L1 expression and PD~1 intrinsic cardiomyopathy 0.002
checkpoint pathway in cancer
value ; P ; ]
P combined immunodeficiency 0.004
0 intestinal disease
in 0.006
o acute myocardial infarction
0.04

sarcoidosis |
Th1 and Th2 cell

differentiation myocardial infarction |

cardiomyopathy |

non-alcoholic fatty liver |
disease

neuropathy 4

Chagas disease hypertrophic cardiomyapathy

middle cerebral artery |
infarction

hypersensitivity reaction

type IV disease

Coronavirus infectious disease

hypersensitivity reaction |
disease

colitis |

Th17 cell differentiation

hyperglycemia |

I
1

[=1
|
N
wA
-~

0.0 0.5 10 1.5 20
Count Count





