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The amount of information exchanged per unit of time between two dynamic processes is
an important concept for the analysis of complex systems. Theoretical formulations and
data-efficient estimators have been recently introduced for this quantity, known as the
mutual information rate (MIR), allowing its continuous-time computation for event-based
data sets measured as realizations of coupled point processes. This work presents the
implementation of MIR for point process applications in Network Physiology and
cardiovascular variability, which typically feature short and noisy experimental time
series. We assess the bias of MIR estimated for uncoupled point processes in the
frame of surrogate data, and we compensate it by introducing a corrected MIR (cMIR)
measure designed to return zero values when the two processes do not exchange
information. The method is first tested extensively in synthetic point processes
including a physiologically-based model of the heartbeat dynamics and the blood
pressure propagation times, where we show the ability of cMIR to compensate the
negative bias of MIR and return statistically significant values even for weakly coupled
processes. The method is then assessed in real point-process data measured from
healthy subjects during different physiological conditions, showing that cMIR between
heartbeat and pressure propagation times increases significantly during postural stress,
though not during mental stress. These results document that cMIR reflects physiological
mechanisms of cardiovascular variability related to the joint neural autonomic modulation
of heart rate and arterial compliance.

Keywords: information dynamics, point processes, mutual information rate, heart rate variability, cardiovascular
time series

1 INTRODUCTION

The mutual information (MI) between two random variables is a central concept in information
theory. MI is an important quantity with huge practical relevance, as it quantifies how much
information is exchanged between two complex systems or is shared by two data sets. Indeed, thanks
to these characteristics, MI is ubiquitously employed in diverse fields of science and engineering to
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assess linear and non-linear interactions, e.g., between electronic
oscillators (Minati et al., 2018), financial systems (Fiedor, 2014),
climatological variables (Perinelli et al., 2021), brain units
(Mijatovic et al., 2021b) or physiological systems (Valderas
et al., 2019). In all these application fields, the study of
dynamical systems, i.e., systems whose state evolves over time,
is central to the understanding of the underlying phenomena.
Therefore, dynamic formulations of MI in which the observed
variables are associated with temporal information are
recommended for a proper assessment of the interactions
between the system units. In this study we consider the MI
rate (MIR), a well-known quantity measuring the amount of
information shared by two random processes per unit of time
(Duncan, 1970). In particular, we focus on the computation of
MIR for point processes, i.e., processes where the relevant
information stands in the times of occurrence of specific
events. This class of processes is widely adopted in
neuroscience, for instance to study the spiking activity of
neural populations acquired through multi-electrode recording
techniques (Truccolo et al., 2005), and in the field of
cardiovascular variability, where the point process nature of
the human heartbeats has inspired the development of event-
based models to describe the heart rate and its interaction with
vascular, respiratory andmetabolic variables (Barbieri et al., 2005;
Valenza et al., 2018).

The calculation of dynamic information measures, such as the
MIR or the transfer entropy rate (TER) quantifying the rate of
directed (causal) information flow between stochastic processes
(Schreiber, 2000; Spinney et al., 2017) is well-established for
discrete-time processes, i.e., processes defined at discrete time
instant, which represent the sampling rate of continuous-time
signals or the rate of a physiological oscillator (e.g., the cardiac
pacemaker); in this context, a number of practical approaches
exist to provide data-efficient estimates (Vicente et al., 2011; Faes
et al., 2015). On the other hand, the definition and practical
computation of these measures for continuous-time processes
defined at each time instant with arbitrarily small resolution, and
more specifically for point processes, is much more cumbersome.
The classical way to compute MIR and TER for point process or
other event-based data typically relies on binning of the temporal
axis followed by the application of discrete-time estimators
(Pasquale et al., 2008), but unavoidably implies loss of
information and strong dependence on the parameters related
to time discretization (Mijatovic et al., 2021a; Shorten et al.,
2021). Only recently, the theoretical formalism (Spinney et al.,
2017; Spinney and Lizier, 2018) and the design of estimation
approaches for the TER (Shorten et al., 2021) and MIR (Mijatovic
et al., 2021a) has been introduced in the context of neuroscience
applications. In particular, Mijatovic et al. (2021a) have shown
that for point process data theMIR can be expressed as the sum of
the TER computed along the two directions of interaction
between the two analyzed processes, and have exploited the
TER estimation methods introduced by (Shorten et al., 2021)
to design a data-efficient estimator of the MIR for coupled point
processes. These works are of a great practical relevance, because
they open the way for a reliable non-parametric, continuous-time
estimation of the information transfer for event-based processes.

In this work, we exploit the MIR estimator introduced in
(Mijatovic et al., 2021a) to assess the rate of information shared
between cardiovascular point processes. Specifically, we focus on
cardiovascular interactions assessed between the cardiac
pacemaker, studied by the heartbeat timings and measured
from the ECG, and the times of arrival to the body periphery
of the sphygmic wave, measured through finger
photoplethysmography. The application of event-based
frameworks to heartbeat and pulse arrival times entertains a
different perspective on the study of cardiovascular regulation
than more classical analyses performed on time series of the heart
period and arterial pressure variability (Cohen and Taylor, 2002;
Porta and Faes, 2015), and leads to address related but different
physiological mechanisms. In particular, while classical time
series analysis methods investigate cardiovascular interactions
focusing on baroreflex regulation and mechanical mechanisms
(Faes et al., 2013; Javorka et al., 2017), the study of coupled point
processes may reveal the physiological mechanisms that
modulate the arterial pressure, the contractility of the
ventricles and vasomotion (Okada et al., 1996; Chan et al.,
2007). Since these mechanisms typically operate on short time
scales involving a few heartbeats, and due to stationarity issues,
the analysis of these processes is typically restricted to short
realizations (few hundred events). A practical consequence of this
restriction is the difficulty of obtaining reliable estimates in the
presence of short series of data. To test the applicability of the
MIR estimator on short realizations of point process data, we
assess the estimation bias in simulations of uncoupled point
processes generated for different parametric probability
distributions. When there is no coupling between the
processes, a positive bias can be misinterpreted as a weak
coupling, while a negative bias makes a non-negative measure
like the MIR of difficult interpretation. We provide a solution to
this problem, by modifying the MIR estimator and introducing a
corrected MIR (cMIR) measure for which the bias is reduced; the
correction employs surrogate time series, which reproduce the
bias occurring for uncoupled point processes. The novel cMIR
measure is tested first in simulated point process models that
reproduce the coupled occurrence of the heartbeat times and of
the arrival instants of the blood pressure wave at the body
periphery, and then in real point process series measured from
healthy subjects monitored in resting state and during postural
and mental stress (Javorka et al., 2017).

2 INFORMATION-THEORETIC MEASURES
TO ASSESS THE DYNAMIC INTERACTION
BETWEEN STOCHASTIC PROCESSES
This section presents the mathematical background necessary to
assess the information shared between continuous-time
stochastic processes. Information-theoretic measures are
typically employed to treat dynamic systems in discrete time,
i.e. systems can be described by processes whose states are
mapped by times series values. However, many theoretical and
real-world systems are naturally described by processes defined in
continuous time, whose available discrete-time signals represent
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approximate realizations. The most accurate information-
theoretic treatment of continuous-time processes is that using
random functions in place of collections of random variables to
quantify information dynamics (Spinney et al., 2017). In the
following subsections, we show how to employ random functions
to define the information dynamically shared between two
continuous-time processes, how to express it in terms of the
information transferred along the two directions of interaction
between the processes, and how to formalize its computation and
practical estimation in the particular case of point processes.

2.1Mutual Information and Transfer Entropy
Rates
Let us consider two possibly coupled dynamical systems X and Y
such that their evolution over time is mapped by the continuous-
time stochastic processes X � {Xt} and Y � {Yt}, which are defined
at each continuous-time instant t ∈ R. A well-known undirected
measure of the dynamical interaction between X and Y is the
mutual information rate (MIR), which quantifies the amount of
information exchanged per unit of time by the two processes
(Duncan, 1970). If the processes are stationary, the MIR is
defined as

_IX;Y � lim
τ→∞

1
τ
I Xt−τ: t;Yt−τ: t( ), (1)

where I (·; ·) denotes mutual information (MI) and τ is the
duration of the temporal window over which the MI is computed.
The notation Xt−τ:t denotes the random function expressing the
stochastic process evaluated along the time interval of duration τ
ending at the time t, also referred to as path (Spinney et al., 2017),
i.e. Xt−τ:t � {Xs : t − τ ≤ s < t} (the same holds for the process Y);
note that the MI in Eq. 1, and consequently the MIR, are
independent on t due to stationarity.

The MIR defined above, as any other information measure
applied to continuous-time processes, cannot be readily
formulated in terms of the probability mass functions or
densities used for discrete and continuous random variables.
In continuous time, a viable approach is to establish a
generalized form for the information measures via measure-
theoretic approaches that unify under one framework the
methods specifically developed for discrete and continuous
random variables (Spinney et al., 2017). In this framework,
information measures can be expressed by using the Radon-
Nykodim derivative between appropriate random density
functions defined on paths in place of the ratio between
probability distributions of random variables adopted in
discrete-time (Gray, 2011). The MI measure in Eq. 1 can be
then expressed in a generalized form as (Duncan, 1970)

I Xt−τ: t;Yt−τ: t( ) � EP ln
dP xt−τ: t|yt−τ: t[ ]

dP xt−τ: t[ ][ ], (2)

where the expectation is taken over the path realizations xt−τ:t and
yt−τ:t of the random functions Xt−τ:t and Xt−τ:t, and the argument
of the logarithm is the Radon-Nykodim derivative of two
probability measures defined on path functions. With a similar

formalism, Spinney and colleagues have formalized different
measures of information dynamics for continuous-time
processes (Spinney et al., 2017; Spinney and Lizier, 2018). In
particular, the transfer entropy rate (TER) from the ‘source’
process Y to the ‘target’ process X is defined as (Spinney et al.,
2017)

_TY→X t, τ( ) � lim
Δt→0

1
ΔtTY→X t,Δt, τ( ), (3)

where

TY→X t,Δt, τ( ) � EP ln
dP xt+Δt|xt−τ: t, yt−τ: t[ ]

dP xt+Δt|xt−τ: t[ ][ ] (4)

is the transfer entropy (TE) formulated in terms of a Radon-
Nykodim derivative of conditional probability measures similarly
as in Eq. 2 for the MI, and the normalization by the time interval
Δt ensures convergence of the TER in the limit of small Δt
(Spinney et al., 2017). For stationary processes X and Y, the TER
is independent on the time t; moreover, considering realizations
of infinite duration yields the constant TER measure

_TY→X � lim
τ→∞

_TY→X t, τ( ), (5)

which quantifies the rate of information transferred along the
causal direction from Y to X. By reversing the role of the two
processes, the information transferred along the opposite causal
direction can be quantified by the TER measure _TX→Y.

The measures of the rates of information exchanged by X and
Y defined in Eqs. 1, 5 are related to each other by a decomposition
that expresses the MIR between X and Y as the sum of the TER
along the two directions X→ Y and Y→ X, plus a term related to
the instantaneous interaction between the two processes.
Specifically, by using information-theoretic rules on Eq. 2 and
recognizing Eq. 4 as a conditional MI, i.e., TY→X (t, Δt, τ) � I
(Xt+Δt; Yt−τ:t|Xt−τ:t), the MIR can be expanded as

_IX;Y � _TX→Y + _TY→X + _I
0

X;Y, (6)

where the term

_I
0

X;Y � lim
Δt→0

lim
τ→∞

1
Δt I Xt+Δt;Xt+Δt|Xt−τ: t, Yt−τ: t( ) (7)

quantifies the rate of information instantaneously exchanged
between the two processes conditioned to the knowledge of
their past histories. The derivation of the important relation
Eq. 6, where all three terms are quantified in [nats/s], is
reported in the Appendix.

2.2 Computation for Bivariate Point
Processes
In this subsection we formulate the computation of MIR for point
processes. A point process is a particular class of continuous-time
process that is uniquely characterized by a series of
indistinguishable events described by their time of occurrence.
In a bivariate context, the statistical description of two point
processes is provided in terms of the instants marking the event
times, i.e., by writing X � {xi}, i � 1, . . . ,NX, and Y � {yj}, j � 1, . . . ,
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NY, where xi and yj represent the times of the ith event in X and of
the jth event in Y, respectively. For these point processes, the MIR
can be computed by leveraging the decomposition provided in
Eq. 6 (Mijatovic et al., 2021a) and making the assumption that
simultaneous events are not possible, i. e, xi ≠ yj, ∀i � 1, . . . , NX,
j � 1, . . . ,NY (Spinney et al., 2017; Mijatovic et al., 2021a; Shorten
et al., 2021). This assumption implies that the measure _I

0
X;Y of

instantaneous information exchange between X and Y defined in
Eq. 7 is null, so that the MIR between two point processes simply
becomes the sum of the two TER terms

_IX;Y � _TX→Y + _TY→X. (8)

Starting from Eq. 8, the MIR can be calculated by employing
methods to define (Spinney et al., 2017) and compute (Shorten
et al., 2021) the TER for point processes. Specifically, the TER
from Y to X is formulated as

_TY→X � �λXEpx ln
λX,xi|X−

xi
,Y−

xi

λX,xi|X−
xi

⎡⎣ ⎤⎦, (9)

where �λX � NX/T is the average event rate of X, NX is the
number of target events, and T is the duration of the target
process; in Eq. 9, λX,xi |X−

xi
and λX,xi|X−

xi
,Y−

xi
are the instantaneous

event rates of the target process X evaluated at the time of its
ith event xi, respectively conditioned on the history of X and
on the histories of both X and Y. In general, the
unconditioned instantaneous event rate of the process X,
evaluated at the arbitrary time u, is given by
λX,u � limΔu→0pu(NX,u+Δu −NX,u � 1)/Δu, where NX(u) is the
counting process that returns the number of events occurred up
to time u. At this point it is worth noting that, while the
probability pu is defined at any time point u ∈ R, the
expectation in Eq. 9 is taken over the probability px of
observing a quantity precisely at the time of target events xi,
i � 1, . . . , NX (Shorten et al., 2021). This important distinction,
upon expressing the conditional event rates in terms of pu,
making a Bayes inversion and noting that
limΔu→0pu(·|NX,u+Δu −NX,u � 1) � px(·), allows to
reformulate the expression of the TER as (Shorten et al., 2021)

_TY→X � �λXEpx ln
px X−

xi
, Y−

xi
( )

pu X−
xi
, Y−

xi
( ) · pu X−

xi
( )

px X−
xi

( )⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (10)

Equation 10 shows that the TER depends on the probabilities
of the process historiesX−

xi
and Y−

xi
, evaluated at target events and

at arbitrary time points (respectively, px and pu), whose statistical
average is taken only at target events (i.e., over px). The last
expression constitutes the basis for the MIR estimation strategy
presented in the next subsection.

2.3 Practical Estimation
The approach for MIR estimation, devised in (Mijatovic et al.,
2021a; Shorten et al., 2021) and briefly presented in the following,
relies on creating history embeddings that cover the past states of
the two observed point processes, implementing an operational
formulation of Eq. 10 to estimate the TER, and finally using Eq. 8
to obtain the MIR estimate.

In the estimation of the TER from the source process Y to the
target process X, the procedure for building history embeddings
approximates the past history of the two processes observed
either at the times of target events xi � 1, . . . , NX, or at
arbitrary time points ui � 1, . . . , NU, sampled in continuous
time. In the first case, illustrated in Figure 1A), the history
embedding of the target X referred to the event xi is
approximated by taking l inter-event intervals,
i.e., X−

xi
≈ Xl

xi
� {xi−k+1 − xi−k, k � 1, . . . , l}; the history

embedding of the driver Y referred to xi is approximated as
Y−
xi
≈ Yl

xi
� [xi − yp, Yl−1

yp
], where yp is the most recent driver

event preceding xi. In the second case (Figure 1B), the histories of
both processes as observed from ui are approximated by taking
the interval from the most recent event to ui followed by l − 1
inter-event intervals, i.e.,X−

ui
≈ Xl

ui
� [ui − xp,Xl−1

xp
], Y−

ui
≈ Yl

ui
�

[ui − yp, Yl−1
yp
].

The history embeddings are then used to compute the entropy
terms that compose the TER computed according to Eq. 10.
Specifically, Eq. 10 can be expressed as

_̂TY→X � �λX Ĥpu Xl
xi
, Yl

xi
( ) − Ĥpx Xl

xi
, Yl

xi
( ) + Ĥpx Xl

xi
( ) − Ĥpu Xl

xi
( )[ ],

(11)

where the estimates of the four entropies on the r.h.s. are obtained
by approximating the past histories of infinite duration with the
l − dimensional history embeddings, and computing the nearest
neighbor entropy estimator (Vicente et al., 2011; Faes et al., 2015).
Specifically, the terms Ĥpx(·) and Ĥpu(·) respectively refer to
‘standard’ differential entropy estimates where expectation is
taken over the same probability distribution for which the log-
likelihood is estimated, and to ‘cross-entropy’ estimates where the
two distributions differ (a detailed procedure is given in Shorten
et al. (2021); Mijatovic et al. (2021a)). The entropies are then
estimated via the kNN estimator (Kozachenko and Leonenko,
1987), where the parameter k indicates the number of points used
for searching the neighbors of each reference point; here, points
are realizations of the history embeddings of dimension l or 2l
specified in Eq. 11, and the search for neighbors is performed
within the set of realizations taken at target events in the case of
‘standard’ entropy estimation, and within a set of realizations
observed at arbitrary (randomly sampled) time points in the case
of ‘cross-entropy’ estimation. The estimation algorithm, which is
described in details in (Mijatovic et al., 2021a; Shorten et al.,
2021), proceeds performing neighbor searches and range searches
optimized to estimate together the four entropy terms in Eq. 11,
in order to achieve compensation of the bias brought by the
individual terms to the overall TER estimate. The TER from X to
Y is estimated in the same way after reversing the role of the two
point processes, and finally the MIR estimate is obtained by
simply summing the two TER estimates in Eq. 8.

2.4 Corrected Measure of Mutual
Information Rate
In this work, we face the issue of estimating the MIR from short
realizations of coupled point processes. As any estimate of a
measure computed on finite-length realizations of a process, the
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MIR exhibits bias and variance which typically depend on the
system dynamics, the analysis parameters, and the time-series
length. While the variance reflects random errors which cannot
be corrected, the bias of an estimator is related to systematic
errors that can be compensated by knowing the true value of the
measure of interest and its average value computed over several
repetitions of the analyzed process. However, unfortunately the
true theoretical values are generally not known for the MIR of
coupled point processes, as analytical results do not exist for the
sampling distribution of kNN estimates of entropy quantities.
Therefore, here we resort to an empirical procedure that follows
previously proposed approaches using surrogate time series to
reduce the bias of information-theoretic estimates (Marschinski
and Kantz, 2002; Papana et al., 2011). Specifically, first we
estimate the bias of the estimator computing its average over
several realizations of uncoupled surrogate event series for which
the expected MIR is zero, and then we use such average value to
correct the MIR estimated on the original coupled processes.
While this approach can be theoretically justified as a full
correction of the bias only when the true coupling between
the processes is zero, it has been shown to provide a
reasonable compensation of the bias of coupling and causality
measures even for coupled processes (Papana et al., 2011).

The correction procedure adopted in this work is based on the
generation of surrogate time series that preserve the individual
dynamics of a process while destroying any correlation between
pairs of processes. While surrogates are typically used to set a
significance threshold in the estimate of coupling measures (Faes
et al., 2004; Lancaster et al., 2018), in our approach we do not
apply a formal surrogate data test but rather correct the MIR for
the bias estimated in the absence of coupling. To do this, after
computing the MIR estimate _̂IX;Y for a given realization of two
point processes, we generate M surrogate point processes,
estimate the MIR over each surrogate pair, and finally
compute the corrected MIR (cMIR) as

_̂I
c( )
X;Y � _̂IX;Y − _̂I

m( )
X;Y, (12)

where _̂I
(m)
X;Y is the median of the MIR estimated over the M

surrogate pairs; we use the median instead of the mean to
consider possible deviations of the MIR values from a
symmetric distribution. The use of the corrected measure Eq. 12
aims at reducing the bias of MIR in the case of absence of coupling
between the two analyzed processes. To generate surrogate data, we

adopted the procedure proposed by Shorten et al. (2021) in the
context of TER estimation. This procedure implements a local
permutation of the patterns forming the history embeddings for the
two processes under the null hypothesis of independence of the
present of the target and the history of the source given the history
of the target. This null hypothesis is related to a more conservative
test than that typically performed in TER/MIR estimation; while
standard shuffling procedures destroy any relation between the
current and past states of the target and the past states of the source,
the local permutation test maintains the relation between the target
and source histories, by decoupling only the source histories from
the target events (Shorten et al., 2021). Nevertheless, to test this
approach in comparison with established methods for the
generation of surrogate data, we also implemented the algorithm
based on random shuffling of the inter-event intervals, which
preserves the probability distribution of the series of inter-event
intervals; the iterative amplitude-adjusted Fourier transform
(IAAFT) procedure (Schreiber and Schmitz, 1996; Perinelli
et al., 2020), which preserves both distribution and power
spectrum of the intervals; and the JODI algorithm (Ricci et al.,
2019; Perinelli et al., 2020), which is specifically designed to
preserve amplitude distribution and inter-event autocorrelation
in point process data.

In all simulations and real data analyses, we implemented the
nearest neighbor entropy estimator by using k � 30 neighbors and
the maximum norm to compute distances (Faes et al., 2015), and
generating a number of random time points equal to the number
of target events (NU �NX) (Mijatovic et al., 2021a). Analyses were
repeated varying the length of the history embedding in the range
l ∈ {1, 2, 3, 4, 5}. In the simulation study, the dependence of MIR
and cMIR on the coupling parameter, type of distribution of the
inter-event intervals, and time series length was also analyzed.

3 SIMULATION STUDY

This section reports the application of the proposed method for
continuous-time estimation of the MIR on point processes
simulated according to three scenarios. The first is devised to
assess the bias of the MIR estimate on pairs of independent point
processes for different types of inter-event distribution and
distribution parameters. In the second and third simulation,
coupled point processes designed to mimic the conditions of
the real-data application relevant to cardiovascular variability

FIGURE 1 | Example of history embeddings used to approximate the past states of a target point process X and a source process Y described by the event times
depicted as red and blue dots, respectively. In this example, embeddings are reconstructed with an embedding length l � 3.
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reported in Section 4 are considered; specifically, the dynamics of
the heartbeat times and of the arrival times of the blood pressure
wave in the body periphery are reproduced, and the two processes
are coupled in a way such that the intensity of their interaction
increases or decreases depending on different driving
mechanisms modulated by the input simulation parameter.

3.1 Simulation Design
3.1.1 Simulation 1
In the first simulation, we generate pairs of uncoupled point
processes according to different distributions. We consider: 1)
Poisson processes, for which the inter-event intervals are i.
i.d. exponential random variables with mean 1/λP, where λP is
the mean event-rate, here varied in the set λP ∈ {1, 2, 3, 4, 5}
events/s; 2) point processes with i. i.d. inter-event intervals
taken from the Gaussian distribution N (μ, σ2), with mean
varied in the set μ ∈ {0.8, 0.9, 1.0, 1.1, 1.2} s and standard
deviation varied in the set σ ∈ {0.2, 0.4, 0.6, 0.8, 1.0} s; 3) point
processes with i. i.d. inter-event intervals taken from the
inverse Gaussian distribution IG (μ, λ), with mean varied in
the set μ ∈ {0.8, 0.9, 1.0, 1.1, 1.2} s and shape parameter varied
in the set λ ∈ {500, 600, 700, 800, 900} s; 4) point processes
with identically distributed history-dependent inter-event
intervals taken from the inverse Gaussian distribution,
HDIG (μ, λ, θ), where μ ∈ {0.8, 0.9, 1.0, 1.1, 1.2} and λ ∈
{500, 600, 700, 800, 900} are the mean and shape parameters
of an IG distribution, respectively, and θ is a vector of
parameters that sets the correlations between the inter-
event intervals of each process, and makes them it history-
dependent (the values of the parameters in θ are described in
Section 3.1.2).

While the first two distributions are typically used in the
simulation of point processes, the IG and HDIG distributions are
considered as they constitute the basis for a model that
reproduces realistic heartbeat dynamics as presented in the
following Section 3.1.2. For all these classes of point
processes, the ground truth value of the information
exchanged dynamically between the two processes is zero ( _IX;Y �
_TX→Y � _TY→X � 0) because the processes are obtained from
independent runs of the simulation. This allows to quantify
the bias of the adopted MIR estimator, which is equivalent to
the median value of the MIR estimated across several realizations
of each simulation. In a single simulation, 100 realizations of each
pair of uncoupled point processes were generated, each consisting
of N � 300 events, and the distribution of the MIR measure was
computed for each combination of the simulation parameters in
the four cases described above.

3.1.2 Simulation 2
In the second simulation the process X, which reproduces the
heartbeat times, is generated as a point process following the
history-dependent inverse Gaussian (HDIG) model proposed
by Barbieri et al. (2005). According to this model, given any
event xi that simulates the occurrence time of a heartbeat, the
waiting time until the next event, i.e. the ith inter-event
interval wi, is assumed to be drawn from the probability
density function

p wi, X
p
xi
, θ, λ( ) � �����

λ

2πw3
i

√
· e

−λ wi−μ X
p
xi

,θ( )[ ]2
2μ X

p
xi

,θ( )2

wi , (13)

where μ(Xp
xi
, θ) and λ are the mean and the scale parameter of the

inverse Gaussian distribution. In the HDIG model, the mean is
dependent on the history of the inter-event intervals up to the
current event xi, Xp

xi
� [wi−1, . . . , wi−p], according to the linear

autoregressive (AR) model:

μ Xp
xi
, θ( ) � θ0 +∑p

j�1
θjwi−j. (14)

This model represents, through the parameter vector θ � (θ0,
θ1, . . . , θp), the dependence of the present inter-event interval on
the past history of the process, and in this application accounts for
autonomic influences on heart rate variability (Stein et al., 1994).
The setting of the model parameters is performed to reproduce
typical point-process patterns of heart rate variability and
cardiovascular interactions (Faes et al., 2014; Beda et al.,
2017). Specifically, in our simulation we assume that the inter-
event intervals exhibit lagged dependencies up to the order p � 5,
and we set the coefficients {θ1, . . . , θ5} to obtain oscillations of wi

within the very low frequency (VLF, < 0.04 Hz), low frequency
(LF, 0.04–0.15 Hz) and high frequency (HF, 0.15–0.4 Hz) bands,
as typically observed in the time series of heart period variability
(Stein et al., 1994). This is achieved by simulating for the AR
model (14) a transfer function with two complex-conjugate poles
with modulus ρLF � 0.8 and phases ± 2π · 0.1 rad, two other
complex-conjugate poles with modulus ρHF � 0.92 and phases ±
2π · 0.25 rad, and a real pole with modulus ρVLF � 0.6 (Beda et al.,
2017). The mean and scale parameters of the inverse Gaussian
distribution are set to θ0 � 1 s (average heart period) and λ � 600 s.

After generating the heartbeat point process X as described
above, the point process Y that simulates the blood pressure
arrival times is obtained generating its events as

yi � xi + τi, (15)

where each propagation delay τi simulates an instance of the pulse
arrival time (PAT), i.e. the time interval between the initiation of a
cardiac contraction (identified by the electrical depolarization of
the ventricles) and the following time of arrival of the blood
pressure wave at the body periphery (identified by the time of
maximum finger arterial pressure). The propagation delays are
modelled as realizations of a second-order AR process defined as

τi � a0 + a1τi−1 + a2τi−2 + ui, (16)

where a0 represents the mean PAT set to 300 ms to reproduce the
average propagation time of the sphygmic wave from the heart to
the body periphery; a1 and a2 were set to reproduce a stochastic
oscillation at ∼ 0.1 Hz by using a transfer function with two
complex-conjugate poles with modulus ρLF � 0.8 and phases ±
2π · 0.1 rad, and ui are random numbers taken from a
Gaussian distribution with zero mean. The standard deviation of
uiwas adjusted to obtain specific values for the standard deviation of
τi, which we denote as σPAT. This important parameter modulates
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the variability of the arrival times yi, and in this simulation is
inversely related to the strength of the interaction from X to Y;
here, σPAT was varied from 10 to 235ms with steps of 25ms.

The inter-event intervals of the simulated heartbeat and blood
pressure timings generated by a run of the simulation 2 are
reported in Figure 2A) along with the respective power spectral
densities (PSD, shown in Figure 2B), which evidence VLF, LF
and HF oscillations in the two processes. The values of the TER
estimated along the two directions of interaction, the MIR
estimated as the sum of the two TERs, as well as the
distribution of the MIR estimated from 100 surrogate series
and the corresponding cMIR, are displayed in Figure 2C).

3.1.3 Simulation 3
The third simulation is a modification of the second one and is
devised to impose a common oscillation in the inter-event
intervals of the process X and in the propagation delays τi, so
as to reproduce a condition in which the same underlying
mechanism drives the two point processes. To this end, the
HDIG model is retained to simulate the heartbeat intervals as
in Eq. 13, but with different autocorrelation structure;
specifically, an AR model of order p � 3 was used in Eq. 14,
with coefficients {θ1, θ2, θ3} set to obtain oscillatory activity within
the VLF and HF bands only (i.e., using a transfer function with
one real pole withmodulus ρHF � 0.92 and two complex conjugate
poles with modulus ρHF � 0.92 and phases ± 2π · 0.25 rad).
Starting from the intervals wi drawn from this HDIG distribution
with VLF and HF components, the LF component is introduced
by adding towi a term equal to 2τi, where τi is the random interval
generated by Eq. 16. The simulation is then completed as in the
previous case, i.e., by generating blood pressure arrival times as in
Eq. 15with propagation delays given again by Eq. 16. In this way,
the LF component of the inter-event intervals in X and the
propagation delays that contribute to the LF variability of Y

are generated from the same random seed ui and, as a
consequence, the parameter σPAT that determines the
variability of both components directly modulates the coupling
between the two processes (i.e., we expect that higher values of
σPAT determine higher amounts of information shared between X
and Y).

3.2 Simulation Results
In the first simulation, the MIR computed according to Eq. 8,
where the two TER terms are estimated as in Eq. 11, was
evaluated in pairs of uncoupled point processes by varying the
type of inter-event interval distribution of the processes and the
distribution parameters. Since for these processes the true value of
the index is _IX;Y � 0, the values of theMIR estimate _̂IX;Y highlight
the bias of the estimator. The results reported in Figure 3 indicate
the presence of a negative bias in all simulations, as documented
by the negative values of _̂IX;Y measured by varying the type and
parameters of the distribution of the uncoupled processes.

For Poisson processes, the bias tends to increase with the event
rate and with the mismatch between the rates of the two processes
(Figure 3A). For Gaussian processes, the bias increases when the
standard deviation of the inter-event intervals is decreased, and is
not substantially affected by the mean (Figure 3B). In the case of
uncorrelated inverse Gaussian inter-event intervals, the bias is
inversely related both to the mean and to the shape parameter of
the interval distribution (Figure 3C); the dependence on the
shape parameter becomes direct when the inverse Gaussian
intervals are correlated in HDIG processes (Figure 3D).
Overall, these results indicate that, in the presence of short
realizations of point processes as in the present case where
N � 300 spikes are simulated, the MIR estimates are strongly
biased, and therefore strategies are needed for the compensation
of such bias in the practical analysis of the information shared
between point processes.

FIGURE 2 | Representative example of the analysis relevant to the second simulation. (A) Inter-event intervals obtained for the process X as observations of the
history-dependent inverse Gaussian model of Eqs. 13, 14 and for the process Y as observations of the process described by Eqs. 15, 16 generated with σPAT �85 ms;
(B) power spectral densities of the two inter-event series evidencing LF and HF oscillations at ∼ 0.1 Hz and ∼ 0.25 Hz; (C) corresponding estimates of the TER from X to
Y (blue circle) and from Y to X (red circle), of the MIR obtained as the sum of the two TERs (green circle), and distribution (median and percentiles) of the MIR
estimated from 100 surrogate event series (light green); the difference between the MIR and the median of its distribution on the surrogates corresponds to the bias-
corrected cMIR (gray arrow).
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The procedure for compensating the bias of MIR estimates, as
well as the performance of the corrected cMIR estimator, are
illustrated in Figure 4 for several runs of simulation 2 generated
by varying the intensity of the interaction between the HDIG
processes modulated by the parameter σPAT.

As shown in Figure 4A, the progressive de-coupling of the
interactions between X and Y obtained by increasing σPAT is
reflected by a progressive decrease of the MIR estimates; this
behavior is observed for all the analyzed values of the history
embedding length l. However, the analysis also confirms the
presence of a substantial bias in the estimates of MIR, which take
on negative values when the coupling between the two processes
decreases. Figure 4B reports the bias-corrected MIR estimates,
showing how the correction leads to non-negative values of cMIR
even when the processes approach the uncoupled states for high
values of σPAT. The correction brings the cMIR values in the range
0 − 0.6 nats/s for l � 1, which extends to ∼ 0.7 nats/s for l � 5, and
evidences the appropriateness of using higher embedding lengths
in the simulated process when the inter-event intervals are
modeled by an AR model of order p � 5.

The benefit of longer history embeddings is documented also
in Figure 4C, where we employ the standard procedure for

testing coupling significance based on surrogate data. This
procedure tests the null hypothesis of uncoupling between the
two analyzed point processes and is based on generating, from
each pair of original realizations of the processes, a suitable
number of pairs of surrogate event series using the local
permutation method, and then on deeming the original pair as
significantly coupled if the MIR value was above the 95th
percentile of the MIR surrogate distribution. The percentage of
realizations for which the MIR/cMIR values were detected as
statistically significant is reported in Figure 4C, showing that the
rate of detection of weakly coupled point processes (higher values
of σPAT) increases for higher embedding lengths.

Figure 5 has the same structure of Figure 4A, and shows
alternative approaches to generate the surrogate data consistent
with the null hypothesis of uncoupling between the two analyzed
point processes. The figure shows that the analysis of cMIR is
rather stable at varying the type of surrogate data. The most
remarkable difference is that using the shuffling surrogates,
similarly to the local permutation surrogates employed in
Figure 4A even though with a lower extent, the MIR estimates
partially overlap with the distribution of the MIR for the original
process realizations when the de-coupling parameter is high

FIGURE 3 | Assessment of the bias of the proposed MIR estimator. Plots depict the distribution (mean ± SD) of the MIR values computed over 100 realizations of
uncoupled, short-length processes (N � 300 samples) with inter-event intervals taken from an exponential distribution with parameter λ ((A), Poisson processes), a
Gaussian distribution with mean μ and variance σ2 (B), an inverse Gaussian (IG) distribution with mean μ and shape parameter λ (C), and a history-dependent inverse
Gaussian (HDIG) distribution with mean μ and shape parameter λ (D). The history embedding length was set to l � 1 in all computations.
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(σPAT � 210 ms and particularly σPAT � 235 ms); such an effect is
not observed using IAAFT and JODI surrogates. This suggests
that surrogates which preserve autocorrelation properties of the
inter-event intervals are more prone to detect weak but significant
amounts of information shared by two point processes and to
return higher values of the cMIR measure. On the other hand, the
use of the local permutation method for the generation of
surrogate time series resulted in higher values of the MIR
assessed on the surrogates (see the gray areas in Figure 4A vs
those in Figure 5). This result is expected, as the local
permutation method maintains the relationship of the source
history embeddings with the history embeddings of the target,
thus allowing to keep a low rate of false positive detection of
information transfer (Shorten et al., 2021). Thus the comparison
between Figures 4A, 5 evidences that the local permutation
surrogates adopted as a main solution in our work tends to
favor specificity in the detection of coupled point process
dynamics, while surrogates preserving autocorrelation

structure of the inter-event intervals tend to favor sensitivity.
These considerations are of practical relevance for the analysis of
real-world data.

To show that the bias of the MIR estimates is due to the small
sample size of the point process realizations analyzed, in Figure 6
we show the MIR computed as a function of the decoupling
parameter σPAT for different lengths of the simulated processes,
N ∈ {150, 300, 1,000, 5,000, 10,000}, together with the cMIR
obtained using either the local permutation method or the JODI
algorithm to generate surrogate point processes. We observe that
increasing the number of simulated events progressively reduces
the bias, as documented by the progressively higher values
observed for the MIR and by the absence of negative values
for N ≥ 5,000. As expected, also the variance of the MIR estimates
decreases while increasing N, confirming that larger sample sizes
reduce not only the bias, but also the variability of the estimates.
We also note that the median of MIR over the surrogate
distribution (gray dotted line in Figures 6A,C) is not a

FIGURE 4 | Computation of MIR and cMIR, and assessment of their statistical significance, in simulations of short-length (N �300 events) coupled history-
dependent inverse Gaussian (HDIG) processes. (A) Distribution (mean ± SD) of the MIR measure, estimated over 100 realizations of simulation 2 as a function of the de-
coupling parameter σPAT, for different values of the history embedding length, l ∈ [1, 5]; gray dotted lines and shades correspond to the median and 5th − 95th percentiles
of the distribution over the 100 realizations of the median MIR (for each realization, the median is computed over 100 surrogate pairs obtained using local
permutation). (B) Distribution (mean ± SD) of the corrected MIR (cMIR) measure, estimated over the same realizations of simulation 2; for each realization, cMIR is
computed as the difference between MIR and the median of the MIR distribution assessed over 100 local permutation surrogates. (C) Bar plots reporting the number of
realizations for which the MIR is detected as statistically significant according to the surrogate data analysis.
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constant function of σPAT and differs for the two methods for
surrogate generation. As a consequence, the cMIR does not represent
a simple translation ofMIR toward positive values and depends on the
adopted surrogates. In particular, the use of local permutation
surrogates results in lower values of cMIR compared to that based
on JODI surrogates (see Figures 6B,D), suggesting a better bias
compensation for the latter approach. Moreover, the non-
monotonic behavior of MIR estimated for small sample size (N �
150 and N � 300) is accentuated in cMIR when local permutation
surrogates are used (Figures 6A,B), while it is smoothed when JODI
surrogates are used (Figures 6C,D).

Figure 7 reports the results of Simulation 3, where coupled
HDIG processes are generated so that increasing the variability of
the propagation delay from X to Ymay also increase the coupling

between the two processes. This effect is verified in our simulations by
observing that the cMIR measure increases with the parameter σPAT,
which in this case modulates the variability of both the LF component
of the inter-event intervals of X and the propagation delays; the
increase of the information shared between the two processes at
increasing σPAT is observed consistently for all the analyzed history
embedding lengths, l ∈ [1, 5].

4 APPLICATION TO REAL DATA

This section describes the application of cMIR on experimental
point-process data relevant to cardiovascular variability. In the
information-theoretic domain, cardiovascular interactions are

FIGURE 5 | Analysis of MIR using different methods for surrogate data generation. Plots depict the distribution (mean ± SD) of the MIR measure, estimated over 100
realizations of simulation 2 as a function of the de-coupling parameter σPAT, for different values of the history embedding length, l ∈ [1, 5]. Gray dotted lines and shades
correspond to the median and 5th − 95th percentiles of the distribution over the 100 realizations of the median MIR; for each realization, the median is computed over 100
surrogate pairs generated by random shuffling of the inter-event intervals (A), according to the IAAFT algorithm (B), and according to the JODI algorithm (C).
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commonly studied by means of entropy measures applied to the
discrete-time series of heart period and arterial pressure
variability (Faes et al., 2012; Faes et al., 2015; Javorka et al.,
2017). However, given the intrinsic unevenly sampled nature of
human heartbeats (Barbieri et al., 2005), recent studies started to

face the analysis of cardiovascular, cardiorespiratory and brain-
heart dynamics from the perspective of point processes analyzed
also using information measures (Valenza et al., 2018; Greco
et al., 2019). Here, with the aim of assessing the potential of MIR
analysis in short-term cardiovascular variability as well

FIGURE 6 |Dependence of MIR and cMIR on the size of the analyzed point processes and on the type of surrogate series used for bias compensation. Plots depict
the distribution (mean ± SD) of the MIR (A,C), and the cMIR based on local permutation surrogates (B) or JODI surrogates (D), estimated (history embedding length l � 1)
as a function of the decoupling parameter σPAT over 100 realizations of simulation 2 of different lengths (number of simulated eventsN ∈ {150, 300, 1000, 5000, 10 000}).
In panels (A,C), gray dotted lines and shades correspond to the median and 5th − 95th percentiles of the distribution over the 100 realizations of the median MIR,
where for each realization the median is computed over 100 surrogate pairs obtained by using local permutation surrogates (A) or JODI surrogates (C).
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physiological mechanisms other than those investigated by the
traditional information-theoretic measures, we apply our
continuous-time approach on the point processes that map the
heartbeat and systolic time events measured in healthy humans
and monitored under different physiological states.

4.1 Database and Experimental Protocol
The analyzed data belong to an historical database previously
used to study the effects of physiological stress and cognitive
workload on cardiovascular variability (Javorka et al., 2017;
Pernice et al., 2019). The data were acquired on 76 young
healthy subjects (age: 18.4 ± 2.7 years, 32 males),
normotensive and with a normal body mass index (21.3 ±
2.3 kg/m2), and consisted of electrocardiographic (ECG) and
blood pressure (BP) recordings acquired synchronously with a
sampling frequency of 1 kHz. ECG and BP signals were recorded
by using CardioFax ECG-9620 (Nihon Kohden, Japan;
horizontal bipolar thoracic leads) and the Finometer Pro
devices (FMS, Netherlands; volume-clamp continuous BP
measurement), respectively. The experimental protocol
foresaw the acquisition of the signals in different
physiological states, going from resting conditions to
different types of stress (orthostatic or mental). For the
analyses carried out in this work, we have taken into account
the following states: 1) baseline state (B), with subjects resting in
the supine position for 15 min; 2) head-up tilt state (T),
obtained by passively tilting the subjects by 45° to the
upright position and maintaining them in that state for
8 min in order to produce orthostatic stress; 3) mental
arithmetic state (M), obtained with subjects in the supine
position and by asking them to sum up as fast as possible 3-
digit numbers projected on the ceiling until reaching a 1-digit
number and to decide whether the resulting number was
even or odd (PMT test, Psycho Soft Software, s. r.o., Brno,
Czech Republic), where this task was repeated over a period
of 6 min to elicit cognitive load. Further details on the
experimental protocol can be found in (Javorka et al.,
2017; Pernice et al., 2019).

4.2 Data Analysis
The data analyzed consisted of sequences containing the timings
of the consecutive R peaks in the ECG (event series of the R times)
and of the following maxima in the BP signals (event series of the
systolic times), previously extracted by means of LabChart 8
(ECG analysis, blood pressure modules) toolbox from
ADInstruments (Javorka et al., 2017; Pernice et al., 2019).
Moreover, the time series of the RR and PAT intervals were
measured respectively as the sequences of the difference between
two consecutive R times, and of the difference between each
systolic time and the preceding R time. The event series and time
series analyzed for each subject and experimental condition
consisted of N � 300 events, which were extracted starting
respectively ∼8 min after the beginning of the phase B, ∼3 min
after the beginning of the phase T, and ∼2 min after the beginning
of the phase M; the corresponding RR and PAT time series were
checked for stationarity by using a test targeting a restricted form
of weak stationarity (Magagnin et al., 2011).

Starting from the interval series of RR and PAT, the mean and
standard deviation of the two series, respectively computed as the
average interval duration and the interval variability, were
computed for each subject and experimental condition.
Starting from the corresponding event series of R times and
systolic times, the intervals forming the history embeddings were
extracted as displayed in Figure 1, and employed as described in
Section 2 to estimate first the TER along the two directions of
interaction, then the MIR, and finally the cMIR. To test the
statistical significance of the differences in the median of the
distributions of each measure (mean, standard deviation and
cMIR) evaluated across conditions (B, T, M), we used the non-
parametric Kruskal-Wallis test, followed by post-hoc paired
Wilcoxon signed rank test to assess pairwise differences (B vs.
T, B vs. M, T vs. M) with 5% significance and employing the
Bonferroni-Holm correction for multiple comparisons.

4.3 Results and Discussion
The results of the real data analysis are summarized in Figure 8,
reporting the distributions of the basic statistics (mean and

FIGURE 7 | Computation of cMIR for short-length realizations (N �300 events) of simulation 3. Plots depict the distribution (mean ± SD) of the cMIR measure,
estimated over 100 realizations of simulation 3 as a function of the parameter σPAT, for different values of the history embedding length, l ∈[1,5]. Note that in this simulation
in which common oscillations are imposed in the variability of the inter-event intervals of the process X and on the propagation delay from X to Y, σPAT serves as a coupling
parameter.
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standard deviation of RR and PAT intervals) in the upper panels
and of cMIR in the lower panels.

The mean RR interval decreased significantly moving from B
to T and from B to M; the effect was more pronounced during tilt
than during mental arithmetic. Similarly, both postural stress and
mental stress induced a decrease of the variability of the RR
intervals, with a larger effect during head-up tilt, as documented
by the statistically significant decrease of the standard deviation of
the RR intervals moving from B to T and from B to M and by its
higher values during M compared to T.

The physiological stressors induced also statistically significant
variations in the mean and variability of the propagation delays of
the sphygmic wave from the heart to the periphery. Specifically,
the mean PAT decreased progressively and significantly while
moving from B to T and from T to M, and the standard deviation
of PAT increased during T compared to B, and decreased during
M compared to T.

The analysis of the cMIR measure indicated that the postural
stress tends to increase the information shared between the R
times and the systolic times, while mental stress does not have
significant effects. In fact, cMIR was significantly higher
during T compared to B, and significantly lower during M
compared to T when a history embedding l � 1 was used.
These variations were less evident when l � 2, as the Kruskal-
Wallis test reported statistically significant differences among
the three distributions despite the post-hoc tests did not
reach statistical significance (B vs T, p � 0.070; B vs M,
p � 0.195, T vs M, p � 0.333), and were reduced to non-
significant trends when l � 3 and l � 4.

The alterations observed in the basic cardiovascular
parameters during the two physiological stressors are in
agreement with a large body of literature in cardiovascular
variability analysis, and document the involvement of several
physiological mechanisms in the elicitation of these stressors. In
particular, the lower mean and variability of the RR intervals
during tilt and mental arithmetic reflect well-known effects such
as the tachycardia and the shift of the cardiac autonomic balance
towards sympathetic activation and parasympathetic inhibition
induced by postural and mental stress (Montano et al., 1994;
Carnethon et al., 2002; Garde et al., 2002; Wood et al., 2002;
Martinelli et al., 2005; Javorka et al., 2017, 2018; Kim et al., 2018;
Pernice et al., 2019). The interpretation of the shortening of PAT
and of the increase of its variability observed during tilt is less
straightforward. The PAT is composed by the pre-ejection period
(PEP), i.e., the interval from the electrical depolarization of the
ventricles to the ejection of the blood from the heart, and by the
pulse transit time (PTT), i.e., the time that it takes for the blood
pressure wave to reach the body periphery; the PEP depends
mainly on the strength of left ventricular contraction, influenced
by the Frank-Starling law and by sympathetic control (Krohová
et al., 2017), while the PTT is mostly affected by arterial
compliance, reflecting (on a short time scale) modulation of
blood pressure and vasomotion (Mukkamala et al., 2015;
Czippelova et al., 2019). In accordance with our previous
research in a related database (Krohová et al., 2017), we
expect an increase in PEP during orthostasis as an effect of
decreased diastolic filling of the heart via the Frank-Starling
mechanism leading to a lower strength of the cardiac

FIGURE 8 | Basic statistics and information shared in the cardiovascular time series. Panels depict the boxplots and individual values of the mean and standard
deviation of the RR intervals (red dots) and of the PAT intervals (blue dots), as well as of the cMIR measure estimated for different values of the history embedding length l
(green dots), computed for all subjects during the three analyzed experimental conditions (baseline (B), head-up tilt (T), and mental arithmetic (M)). Statistical analysis
(orange symbols): #, p < 0.05, Kruskal-Wallis test; *p < 0.05 B vs T or B vs M; °p < 0.05: T vs M, Wilcoxon test.
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contraction. Therefore, the decrease of the mean PAT observed
during tilt should reflect mostly a decrease in PTT related to an
augmented arterial stiffness caused by peripheral
vasoconstriction, which is in turn evoked by the vascular
baroreflex response associated with a decrease of blood
pressure due to pooling of blood in the lower extremities
(Czippelova et al., 2019); the concomitance of these opposite
trends (i.e., increase of PEP and decrease of PTT) and the
complexity of the related physiological mechanisms including
autonomic reflexes and mechanical effects (Rapalis et al., 2017;
Czippelova et al., 2019; Pernice et al., 2021) may - together with
an increased systolic blood pressure variability associated with tilt
- explain the higher variability of PAT observed during tilt.
During cognitive load, induced in our protocol by the mental
arithmetic task, the more prominent decrease of PAT likely
reflects–in addition to vasoconstriction driven by commands
stemming from the central nervous system which reduces the
PTT–also a reduction of PEP associated with an increased cardiac
contractility mediated by the sympathetic nervous system
(Martin et al., 2016); in this case, the presence of common
trends (i.e., decrease of both PEP and PTT) may explain both
the lower PAT and its lower variability measured during mental
arithmetic.

According to our results, the physiological mechanisms
described above are associated with an increase of the rate of
information exchange between the point processes marking the R
times of the ECG and the times of arrival of the sphygmic wave in
the body periphery. Higher values of MIR are expected when the
variations of the propagation delay from one process to another
are small, or when such variations occur in phase due to the effect
of some common driver mechanism. Since we observe an increase
in cMIR simultaneously with a shortening of the mean PAT and
an increase of the PAT variability, we conclude that the presence
of a common driver oscillation is the mechanism underlying the
higher exchange of information. This mechanism was
synthetically reproduced in our third simulation (see
Figure 7), and can be physiologically explained by the
sympathetic activation induced by head-up tilt (Montano
et al., 1994; Carnethon et al., 2002; Martinelli et al., 2005).
The “common driver” nature of this mechanism can be
explained by observing that during postural stress the
sympathetic activation is related to the baroreflex mechanism
and, as such, it simultaneously involves the variability of the heart
period (and thus that of the R times) and the variability of the
arterial pressure (and thus that of the PAT) (Porta et al., 2011;
Faes et al., 2013), thereby determining a more intense exchange of
information between the two processes. In fact, vasoconstriction
in the arterioles in systemic circulation is modulated almost
exclusively by the sympathetic part of the autonomic nervous
system (Krohova et al., 2020) whose oscillations mostly occur in
the LF band; a similar effect is mimicked in our simulations in
Section 3. On the other hand, the less evident variations of cMIR
observed during the mental arithmetic test may be associated
with the fact that the sympathetic activation evoked by mental
stress is of a different type, likely involving central commands
from the upper brain centers (cortex) which control more
independently the heartbeat and the arterial compliance

without prominent synchronization effects related to the
baroreflex (Fauvel et al., 2000).

The observation of statistically significant differences across
conditions of the cMIR index only for small values of the history
embedding length (variations from B to T and from T to M are
detected for l � 1 and, to a lower extent, for l � 2) suggests that the
cardiovascular interactions altered by physiological stress occur
mostly as a consequence of the variability of the propagation time
of the sphygmic wave from the heart to the body periphery, and
that the use of longer memory effects may confound the detection
of such altered interactions. This result can be expected by
considering that the largest part of the analyzed type of
interactions is due to the PAT, whose effects are fully captured
with l � 1 (note that, within the point process framework, effects
explained with l � 1 are not immediate but rather indicative of
time-lagged effects with short memory). The result is in
agreement with previous observations reporting that the
latency of cardiovascular information transfer is typically
limited to zero-lag or one-beat interactions, especially during
postural stress (Faes et al., 2014). Nevertheless, we remark that the
type of cardiovascular interactions studied using time-series
based methods (Faes et al., 2014; Porta and Faes, 2015) reflect
different mechanisms than those reflected by the event-based
method employed here, the former being related mainly to the
baroreflex control of heart rate, while the latter being related to
blood pulse propagation and arterial contractility.

5 CONCLUDING REMARKS

This study reports the first application to cardiovascular
dynamics of the continuous-time estimator of the information
exchanged dynamically between point processes introduced in
(Shorten et al., 2021) to compute the TER and employed in
(Mijatovic et al., 2021a) to compute the MIR. In the reported
application context where the direction of interaction is
determined by the cardiac pacemaker that triggers the
propagation of the sphygmic waves through the arterial bed,
studying causal interactions through the TER is less relevant than
assessing the coupling between the heartbeat and systolic times
through the MIR. Moreover, this application context is
particularly challenging with regard to the computation of
information rates, because the cardiovascular regulation
operates mostly through short-term control mechanisms and
needs to be performed over short stationary series including a
few hundred heartbeats at most (Cohen and Taylor, 2002). The
adopted estimator combines the property that for point processes
the MIR can be formulated in terms of the TER (Mijatovic et al.,
2021a), and exploits the approach based on representing dynamic
states of point processes in terms of inter-event intervals to
efficiently capture information flows (Shorten et al., 2021). In
this work we investigate the small sample properties of the MIR
estimator, finding the presence of a negative bias which is
significant in almost all the scenarios simulated between
uncoupled point processes (Figure 3). A similar bias, even
though considerably smaller, was described in the work that
first introduced the TER and MIR estimators (Mijatovic et al.,
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2021a; Shorten et al., 2021). As opposed to previous applications
in neuroscience, cardiovascular interactions feature conditions of
strongly auto-correlated processes and of short data sequences,
which can be responsible of the strong bias that very often leads to
meaningless negative values of MIR, thus justifying the adoption
of countermeasures to prevent such bias. In Shorten et al. (2021),
this bias was associated with a violation of the assumption of local
uniformity of the probability density within the range of the k
nearest neighbors used for entropy estimation. While methods
for reducing the bias of nearest neighbor information estimators
which address specifically cases where local uniformity does not
apply can be devised (Gao et al., 2015), in this work we resort to
an empirical approach that reproduces the bias of MIR estimated
over uncoupled surrogate time series, and then subtracts this bias
from the MIR computed for the original series. This empirical
approach has the advantage of generality, since surrogates mimic
the data distribution and are in principle able to reproduce
diverse sources of bias and to compensate them in the
corrected measure (Papana et al., 2011). We find that different
procedures for surrogate data generation have a different impact
on the detection coupling and on the compensation of the bias,
with differences being emphasized as the size of the analyzed
event series decreases. A main advantage of the resulting cMIR
measure is that it establishes the statistical significance of the
information shared by the two processes, meaning that it does not
indicate significant coupling when the coupling is indeed absent
(Papana et al., 2011); this aspect has been verified in our
simulations showing that cMIR tends to zero when the studied
processes approach the uncoupled regime. A drawback of the
proposed correction stands in the fact that it reproduces the bias
for uncoupled processes, which can be different than that
occurring in the case of coupling. As a consequence, since the
MIR for truly coupled signals can be affected by a different bias
than that observed for uncoupled signals, our approach does not
provide a rigorous correction of the bias when the coupling is
nonzero and some residual bias possibly remains also after the
correction. Moreover, some applications of cMIR to networks
with several connections to be estimated can become
computationally unfeasible since the generation and
information-theoretic analysis of surrogate point processes is a
time-consuming procedure.

The proposed approach to estimate MIR in the presence of
short and possibly noisy point process data is recommended for
applications in the field of Network Physiology, where the
estimation of organ system interactions is typically challenged
by the inherently complex nature of human physiological signals
(Lehnertz et al., 2020). In our work, where complex point process
interactions between the heartbeat timings and the arrival times
of the sphygmic wave on the body periphery have been analyzed,
we detected significant coupling between the two processes in all
subjects and experimental conditions. Moreover, the statistically
significant variations of cMIR observed during physiological
stress suggest that the index can reflect the neuroautonomic
modulation of the heartbeat and vascular dynamics. This
conclusion is supported by previous studies performed by
using different approaches working in discrete time on interval
time series, which suggests that the differences between heart rate

and pulse rate variability are due not only to measurement noise,
but also to physiological factors (Schäfer and Vagedes, 2013;
Pernice et al., 2019). These factors are related to the physiological
modulation of the two time intervals that compose the PAT, i.e.
the PEP and the PTT. According to our present findings and
previous research (Krohová et al., 2017; Czippelova et al., 2019;
Pernice et al., 2019), the increased variability of PAT observed
during postural stress arises from an increased variability of PEP
related to sympathetic influence on cardiac contractility, an
increased variability of systolic blood pressure leading to
increased PTT variability, and an increased variability in the
vascular tone related to sympathetic vasomotor control. These
effects are manifested mainly in the LF band (0.04–0.15 Hz) of the
spectrum, which is the frequency range where dominant
oscillations of the blood pressure and the heart rate are
observed during head-up tilt (Montano et al., 1994; Pernice
et al., 2021). Accordingly, we ascribe the increase of cMIR
observed during postural stress to the activation of the
sympathetic nervous system and to the increased chronotropic
baroreflex coupling occurring with tilt, which are likely
responsible of the synchronous modulation of the LF
variability of heart rate and PAT. Whilst we support this
interpretation with our simulation, a recent study showed that
heart rate and PAT variability are more correlated at the
frequency of the Mayer waves (∼ 0.1 Hz) (Peng et al., 2021).
On the other hand, the smaller changes of cMIR observed during
mental arithmetic suggest that mental stress evokes a different
type of sympathetic activation, possibly more of central origin
than related to common modulation of heart rate and vascular
tone (Javorka et al., 2017). Future studies should address the
separate role of PEP and PTT variability in the changes of the
coupling between heartbeat and systolic time dynamics, and
investigate the clinical value (e.g., in relation to the alterations
of the arterial compliance observed with aging or hypertension)
of the novel measures computed in this work.

In summary, the method for MIR computation presented in
this work constitutes a viable approach to assess the rate of
information exchanged dynamically between pairs of point
processes from short realizations of event-based data. Our
approach, which explicitly considers the point-process
structure of human heartbeats, is alternative to existing model-
free information measures developed in discrete time and
working on amplitudes rather than on events (Porta and Faes,
2015), as well as to existing model-based parametric models
developed in the point process framework (Barbieri et al.,
2005; Valenza et al., 2018; Greco et al., 2019). As such, it
holds the potential to disclose different physiological
mechanisms than those investigated by traditional
cardiovascular variability approaches.
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APPENDIX

This section reports the derivation of the decomposition of the
MIR presented in Eq. 6. We start considering two
discrete-time processes XΔ � {Xtn} and YΔ � {Ytn} defined at
the discrete time instants tn � nΔt, n ∈ Z, where Δt is the time
interval between samples expressed in unit of time; the
derivation in continuous time, i.e., for Δt → 0, will
intuitively follow. In discrete time, the MIR is defined as

_IXΔ ;YΔ � lim
n→∞

1
nΔt I Xt1 : tn;Yt1: tn( ), (17)

where Xt1: tn � {XΔt, X2Δt, . . . , XnΔt} and Yt1: tn �
{YΔt, Y2Δt, . . . , YnΔt} are n-dimensional vectors of consecutive
random variables taken from the two processes. According to
basic information-theoretic rules we have that
I(Xt1: tn;Yt1: tn) � H(Xt1: tn) +H(Yt1: tn) −H(Xt1: tn, Yt1: tn),
from which Eq. 17 can be expressed in terms of entropy rates as

_IXΔ ;YΔ � _HXΔ + _HYΔ − _HXΔ ,YΔ. (18)

Then, recalling the equivalent definitions of entropy rate for
sequences of identically distributed random variables (Cover,
1999), the entropy rate for the process XΔ can be written as

_HXΔ �
1
Δt lim

n→∞

H Xt1: tn( )
n

≡
1
Δt lim

n→∞
H Xti|Xti−n : ti−1( )

� 1
ΔtH Xti|X−

ti
( ), (19)

where the last term is independent on ti due to stationarity and is
written in compact form evidencing the past history of the
process, X−

ti
� Xti−n: ti−1 with n → ∞. By using Eqs. 18, 19 can

be formulated evidencing a difference of MI terms as

_IXΔ ;YΔ �
1
Δt H Xti|X−

ti
( ) +H Yti|Y−

ti
( )( ) −H Xti, Yti|X−

ti
, Y−

ti
( )

� 1
Δt H Xti, X

−
ti

( ) −H X−
ti

( ) +H Yti, Y
−
ti

( ) −H Y−
ti

( )(
−H Xti, Yti, X

−
ti
, Y−

ti
( ) +H X−

ti
, Y−

ti
( ))

� 1
Δt I Xti, X

−
ti
;Yti, Y

−
ti

( ) − I Xti;Y
−
ti

( )( ). (20)

Moreover, application of the chain rule for mutual
information allows to expand the first MI term in the last line
of Eq. 20 as

I Xti, X
−
ti
;Yti, Y

−
ti

( ) � I X−
ti
;Yti, Y

−
ti

( ) + I Xti;Yti, Y
−
ti
|X−

ti
( )

� I X−
ti
;Y−

ti
( ) + I Yti, X

−
ti
|Y−

ti
( )

+ I Xti;Yti, Y
−
ti
|X−

ti
( )

� I X−
ti
;Y−

ti
( ) + I Yti, X

−
ti
|Y−

ti
( ) + I Xti;Y

−
ti
|X−

ti
( )

+ I Xti;Yti|X−
ti
, Y−

ti
( ).

(21)

Finally, substituting Eqs. 20, 21 leads to express the MIR as

_IXΔ;YΔ �
1
Δt I Yti, X

−
ti
|Y−

ti
( ) + I Xti;Y

−
ti
|X−

ti
( ) + I Xti;Yti|X−

ti
, Y−

ti
( )( )

� 1
Δt TXΔ→YΔ + TYΔ→XΔ + I0XΔ ;YΔ( ),

(22)

where the transfer entropies TXΔ→YΔ and TYΔ→XΔ (Schreiber,
2000) and the instantaneous information exchanged between
the two processes, I0XΔ;YΔ

(Amblard and Michel, 2013), are put
in evidence. Taking the limit Δt → 0 in Eq. 22 leads to Eq. 6,
which is valid when the processes X and Y are continuous.
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