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Life-threatening cardiac arrhythmias require immediate defibrillation. For state-

of-the-art shock treatments, a high field strength is required to achieve a

sufficient success rate for terminating the complex spiral wave (rotor)

dynamics underlying cardiac fibrillation. However, such high energy shocks

have many adverse side effects due to the large electric currents applied. In this

study, we show, using 2D simulations based on the Fenton-Karma model, that

also pulses of relatively low energy may terminate the chaotic activity if applied

at the right moment in time. In our simplified model for defibrillation, complex

spiral waves are terminated by local perturbations corresponding to

conductance heterogeneities acting as virtual electrodes in the presence of

an external electric field. We demonstrate that time series of the success rate for

low energy shocks exhibit pronounced peaks which correspond to short

intervals in time during which perturbations aiming at terminating the

chaotic fibrillation state are (much) more successful. Thus, the low energy

shock regime, although yielding very low temporal average success rates,

exhibits moments in time for which success rates are significantly higher

than the average value shown in dose-response curves. This feature might

be exploited in future defibrillation protocols for achieving high termination

success rates with low or medium pulse energies.
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1 Introduction

Sudden cardiac death, in many cases due to ventricular fibrillation (VF) Koplan and

Stevenson (2009), causes around 700,000 deaths per year in Europe alone, and hence,

remains one of the major public health issues Chugh (2017). In practice, such cardiac

arrhythmias are most successfully terminated by applying external electric shocks to the

heart, referred to as defibrillation. Demonstrated both experimentally Davy et al. (1987);

Kwaku and Dillon (1996) and numerically Boegli et al. (2000); Bragard et al. (2013);

Lilienkamp and Parlitz (2020), the dependence of the defibrillation success rate on the
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strength of the shock applied, which is called dose-response curve

(DRC), is given by a sigmoid function. However, high energy

shocks, being promising in terms of successful defibrillation,

cause severe pain and tissue damage to the patient Holden et al.

(2019). Another adverse side effect is that postshock arrythmias

are much more probable for high defibrillation field strengths

Cates et al. (1994); Fast and Cheek (2002). A major challenge in

medical practice is thus, to minimize these tremendous side

effects by significantly reducing the shock energy while keeping

the probability for successful defibrillation high. Therefore,

different types of approaches for energy reduction have been

proposed, including a sequential application of low energy pulses

Luther et al. (2011) or multi-stage electrotherapy Janardhan et al.

(2014). In contrast, the current study points the way to a possible

improvement in low-energy single-shock therapy. Using

computational methods, we show that the success rate of

external shocks may strongly fluctuate, a feature that might be

exploited for the defibrillation of arrhythmic dynamics of the

heart using low energy shocks. In our study, we used the Fenton-

Karma model Fenton and Karma (1998), describing the electrical

excitation dynamics of cardiac cells in a 2D computational

domain and simulated chaotic spiral waves of cardiac

excitation corresponding to fibrillation in a real heart. By

means of the concept of virtual electrodes Trayanova et al.

(1998); Pumir and Krinsky (1999); Bittihn et al. (2008), we

then perturbed the spiral wave dynamics, aiming at

terminating it using pulses of low energy. To conduct this

study, we generated several trajectories of chaotic spiral wave

dynamics and studied the time series of the success rate for

terminating the complex dynamics by applying such

perturbations. In this way, optimal times for the termination

of cardiac arrhythmias were found. In contrast, the rather small

success rate for low-energy shocks observed in the DRCs is a

consequence of applying shocks at random times and averaging

over these attempts. In terms of real-life defibrillation, this would

mean that, if external low-energy shocks are applied at the right

moment in time, defibrillation success rates might be

significantly higher than when applying them at random

times. By preventing the aforementioned negative side effects

of high-energy defibrillation strengths, this could lead to a major

improvement in medical application. The paper is structured as

follows. In Section 2, we introduce the Fenton-Karma model, its

implementation and how defibrillation is simulated. Section 3

reproduces the DRC qualitatively, which is then extended to a

study of how the values of the success rate for fixed

perturbation parameters are distributed temporally,

i.e., within the time series. Afterwards, we perform a

robustness study with respect to the fixed perturbation

control parameters chosen herein and show how the

waiting times for high success rates are distributed. Finally,

in Section 4, we summarize the results obtained and critically

discuss their generality and applicability to real-life

defibrillation.

2 Methods

In this section, we will describe the model used for the study,

as well as how it is implemented numerically. We will

furthermore show how the complexity of chaotic cardiac

dynamics (corresponding to fibrillation) is quantified in terms

of phase singularities and explain how defibrillation is realized in

our simulations.

2.1 The Fenton-Karma model and its
numerical implementation

For the study of spatiotemporally chaotic spiral waves of

cardiac excitation representing fibrillation, we choose a 2D

implementation of the Fenton-Karma model Fenton and

Karma (1998). Its dynamics is governed by the following

reaction-diffusion equations describing the temporal evolution

of the membrane potential Vm and the gating variables, v and w:

zVm

zt
� ∇ · ~D∇Vm − Ifi Vm, v( ) + Iso Vm( ) + Isi Vm, w( )[ ]/Cm, (1)

zv

zt
� Θ uc − Vm( ) 1 − v( ) Θ Vm − uv( )

τ−v1
+ Θ uv − Vm( )

τ−v2
[ ]

− Θ Vm − uc( ) v
τ+v
,

(2)

zw

zt
� Θ uc − Vm( ) 1 − w

τ−w
− Θ Vm − uc( ) w

τ+w
, (3)

where ~D denotes the diffusion tensor. For our work, we

replaced the standard Heaviside functions Θ(x) by a

continuous approximation in order to ensure

differentiability Bittihn (2015):

Θ x( ) → 1
2

1 + tanh k2x[ ]( ), (4)

with the smoothing parameter chosen to be k2 = 10. The fast

inward (fi), slow outward (so) and slow inward (si) ion currents

appearing in Eq. 1 read:

TABLE 1 Fenton-Karma model parameter set used here Fenton et al.
(2002).

Value Value

τ+v 13.03 ms τo 12.5 ms

τ−v1 19.6 ms τr 33.25 ms

τ−v2 1,250 ms τsi 29 ms

τ+w 800 ms uc 0.13 a.u.

τ−w 40 ms usic 0.85 a.u.

τd 0.45 ms uv 0.04 a.u.

Cm 1 a.u. k 500
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Ifi Vm, v( ) � − v

τd
Θ Vm − uc( ) 1 − Vm( ) Vm − uc( ), (5)

Iso Vm( ) � Vm

τo
Θ uc − Vm( ) + 1

τr
Θ Vm − uc( ), (6)

Isi Vm, w( ) � − w

2τsi
1 + tanh k Vm − usi

c( )[ ]( ). (7)

Note that the Heaviside functions Θ occurring here are again

approximated by the hyperbolic tangent function (Eq. 4). The

parameter set used is given in Table 1.

We chose a 2-dimensional computational domain, D, with

Nx × Ny = 100 × 100 grid points and an equidistant spacing of

hx = hy = 1 mm. Furthermore, we assumed a constant,

homogeneous and isotropic diffusion given by
~D � D � 0.2mm2/ms, which reduces the first term of Eq. 1 to

the Laplace operator Δ acting on the membrane potential Vm.

The Laplace operator was discretized via a finite differences nine-

point stencil Bittihn (2015), while the time-wise discretization

was realized with the explicit Euler algorithm Press et al. (2007),

using an integration time stepping of dt = 0.2 ms. As boundary

condition for the computational domain D, we chose no-flux

boundary conditions Bittihn (2015) which were realized by

extending zD with ghost points. For generating the spiral

wave dynamics investigated, we used a modification of the

cross pacing protocol, as described in the Supplementary

Material. In order to have a measure for whether a state is

governed by (chaotic) spiral waves, we evaluated the phase

singularities on D Iyer and Gray (2001):

ntop � 1
2π

∮
C
∇θ dl, (8)

where C is a closed integration path along eight grid points

around each point of reference and θ is the phase characterizing

the dynamics at each grid point Datseris and Parlitz (2022). A

more detailed description of the phase, its calculation as well as

the parametrization of the integration path is given in the

Supplementary Material. Phase singularities are associated

with the organizing centers of the spiral wave dynamics of

cardiac excitation. Equation 8 yields ntop = 0 if there is no

phase singularity enclosed by C and ntop = ± 1 if there is one

enclosed. If at least one phase singularity is detected, we consider

the dynamics to be dominated by spiral waves of excitation and

thus, to represent arrhythmic dynamics of the heart.

We now want to briefly introduce the concept of virtual

electrodes which will be used to simulate the defibrillation

process. The heart exhibits heterogeneities of different sizes and

configurations, caused, e.g., by blood vessels, discontinuities between

sheets of fibers and bundles, or collagen existent in the extracellular

space, resulting in a change in tissue conductivity Trayanova et al.

(1998). When applying an external electrical field for a sufficiently

long time, ions in the tissue are exposed to a Lorentz force which, in

turn, shifts them such that they assemble at regions of differing

conductivities. If the resulting hyper- and depolarization exceeds a

certain threshold, an action potential is triggered at the

heterogeneities, resulting in excitation waves Pumir and Krinsky

(1999); Bittihn et al. (2008); Lilienkamp (2018). In this sense, in the

presence of an electric field, the inhomogeneities act as virtual

electrodes. The activation threshold of virtual electrodes depends on

the shape (curvature) and size Bittihn et al. (2008); Bezekci et al.

(2015) of the heterogeneities and the higher the external field

strength the more heterogeneities emit a local excitation wave.

This relationship between field strength and the number of

activated virtual electrodes is exploited in the current study,

where the number of local perturbation sites Npert is used as a

control parameter representing the applied shock energy.

The perturbation sites (representing heterogeneities) were

chosen with a fixed size of 2 × 2 grid points and randomly

distributed in space without overlap. The effect of the external

electric field is approximated by an instantaneous increase of the

membrane potential at the perturbation sites

Vpert
m,i( )2×2 � Vcurr

m,i( )2×2 + ΔVm,i( )2×2 ∀ i ∈ 1, . . . , Npert{ } (9)

with an amplitude of (ΔVm)2×2 � 0.5 a.u. The number of

perturbation sites Npert approximately corresponds to the fixed

external field strength applied to the cardiac tissue. Finally, as a

measure for whether the spiral wave dynamics was successfully

terminated, i.e., whether the defibrillation attempt was successful,

we checked whether 500 ms after the perturbation (no) phase

singularities still existed in the computational domain by

evaluating Eq. 8. The absence of phase singularities necessarily

leads to convergence of the system towards the steady state,

i.e., the electrical excitation dies out on D, such that the regular

sinus rhythm could be restored by the sinus node (which is,

however, not part of the current model).

3 Results

In what follows, we will summarize our results. First of all, we

reproduced the typical sigmoid shape of the dose-response curve

for the in silico defibrillation attempts. We then analyzed time

series of the termination success rates with a focus on their peak

structure, followed by a robustness study of the rather specific

choice of perturbation parameters made here.

3.1 Distribution of defibrillation success
rates for fixed shock doses

First, we compute the dose-response curve (DRC), describing

the dependence of the success rate on the amount of perturbation

sites Npert used to terminate the chaotic excitation dynamics and

show that the success rate values are broadly distributed around

their mean values. Note that, by making use of the concept of

virtual electrodes, Npert is here considered to directly correlate
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with the electric field strength applied to the arrhythmic heart.

The defibrillation and the determination of whether

the attempt was successful was realized as described in

Section 2. As a start, we show an example for an

unsuccessful perturbation attempt and an example for a

successful one (defibrillation). The failed attempt using

Npert = 500 is shown in Figure 1, which also illustrates that

the size of the spatial domain is larger than twice the typical

diameter of the spiral waves. If, however, not a single phase

singularity is detected anymore on D after 500 ms, the

perturbation is considered to be successful like in the

example shown in Figure 2 where phase singularities are

already absent 30 ms after applying the shock at, in this

case, Npert = 1,000 perturbation sites. In general, a very

large number of perturbation sites corresponds to a high

shock strength applied to the heart which depolarizes the

whole tissue. As a consequence, it is impossible for the spiral

wave dynamics to further evolve due to the refractory period

not leaving any space for them to propagate.

For the DRC, we used 30 different fixed numbers of

perturbation sites, Npert ∈ {50, 100, 150, . . . , 1500}. For each

of these fixed numbers, we randomly generated 50 different

spatial configurations and applied them independently to

20 different chaotic states (CS). Thus, for the DRC, we have a

total amount of

no. of CS( ) × no. of Npert( ) × no. of conf .( ) � 20 × 30 × 50 � 3 × 104

termination attempts. The corresponding relation between the

success rate and the number of perturbation sites applied,

S(Npert), is shown in Figure 3. The shape is indeed sigmoidal

and thus qualitatively reproduces the DRCs from experimental

Davy et al. (1987); Kwaku and Dillon (1996) and numerical

Boegli et al. (2000); Bragard et al. (2013); Lilienkamp and Parlitz

(2020) studies.
Since, due to the averaging over each termination attempt, the

representation of the DRC in Figure 3 gives only limited insight into

the actual values for the success rate occurring for each fixed Npert,

we also investigated the distribution of S(Npert) for all fixed Npert for

the same spacing. The resulting success rate distribution DRC is

given in Figure 4. It is composed of ten times more defibrillation

attempts compared to the averaged DRC shown in Figure 3:

no. of CS( ) × no. of Npert( ) × no. of conf .( ) � 100 × 30 × 100 � 3 × 105.

As one can see, perturbations with very low or very highNpert

result in narrow distributions of success rate values. Within

intermediate ranges of Npert, on the other hand, especially

around the inflection point of the DRC, we have a large range

of success rates S(Npert). This, in turn, implies that the success of a

termination attempt is not only dependent on the number of

perturbation sites, Npert, but also on the state (point in time) to

which the stimuli are applied.

3.2 Probability of defibrillation success
strongly depends on time when shock is
applied

We now want to show how the success rate is time-dependent

or, more specifically, that its time series shows rather high maxima

which are not just small deviations around the mean success rate.

We will then show that these peaks have a non-vanishing width. As

already mentioned in the introduction, the aim of this study is to

terminate arrhythmic cardiac excitation waves with perturbation

parameters corresponding to low defibrillation field strengths, thus

causing less pain and tissue damage due to the shocks, while keeping

the termination success rate significantly higher than on average for

the same energy. For the perturbations, we chose a fixed number of

Npert = 500 perturbation sites and a fixed amplitude of

ΔV2×2
m � 0.5 a.u. For this choice, the averaged DRC, Figure 3,

yields a very low success rate of S(Npert = 500) ≈ 4.3 % which

corresponds to the success rate of applying shocks at random times

(states) to the chaotic cardiac excitation. This is an unacceptably

small value for clinical application.

FIGURE 1
An example for an unsuccessful termination attempt for chaotic cardiac excitation using Npert = 500 randomly distributed perturbation sites
(visible as yellow dots immediately after the shock at t = 0 ms). White circles indicate phase singularities. At t = 0 ms the phase singularities were
computed immediately before the perturbation. After 500 ms, the state still exhibits phase singularities and since they are considered to be the
organizing centers of the spiral wave dynamics, they clearly indicate that the termination attempt failed.
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Given the success rate distribution DRC, Figure 4, we analyze

success rate time series S (tappl) in terms of a whether they exhibit

a significant peak structure. Compared to both DRCs shown in

Figures 3, 4, we strongly increased the amount of realizations for

the success rate analyses. First of all, we generated

100 realizations of the time evolution (i.e. 100 trajectories

with different initial conditions), each being 10 s long,

exhibiting chaotic spiral wave dynamics which were then

analyzed time-wise in terms of their response to applied

perturbations. The 100 chaotic trajectories were each sampled

with a rate of 100.1 Hz, resulting in sequences of states. Each of

these states was then perturbed individually 100 times using

100 different, randomly generated fixed spatial distributions of

500 perturbations sites (acting like virtual electrodes). In this

way, a success rate was estimated for each of the 1,001 states (or

points in time separated by dt = 10 ms) along the chaotic

trajectory (CT) respresenting a fibrillation episode. The total

amount of termination attempts realized is thus:

no. of CT( ) × no. of tappl( ) × no of conf .( ) � 100 × 1001 × 100 ≈ 107.

First, we want to discuss the structure of the time series and the

resulting implications. A typical example of such a time series of

the success rate is given in Figure 5. As can be clearly seen, there is

a well-established peak structure of the success rate and thus, a

time-dependence of it. This means that there are short time

FIGURE 3
Dose-response curve. The dependence of the probability S of a successful termination of the chaotic dynamics on the number of perturbation
sites, Npert, corresponding to the strength of the applied shocks. Each point corresponds to 20 × 50 = 1,000 simulations. The simoid fit S = 100/(1 +
c exp (−kNpert)) is obtained using nonlinear least squares (NLS) to determine the parameters c = 5,632 and k = 0.01106. The inflection point, as well as
the average success rate of 4.3 % for the case of using Npert = 500 perturbation sites are indicated, the latter being referred to in the rest of this
study.

FIGURE 2
Successful termination of spiral wave dynamics of cardiac excitation by applying Npert = 1,000 local stimuli to the same state as shown in
Figure 1. White circles indicate phase singularities and were computed for t = 0 ms before the perturbation was applied. Even though the number of
phase singularities increases shortly after applying the perturbations (not shown here), they died out already 30 ms after applying the perturbations
and the remaining excitation converges quickly to the steady state as shown exemplary at t = 100 ms.
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intervals within which the termination of chaotic excitation

waves is much more probable than on average. As a matter of

fact, if external stimuli are applied to the most favorable state

of the time series shown in Figure 5, which is at tappl = 3.99 s,

the probability to successfully terminate the unwanted

dynamics is almost fifteen times higher than when

averaging over all success rates of the 1,001 different states

the trajectory consists of. On average, such a success rate

would be reached only with twice as much perturbations, see

Figure 3. The temporally averaged success rate for the

trajectory shown in Figure 5 is �S ≈ 6.5 % which agrees well

with the order of value of the averaged DRC, Figure 3. The

apparent difference (6.5 % vs. 4.3 %) is due to the fact that in

the DRC, for each number of perturbation sites, 20 × 50 =

1,000 realizations are evaluated, whilst the time series shown

in Figure 5 is composed of more than 100,000 termination

attempts. Note that, for a sufficient number of realizations

(perturbed states), the average termination success rate of a

trajectory, �S in Figure 5, and of randomly chosen single

chaotic states, as for the averaged DRC, Figure 3, may be

considered equivalent quantities and correspond to the

termination success probability of defibrillating at random

times.

For all of the 100 trajectories, we found qualitatively similar

success rate time series. Altogether, the main message of such peak

structures for S(tappl) is that, if perturbations are efficiently applied,

i.e., at an appropriate time, one can yield success rates being, in

parts significantly, higher than the temporal average, �S, over

the trajectory. Another remarkable observation of the

exemplary realization shown in Figure 5 (and others not

shown here) is that the peaks possess a certain width. In order to

illustrate this feature, we generated higher resolution plots of

several of the peaks from the chaotic trajectories (i.e., again with

Npert = 500), using a time stepping of dtappl = 0.1 ms (which

requires the initial temporal integration step to be halved) for

the termination attempts yielding a resolution being 102 times

higher than used otherwise within the study. In Figure 6, we can

exemplarily see a higher resolution of the largest peak of the

time series indicated in Figure 5, i.e., at S(tappl = 3.99 s) = 96 %

which has a width of about 40 ms with respect to the mean value

of the success rate �S. A similar width was also observed for other

high-resolution success peaks (not shown here). The fact that

high success rates do not occur within extremely narrow peaks

but in relatively broad time windows is important with regard

to their possible future use in practical experimental or clinical

applications.

3.3 The peak structure is sufficiently
robust to variations of perturbation
parameters

Since the choices of the perturbation parameters, Npert = 500

and ΔV2×2
m � 0.5 a.u., are rather specific, in what follows, we will

show that S(tappl) is sufficiently robust to changes in these

parameters, starting with an investigation of the robustness to

FIGURE 4
Distributions of success rates (color coded) for different numbers of activated perturbation sites, Npert. Note that the colorbar, indicating the
occurrence of a success rate range, is chosen logarithmically and normalized to the most frequently occurring success rate range per Npert.
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changes in the number of local stimuli added to the system,Npert.

In order to do so, we exemplarily show a success rate time series

of one out of the 100 trajectories perturbed with different Npert ∈
{250, 450, 500, 550, 750, 1000}, respectively, evaluating again

100 different configurations of spatial distributions of

perturbation sites for the same states, tappl. In Figure 7, one

can see the resulting time series of the success rate S(tappl) if the

very same trajectory is perturbed with these different numbers of

perturbation sites. As Npert is increased, the peak structure is, at

least partially, preserved. Furthermore, most peaks that are

preserved when applying more perturbations, grow in height.

A good example where this can be observed is the highest peak

FIGURE 5
Time series of the success rate, S(tappl), for perturbing a trajectory of chaotic cardiac excitation. With a temporal resolution of dtappl = 10 ms, the
states along the trajectory are perturbed using 100 different spatial configurations of Npert = 500 perturbation sites that were randomly chosen
before starting the analysis and kept fixed along the trajectory. For each of the 100 defibrillation attempts, the success rate was evaluated according
to Section 2 and the spiral wave dynamics termination success was estimated in terms of whether phase singularities still exist 500 ms after the
perturbation. The temporal average of the success rate over the whole trajectory is �S ≈ 6.5%. The peaks have a certain width and are not just
particularly favorable points in time for shocking, as shown exemplary for a higher resolved peak in Figure 6.

FIGURE 6
Higher-resolution plot of the peak highlighted in Figure 5 at 3.99 s for Npert = 500, using smaller time steps for the application of local stimuli,
dtappl = 0.1 ms. The full width at half maximum (FWHM) is roughly 25 ms. However, the whole peak and thus, the time window with a success rate
being (in parts significantly) higher than the average success rate �S has a width of about 40 ms.
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for Npert = 500 at around tappl = 8.86 s. It does not only dominate

the time series for Npert = 500 but also the ones for the other

numbers of perturbation sites used, growing in height the more

Npert are used. Only for the time series using 750 and

1,000 perturbation sites, the phenomenon of a few dominating

peaks cannot be observed anymore because most of their peaks

are generally very high. In terms of the hierarchy of peak heights,

however, there does not seem to be a definite rule. The three

peaks for Npert = 250 appearing after 2 s have a different order in

terms of their height if defibrillation attempts with more local

stimuli are evaluated, for example. Finally, there are also

examples where peaks present for a small number of

perturbation sites seem to disappear as Npert is increased. An

example for this can be observed for the peak at 4 s for the time

FIGURE 7
Time series of the termination success rate of a single trajectory of chaotic cardiac excitation for different amounts of local stimuli appliedNpert

to the system. �S represents the corresponding average success rate of the time series S(t). Perturbations are applied as described in the caption of
Figure 5.
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series with Npert = 250 which disappears for Npert ∈ {450, 500,

550} before finally recovering slowly as more perturbations sites

are applied. In general, however, the corresponding temporal

averages, �S, agree well with the averaged DRC in Figure 3, as it

can be seen by taking a look at the monotonically increasing �S as

Npert is increased.

In order to quantify these observations, we calculated the

Spearman and Pearson correlation coefficients, rs and ρp,

respectively, between all combinations of time series given in

Figure 7. The Spearman correlation is a measure for how well a

monotonic function can approximate the relationship between two

samples or, in this case, between two time series. In particular, the

Spearman coefficients between S(tappl) forNpert = 500 and S(tappl) of

the closest numbers investigated here, i.e., 450 and 550, are 0.78 and

0.85, respectively. The complete set of Spearman and Pearson

correlation coefficients between the success time series for

different numbers of perturbation sites is given in the

Supplementary Material. The Pearson correlation coefficient

measures the linear dependence of two variables. For small

changes in Npert = 500, so again Npert = 450 and Npert = 550, the

Pearson correlation coefficient of the corresponding time series

S(tappl) is even higher, ρp = 0.93 in both cases, respectively. The

relatively large value of the Spearman coefficient and the even larger

value for the Pearson coefficient between time series perturbed with

similar numbers of perturbation sites, agrees well with the qualitative

observation that, most of the peaks are preserved with growing

heights, whereas some of them seem to vanish as Npert is increased.

Hence, we may conclude that the peak structure is sufficiently

robust, especially to small variations in Npert.

We nowwant to show a similar robustness of S(tappl) to changes

in the second perturbation parameter, the amplitude of local stimuli,

ΔV2×2
m . Therefore, we repeated the previous investigation, this time

by varying themagnitude of the perturbations and not their number,

using ΔV2×2
m ∈ {0.15, 0.3, 0.45, 0.5, 0.55, 0.7} a.u. In principle, the

situation is similar to the time series with varying Npert, i.e., rather

large parts of the peak structure is preserved if the perturbation

amplitude is increased, as illustrated in Figure 8. However, for very

small amplitudes, ΔV2×2
m � 0.15 a.u., this does not apply. Taking a

look at the peaks of this success rate time series and compare it with

the peaks of S(tappl) with a perturbationmagnitude twice as large, we

see that most of the peaks are attenuated which is counter-intuitive

to the observations made so far. When taking a look at the

correlation coefficients between the S(tappl) perturbed with the

magnitude used here, ΔV2×2
m � 0.5 a.u., with its two neighboring

magnitude values investigated, ΔV2×2
m � 0.45 a.u. and

ΔV2×2
m � 0.55 a.u., however, we obtain values similar to the

variation of Npert around 500 perturbations. The Spearman

correlation coefficients are rs = 0.8 and rs = 0.87, respectively,

whereas the Pearson correlation coefficient is the same for

varying ΔV2×2
m � 0.5 a.u. in both directions, namely ρp = 0.95.

The complete set of correlation coefficients between all

trajectories with varying perturbation magnitude is given in

the Supplementary Material as well. This demonstrates that also

variations of the perturbation amplitude chosen for this study

are sufficiently robust in terms of the success rate time series.

The fact that the peak structure is not completely preserved

when changing Npert and ΔV2×2
m is very likely a consequence of

the chaotic nature of the trajectory and hence, probably

inevitable. However, the general finding here is that the peak

structure is relatively robust to changes in the perturbation

parameters.

3.4 Relation between peak height and
waiting times

Even though most trajectories do exhibit states with

relatively large success rates, these peaks do not occur very

frequently, as illustrated by the time series shown so far. We

therefore show here how waiting times for peaks increase

dramatically the larger we require a peak to be and thus, the

success rate for defibrillation. For each state of a trajectory

investigated, given by its time of occurrence ti, the waiting

time is defined as the distance in time from this state to its

closest temporally forward peak of the required height h

tiwait � tih − ti. (10)

Note that, if ti itself meets the condition (i.e., is the point in time at

which a peak of given height h occurs), then tiwait � 0 ms.

Furthermore, states after the last tih of a specific trajectory are

not considered as there is no subsequent closest temporally

forward peak (state) for them to refer to. In Figure 9, the

distribution of the waiting times of each sampled state the

100 trajectories are composed of is plotted semi-logarithmically

for h ∈ {20, 40, 60} %. The waiting times for a peak with a

termination success rate of 20 % are usually not longer than 2 s

and the fraction of waiting times smaller than 1 s is 0.94. For 60 %,

however, this fraction reduces dramatically down to 0.26. In the

context of defibrillation, thismeans that one usually does not have to

wait long for a time interval inside which the success rate is multiple

times larger than on average, but the success rates are the lower

the less one wants to wait for the defibrillation to be applied, on

average.

Finally, we show here how the peak structure, S(tappl), is

characterized in terms of its frequency by comparing the

frequency spectra obtained via Fourier transformation (FFT) of

both, the success rate and the mean of the membrane potential time

series, S(tappl) and �Vm(t) where, for simplicity, tappl = t. In order to

do so, we normalized each of the 100 time series, S(t) and �Vm(t),
with respect to their corresponding maximal value, denoted

by Ŝ(t) and �̂Vm(t) (not to be confused with the hat notation for

Fourier transforms).We then calculated the FFT of these time series,

evaluated their modulus and finally averaged over the moduli of the

FFTs associated with each trajectory, yielding the amplitude spectra

of both quantities. The comparison of these frequency spectra of
�Vm(t) and S(t) is shown in Figure 10.
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The strongest frequency components of the 100 time series
�Vm(t) occur between 2 and 7 Hz. This shape of the spectrum

makes it difficult to specify a single frequency as “the” dominant

frequency, but the range [2 Hz, 7 Hz] agrees with experimental

data on ventricular fibrillation in human hearts, for example in

Pandit and Jalife (2013). If a dominant frequency can be clearly

identified, its inverse corresponds to the (average) rotation period of

the spiral wavesMandapati et al. (1998) and thus provides a relevant

time scale characterizing the chaotic wave dynamics. An

interesting observation is that the peak of the success rate

spectrum at 7.5 Hz occurs at the upper limit of the spectrum of

the membrane voltage. This means that within each rotational

period of even the fastest spiral waves (on average), there is a

state for which the application of perturbation would be

particularly successful in terminating the spatiotemporal

chaos.

FIGURE 8
Time series of the termination success rate of a single chaotic trajectory for different magnitudes of the perturbations, ΔV2×2

m , applied to the
system. �S represents the average success rate of the respective time series.
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4 Discussion and conclusion

Defibrillation shocks used to terminate the complex electrical

excitation dynamics in the heart during ventricular fibrillation must

be of high energy to achieve a high success rate in terminating the

arrhythmia, resulting in pain and damage to heart tissueHolden et al.

(2019). In practice, these shocks are applied at random times during

the fibrillation. Therefore, in this study, we addressed the question of

FIGURE 9
Probability density of waiting times for the next peak (with specific minimal heights, respectively) to occur inside one trajectory, averaged over
all states of 100 trajectories that do not correspond to a peak of the success rate, see Eq. 10.

FIGURE 10
Mean amplitude spectra of the success rate and the membrane voltage averaged over 100 realizations (trajectories). Note that the hat denotes
the normalization of both quantities before the carrying out the FFT in order to obtain comparable magnitudes and does not itself denote an FFT.
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whether there are more favorable times (or states) in the temporal

evolution of an arrhythmia at which even medium- or low-energy

shocks can terminate the chaotic state corresponding to fibrillation

with relatively high probablility. To investigate this question, we

performed extensive numerical simulations using the Fenton-Karma

model and an implementation of multi-site pacing by virtual

electrodes. With these simulations, we were not only able to

reproduce the characteristic sigmoidal shape of the dose-response

curve, but also found strong fluctuations of the termination success

rate during the time evolution of the complex dynamics of cardiac

activity resulting in well-established peak structures of success rate

time series. In these simulations, it was found that even relatively low

energy shocks could terminate the chaotic dynamics if they were

applied in short time windows in which the termination success was

particularly high. If such fluctuations of termination success could be

predicted, they might be exploited in future defibrillation protocols

for terminating arrhythmias with low or medium pulse energies.

Since the underlyingmodel represents a simple model for cardiac

excitation dynamics, the simulations made here to study success rate

time series of trajectories representing arrhythmias only qualitatively

describe the dynamics of a real heart. First of all, the Fenton-Karma

model is of low tomoderate complexity and thus,maynot incorporate

cardiac dynamics with all desired details. Furthermore, out of several

parameter sets suggested for the Fenton-Karmamodel, we only used a

specific one. Thus, the results found in the study presented here need

to be confirmed in future investigations. As a starting point, one could

repeat the simulations using different parameter sets of the Fenton-

Karma model Fenton et al. (2002), corresponding to different

properties of cardiac dynamics. Besides being computationally

more expensive, the results presented should also be verified using

more detailed (ionic) models of cardiac excitation, such as the 4-

variable Bueno-Orovio-Cherry-Fenton model Bueno-Orovio et al.

(2008), the 8-variable Beeler-Reuter model Beeler and Reuter (1977)

or the 17-variable Ten Tusscher-Noble-Noble-Panfilov model ten

Tusscher et al. (2004). Future studies may also consider more realistic

geometries of the (human) heart Fenton et al. (2005) including fiber

orientation Doste et al. (2019) influencing the excitation propagation.

Heterogeneities, such as blood vessels and collagen, may not only act

as virtual electrodes but also have an impact on the spatio-temporal

dynamics Bittihn et al. (2017); Rappel et al. (2022). Modelling this

impact in detail requires the use of bidomain models differentiating

between intra- and extracellular space. For a more realistic modeling

of virtual electrodes, one may use stimuli based on local current

injection Feng et al. (2022) and consider perturbation sites of different

sizes and shapes where different excitation thresholds due to the

strength-extent relation have to be taken into account Bezekci et al.

(2015). And again, in all these simulations it has to be checkedwhether

the peaks of high success rate are (still) broad enough to practically

apply external shocks precisely within these time frames. Finally, if the

findings of the presented study can be confirmed in more detailed

simulations of arrhythmic cardiac dynamics and fibrillation, the next

challenge will be to predict the peaks in the success rate from

measurable observables of the heart.
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