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Background: Liver cirrhosis involves multiple organ systems and has a high mortality. A
network approach to complex diseases often reveals the collective system behaviours and
intrinsic interactions between organ systems. However, mapping the functional
connectivity for each individual patient has been challenging due to the lack of suitable
analytical methods for assessment of physiological networks. In the present study we
applied a parenclitic approach to assess the physiological network of each individual
patient from routine clinical/laboratory data available. We aimed to assess the value of the
parenclitic networks to predict survival in patients with cirrhosis.

Methods: Parenclitic approach creates a network from the perspective of an individual
subject in a population. In this study such an approach was used to measure the deviation
of each individual patient from the existing network of physiological interactions in a
reference population of patients with cirrhosis. 106 patients with cirrhosis were
retrospectively enrolled and followed up for 12 months. Network construction and
analysis were performed using data from seven clinical/laboratory variables (serum
albumin, bilirubin, creatinine, ammonia, sodium, prothrombin time and hepatic
encephalopathy) for calculation of parenclitic deviations. Cox regression was used for
survival analysis.

Result: Initial network analysis indicated that correlation between five clinical/laboratory
variables can distinguish between survivors and non-survivors in this cohort. Parenclitic
deviations along albumin-bilirubin (Hazard ratio = 1.063, p < 0.05) and albumin-
prothrombin time (Hazard ratio = 1.138, p < 0.05) predicted 12-month survival
independent of model for end-stage liver disease (MELD). Combination of MELD with
the parenclitic measures could predict survival better than MELD alone.

Conclusion: The parenclitic network approach can predict survival of patients with
cirrhosis and provides pathophysiologic insight on network disruption in chronic liver
disease.
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INTRODUCTION

The liver is the physiological hub for multiple homeostatic,
metabolic, synthetic and immune functions. Thus, patients
with liver failure exhibit various neural, renal, cardiovascular,
endocrine, and metabolic manifestations. Cirrhosis is a complex
disease caused by alcohol, chronic viral hepatitis, fatty liver or
other causes (Asrani et al., 2019) and involves multiple organ-
systems and functions. Thus, interpretation of organ dysfunction
without consideration of the whole system is illogical. This is
evident in the relative difficulty in the management of
complications of cirrhosis whereby targeting a single organ
dysfunction may lead to the dysregulation of other tightly
balanced pathways (Harrison, 2018). This makes prediction of
treatment response and prognosis especially challenging and
further complicates prioritization of liver transplantation
(Dutkowski et al., 2015; Jadlowiec and Taner, 2016). The
introduction of several prognostic scores and models such as
Child-Pugh, MELD, UKELD amongst others is in direct response
to the complexity of decompensated cirrhosis and while these
models have been useful, various limitations continue to surface
(Biselli et al., 2010).

The future of disease diagnosis, management and prognosis
will likely benefit from a network physiology approach providing
a more global or holistic view of the changes in the physiological
interactome leading to disrupted states. Network physiology
focuses on complex interactions among diverse organ systems
in health and disease (Bashan et al., 2012) and provides a viable
alternative to the conventional scoring methods and facilitate the
evaluation of organ systems interaction in complex disorders
such as cirrhosis. Early work by Asada et al., on critically ill
patients in the intensive care unit showed disrupted network of
organ systems interaction in non-survivors. In Asada et al. (2016)
study, the degree of organ systems interaction was assessed by
calculating the correlation between biomarkers (e.g., correlation
between creatinine and bilirubin as biomarkers for renal and
hepatic function respectively). Then a network was mapped using
individual biomarkers as its nodes and correlation coefficients as
the edges of the network. Their results showed that in a cohort of
critically ill patients, survivors consistently exhibited a higher
number of edges and clusters compared to non-survivors in their
organ connectivity network structures (Asada et al., 2016). In a
recent report, we used a similar approach and showed that
functional connectivity of organ systems is significantly
disrupted in patients with cirrhosis who did not survive
during 12-month follow up (Tan et al., 2020). However, the
methodology of these studies is based on correlation analysis of a
population of patients and cannot be used for mapping the
network connectivity at the level of individual patients. Hence,
these reports provide insight about the pathophysiology in
general but doesn’t allow clinical application to individual
subjects (Asada et al., 2016).

The parenclitic network analysis was proposed by Zanin et al.
(2014) to create a network from the perspective of an individual
subject in a population. Instead of looking at the network of
connections in a population, this approach provides a method for
mapping a network for each subject, where nodes represent

features and links are weighted according to the deviation
between a subject’s features and their corresponding typical
relationship within a studied population (“Parenclitic” mean
“deviation” in Greek) (Zanin et al., 2014). In its simplest form,
the model can be a simple linear regression between all possible
pairs of features in the population, followed by the calculation of
deviations between values of a particular subject and pre-
constructed reference models (Figure 1). A network map is
then constructed for individual subjects whereby each feature
represents a node and deviation from the reference model is
defined as edges between the nodes. The topological
characteristics of the resulting network of individual subject
can be used to extract important information about the
relationships of the system. Since its first description,
parenclitic network analysis has been used both in genetic
mapping of cancer (Zanin, 2016; Karsakov et al., 2017;
Whitwell et al., 2018), Down syndrome (Krivonosov, 2020),
aging (Whitwell et al., 2020) and even criminology (Zanin,
2018) and continues to open up new insights in complex systems.

In the present study we applied a parenclitic approach using
standard clinical/laboratory data to map the physiological
network of individual patients with cirrhosis. We then tested
whether this approach could predict survival independent of
current measures of severity of cirrhosis such as MELD and
Child-Pugh scores.

METHODS

Ethics
The study protocol was approved by the Padova Hospital Ethics
Committee. All participants provided written informed consent.
This study was conducted according to the Declaration of
Helsinki (Hong Kong Amendment) and Good Clinical
Practice (European) guidelines.

Patients Cohorts
The study population consists of 106 patients diagnosed with
cirrhosis referred to the tertiary referral liver centre of the Clinica
Medica V, Padova University Hospital, for formal hepatic
encephalopathy assessment. Patients were enrolled between
2009 and 2018 according to the inclusion/exclusion criteria
[for more information about patients’ recruitment see
Formentin et al. (2021)].

Inclusion/Exclusion Criteria
Inclusion criteria include confirmed diagnosis of cirrhosis based
on clinical manifestations and/or liver imaging. Exclusion criteria
includes age under 16 or over 80, hepatocellular carcinoma,
severe co-morbidity with short prognosis per se, a history of
cirrhosis on a transplanted liver, significant head injury,
neurological or psychiatric disease other than hepatic
encephalopathy, active alcohol misuse or acute infection.

Follow Up
Patients meeting above inclusion and exclusion criteria were
studied retrospectively and further separated into survivor and
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non-survivor groups by the survival status during the follow-up
periods (12 months). Patients who were transplanted due to liver
failure were classed as non-survivors as they were in immediate
need of a new liver and would not survive without transplantation
(Oyelade et al., 2020).

Clinical Laboratory Variables
Seven standard clinical variables representing unique
physiological functions or clinical feature were collected
(serum albumin, ALB; total bilirubin, Bil; prothrombin time,
PT; serum creatinine, Cr; ammonia, NH4; serum sodium, Na;
and hepatic encephalopathy, HE) based on a previous study (Tan
et al., 2020). HE was classified as unimpaired, minimal and overt
HE according to Montagnese et al. (Montagnese et al., 2004;
Vilstrup et al., 2014).

Network Generation in the Population
The patients were grouped into two classes based on their survival
status after 12 months of follow-up periods and a network map
based on simple linear regression was constructed for both classes
for visualisation (Tan et al., 2020). Nodes within network graphs
represent clinical variables and the correlation between pairs of
nodes are represented as edges. Spearman’s correlation was
computed with pair matching to correct for missing data and
the level of significance was based on a Bonferroni-corrected
p-value (Dunn, 1961). An edge was formed between a pair of
variables if the correlation between them is significant (p ≤
0.0024: i.e., Bonferroni-corrected p-value). Pairs of clinical
variables that did not meet the threshold for significant

correlation in the correlation coefficient analysis were excluded
from further analysis. The correlation networkmaps for survivors
and non-survivors after a 12-month follow-up time are presented
in Figures 2A,B.

Parenclitic Network
Deviation Value Computation (δ)
The data of patients that survived after a 12-month follow-up
period were used as reference in each follow-up time to construct
a regression model based on the significantly correlated pairs of
clinical variables above. As shown in Figure 2A, there is a
significant correlation between 6 of the 21 computed pair of
correlations in the survivor group. There is only one significant
correlation between biomarkers in the non-survivor group
(Figure 2B). The deviations between the data of all individual
patients (survived and non-survived) from the pre-constructed
reference model were then calculated as orthogonal residuals of
the regression lines of each pair of correlated variables
(Figures 1A–D).

Network Topology Analysis
Network topology analysis describes the underlying dynamics of
a connected system. The network topology analysis of
physiological functions have been shown to provide
information on the adaptability and dynamic flexibility of
organ systems to changes in the environmental conditions
(Bashan et al., 2012). Several network topology metrics
weighed by parenclitic deviations were used to assess the
changes in physiological connectedness in patients with

FIGURE 1 | A schematic representation of orthogonal residuals (δ) calculation and translation into parenclitic network. (A–D) First regression models are built for
pairs of variables (A-B; B-C; A-C and A-D) from a reference population (e.g., survivors, treatment responders etc.). The blue dots represent individual reference data, the
red regression lines represent the expected relationship models, while the red dots are individual data of patients being studied. The black lines represent the deviation
values (δ). The resulting parenclitic network map of nodes A, B, C and D is presented with edges weighted (in terms of thickness) according to the magnitude of
deviations from the models.
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cirrhosis. These include network in-degree centrality, shortest
path length, global diameter, and efficiency. Supplementary
Table S1 presents the definitions and mathematical formulae
of these indices.

Software Development
The software for computing the parenclitic network outputs was
written in-house using MATLAB build R2021a (MATLAB, 2021)
according to the originally described technique (Zanin et al.,
2014). In summary, the software extracts and uses the data of the
survivors to compute a Bonferroni-corrected regression model
for all pairs of physiological variables (e.g., Na-Alb, Alb-Bil). The
parameters (slope and intercepts) of significantly correlated pairs
were used to compute the vertical and horizontal residuals (y and
x respectively) which were then used to find the orthogonal
residuals (delta, z) for all patients (survivors and non-
survivors) as follows:

z � x.y
������
x2 + y2

√

The computed z’s were used as the weight of the connections
between all correlated pairs of variables for all patients. Further, the
individual z-weighted parenclitic network graphs are then used to
perform the global network topology analyses. All computed
results were combined into an output table which is labelled
with the combined names of the variable pairs for the z’s and
the computed network topology indices. The table is then written
into a named, dated output saved in the workspace as a single excel
file for further statistical analysis. The software is available in the
GitHub repositor; https://github.com/topeoyelade.

Statistical Analysis
Statistical analysis was performed using both MATLAB build
R2021a (MATLAB, 2021) and SPSS Statistics 26 (IBM Corp.,
Armonk, New York) (Corp I.B.M., 2019). Initially, a Receiver
Operating Curve (ROC) analysis was performed and the Area
Under the Curve (AUC) was used to generate cut-off values that
combines optimum sensitivity and selectivity in differentiation

between the survivors and non-survivors for all computed
output variables. Mann-Whitney U-test was used to compare
the means of all output variables (z’s and computed network
topology indices) between the survivors and non-survivors. We
performed Kaplan-Meier and log-rank (Mantel-Cox) test to assess
whether the cut-offs from the ROC analysis can distinguish the
groups. Further, bivariate Cox regression was computed to assess
whether the significantly different variables with survival prediction
can predict mortality independent of MELD and Child-Pugh
scores. The combined prognostic index (e.g., MELD-z) was
calculated using the regression coefficients according to the
following equation: MELD − z index � β1 MELD + β2z
where β1 and β2 are the regression coefficient of MELD and z
in bivariate Cox model respectively. Data are presented as median
and interquartile range (IQR) and significant level was defined as
two-tailed p-value < 0.05 in all analysis.

RESULTS

Study Population
Overall, 106 patients diagnosed with cirrhosis were followed up for
12 months. During the follow up periods 17 deaths were recorded;
14 patients underwent transplantation due to liver failure or
associated complications and were recorded as dead as they
were considered to need a new liver to survive. The
demography and clinical characteristics of the studied
population is described in Table 1. Baseline biomarkers as well

FIGURE 2 | Correlation network map of survivors (A) and non-survivors (B) following a 12-month follow-up period. The map is based on a pairwise Spearman’s
correlation’s correlation based on a Bonferroni-corrected significant level (p = 0.0024). serum albumin, Alb; total bilirubin, Bil; prothrombin time, PT; serum creatinine, Cr;
ammonia, NH4; serum sodium, Na; and hepatic encephalopathy, HE.

TABLE 1 | Demographic and clinical variables in the study population.

All patients (n = 106)

Age [Median (min–max)] (years) 58 (24–80)
Gender (male/female) 82/24
Aetiology of cirrhosis (alcohol/viral/others) (%) 42/34/24
MELD score [Median (min–max)] 12 (6–38)
Child-Pugh score [Median (min–max)] 8 (5–14)
Child class A/B/C 21/55/30
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as MELD and Child-Pugh scores are presented in Supplementary
Table S2 which shows a significant difference in most baseline
biomarkers and MELD/Child-Pugh scores between survivors and
non-survivors.

Parenclitic Deviation (›’s) of Survivors and
Non-Survivors
Parenclitic deviation were compared between survivors and non-
survivors and the results are shown in Tables 2. Based on Mann-
Whitney U-test, there was increased parenclitic deviations in Alb-
Bil (p < 0.001) and Alb-PT (p = 0.004) and Alb-HE (p = 0.034)
axes compared with the non-survivors (Table 2).

Parenclitic Deviations in Predicting Survival
Univariate Cox regression showed significant link between higher
risk of mortality and parenclitic deviations along the Alb-Bil, Bil-
PT, and the Ammonia-HE axes (Table 3). Higher deviation in the
Alb-PT axis resulted in 20% increased risk of 12-month mortality
(95% CI, 6%–35%, p < 0.001). Finally, deviation in the Alb-HE
axis was linked with 3-fold increased risk of mortality after 12-
month follow-up period (95% CI, 5% - 7-fold, p = 0.004: Table 3).
A complete set of hazard ratios for all parenclitic deviations are
shown in Supplementary Table S4.

Independence of Parenclitic Deviations in
Predicting Survival
To assess whether the ability of the parenclitic deviations to
significantly predict survival is independent of the index of liver
disease severity (MELD), we performed bivariate Cox regressions
for parenclitic deviations withMELD as covariate. The parenclitic
deviation along the Alb-Bil (Hazard Ratio, 95% CI = 1.063,
1.000–1.129; p = 0.048) and Alb-PT (Hazard Ratio, 95%

CI = 1.138, 1.012–1.280; p = 0.031) axes predicted 12-month
survival independent of MELD (Table 4). To study this further,
we looked at the independence of parenclitic deviations from
Child-Pugh score, a classic measure for severity of hepatic
dysfunction. Our results showed that parenclitic deviation of
the Alb-Bil, Alb-PT and Bil-PT predicted 12-month survival
independent of Child-Pugh scores (Supplementary Table S3).

Receiver Operating Characteristics Curves
of Parenclitic Deviations
ROC curves were computed for the parenclitic deviations for 12-
month follow-up periods that predicted survival independent of
MELD (Table 5). The deviation along the Alb-Bil axis showed
similar AUC in comparison with MELD (0.762 versus 0.792). As
shown in Figure 3 and Table 5, addition of parenclitic deviation
of Alb-Bil and Alb-PT axes could increase the AUC for MELD
from 0.792 to 0.835 and 0.824 respectively (p < 0.001).

Kaplan-Meier Graphs of Parenclitic
Deviations
For the parenclitic deviations that were significantly predictive of
survival independent of MELD, cut-offs with the optimum
sensitivity and specificity were generated from their ROC curves
(i.e., optimum sensitivity and specificity for prediction of survival).
The deduced cut-offs were then used to group the patients into
group “predicted non-survivor” if the patients’ parenclitic
deviations are higher than or equal to the corresponding cut-off
values or “predicted survivor” if otherwise. The binary output was
then used to generate Kaplan-Meier graphs to assess the prognostic
value. Figure 4 indicates that both Alb-Bil and Alb-PT deviations
can predict 12 months survival with a statistically significant log-
ranked test (Chi-square 19.03 and 7.81 respectively). Furthermore,

TABLE 2 | Comparison of parenclitic deviations of studied population.

› of variable pairs Survivors; median (IQR) Non-Survivors median (IQR) p-value

Albumin-Bilirubin 2.08 (1.07–2.83) 5.09 (2.79–10.05) < 0.001
Albumin-Prothrombin Time 2.48 (1.14–4.12) 4.83 (2.34–6.39) 0.004
Albumin-Hepatic Encephalopathy 0.50 (0.28–0.76) 0.63 (0.38–0.98) 0.034
Ammonia-Hepatic Encephalopathy 0.59 (0.25–0.80) 0.94 (0.30–1.28) 0.121
Bilirubin-Prothrombin Time 5.73 (3.58–8.90) 5.60 (2.31–11.49) 0.481
Hepatic Encephalopathy-Prothrombin Time 0.60 (0.16–0.88) 0.58 (0.10–0.98) 0.827

z, parenclitic deviation; IQR, interquartile range.

TABLE 3 | Univariate Cox regression analysis of the parenclitic deviations.

› of variable pairs β SEM Hazard
Ratio (95% CI)

p-value

Albumin-Bilirubin 0.128 0.024 1.137 (1.084–1.192) < 0.001
Albumin-Prothrombin Time 0.179 0.062 1.195 (1.059–1.349) 0.004
Albumin-Hepatic Encephalopathy 1.005 0.487 2.732 (1.052–7.099) 0.039
Bilirubin- Prothrombin Time 0.030 0.006 1.030 (1.018–1.043) <0.001
Hepatic Encephalopathy-Prothrombin Time 0.324 0.467 1.383 (0.554–3.451) 0.487
Ammonia-Hepatic Encephalopathy 1.369 0.606 3.933 (1.200–12.887) 0.024

z, parenclitic deviation; β, coefficient of Cox regression analysis; SEM, standard error of mean of β, CI, confidence interval.
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addition of Alb-Bil or Alb-PT deviations to MELD in a bivariate
Cox regression model enhances the prognostic value of MELD
alone (Figure 5).

Network Topology Indices and Prediction of
Survival in Patients With Cirrhosis
A shown in Supplementary Table S4, there was significant
increase in standard deviation of centrality between the

survivors and non-survivor group (p = 0.038). Other topology
indices did not exhibit statistically significant difference. Cox
regression analysis was performed to determine the relationship
between network topology indices and survival. Higher standard
deviation of centrality increased the risk of mortality with a
hazard ratio of 1.054 (95% CI, 1.026–1.083, p < 0.001).
Furthermore, the standard deviation of centrality was able to
predict survival independent of Child-Pugh score
(Supplementary Table S5).

DISCUSSION

In this study, a parenclitic approach was used to map the
physiological network of patients with cirrhosis from routine
clinical/laboratory data. By using the data of survivors to
construct a reference model, deviations for each patient’s pairs
of variables from the reference model were calculated and used
for prognosis calculation. We found that increased parenclitic
deviations and reduced connectedness in the Ammonia-HE axis
is associated with ~4-fold increase in the risk of mortality.
Reduced connectedness along the Alb-Bil, Alb-PT and Bil-PT
axes were also linked with increased risk of mortality independent
of routine prognostic indices such as MELD and Child-Pugh.
Higher parenclitic deviations shown by non-survivors suggests a
digression from the expected connection along various
physiological axes and can be interpreted as significant
network disruption between organ systems (i.e., more
parenclitic deviation = less organ systems connectivity).

Furthermore, we analysed the network topology indices
characterising the parenclitic networks defined by weighted
deviations. This gives quantitative measure of the network and
evaluates the deviations and their collective relationships. From a
set of topological indices, standard deviation of centrality was
significantly higher in the non-survivors than survivors and
showed significant association with 12-month survival. This
global index was also observed to predict survival independent
of Child-Pugh. Put together, these results show that parenclitic
network analysis can detect certain functional dynamics not
picked up by the current models used for prognostication in
cirrhosis. These results highlight the significance of
interrelationships between clinical variables such as Alb-Bil,

TABLE 4 | – The prognosis effects of parenclitic deviations independent of MELD using bivariate Cox regression analysis.

› with MELD β SEM Hazard
Ratio (95.0% CI)

p-value

Albumin-Bilirubin 0.061 0.031 1.063 (1.000–1.129) 0.048
MELD 0.119 0.038 1.126 (1.047–1.213) 0.002
Albumin-Prothrombin Time 0.129 0.060 1.138 (1.012–1.280) 0.031
MELD 0.435 0.092 1.166 (1.109–1.251) <0.001
Albumin-Hepatic Encephalopathy 0.702 0.501 2.017 (0.756–5.383) 0.161
MELD 0.152 0.030 1.164 (1.099–1.229) <0.001
Bilirubin-Prothrombin Time 0.013 0.008 1.014 (0.997–1.030) 0.101
MELD 0.143 0.033 1.153 (1.082–1.229) <0.001
Ammonia-Hepatic Encephalopathy 1.093 0.628 2.983 (0.870–10.219) 0.082
MELD 0.138 0.032 1.148 (1.078–1.223) <0.001

z, parenclitic deviation; β, coefficient of Cox regression analysis; SEM, standard error of mean of β, Ci, confidence interval; MELD, Model for End-stage Liver Disease.

TABLE 5 | Area under the ROC curves (AUC) of parenclitic deviations (z), MELD
and combined MELD-z during 12-month follow-up periods.

Prognostic index AUC (95% CI) p-value

Albumin-Bilirubin 0.762 (0.652–0.872) < 0.001
Albumin-Prothrombin Time 0.696 (0.569–0.824) 0.004
MELD 0.792 (0.696–0.888) < 0.001
MELD-›Albumin-Bilirubin 0.835 (0.747–0.924) < 0.001
MELD-›Albumin-Prothrombin Time 0.824 (0.730–0.918) < 0.001

CI, confidence interval; AUC, area on the receiver operating curve.

FIGURE 3 | The ROC curves comparing MELD alone with MELD-δAlb-Bil
and MELD- δAlb-PT in classifying patients as survivor or non-survivor. Addition
of parenclitic deviation of Alb-Bil and Alb-PT axes could increase the AUC for
MELD from 0.792 (95% CI, 0.696–0.888) to 0.835 (0.747–0.924) and
0.824 (0.730–0.918) respectively (p < 0.001 for all curves).

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8331196

Zhang et al. Parenclitic Network and Prognosis in Cirrhosis

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


Alb-PT and Ammonia-HE in reflecting the pathological stage of
cirrhosis and provides insight into complex interactions between
extrahepatic complications manifested in multiple organ systems
and how they may exacerbate the prognosis of patients with
cirrhosis.

A network approach to complex disease such as liver failure
has potential to transform the landscape of assessing prognosis.
The present study indicates that a parenclitic approach with
routine laboratory tests (e.g., albumin, bilirubin, PT) may
increase the accuracy of current prognostic factors and be
used in conjunction with MELD to ultimately increase the
number of lives saved. This is in line with previous research
revealing other physio-markers such as EEG or heart rate
variability (HRV) in conjunction with MELD to increase the
accuracy of prognostication (Montagnese et al., 2015; Chan et al.,
2017; Bhogal et al., 2019; Oyelade, 2021). However, while analysis
of EEG or HRV requires suitable recording equipment and
analytical expertise, the parenclitic approach introduced in this
study uses routine laboratory tests that is available in all clinical
settings. This is an advantage for this approach and can be
extended in future multi-centre prospective clinical
investigations. Such a network approach also has potential to
be used in other complex illnesses such as sepsis and multiple
organ failure for survival modelling as well as providing novel
insight about the pathophysiology. If organ systems network
disruption plays an important role in critically ill patients
(Asada et al., 2016), novel therapies may target enhanced
levels of connectivity of organ systems rather than treating
functional systems in isolation using pharmacological
antagonists.

Our results indicate that parenclitic deviation from albumin-
bilirubin, albumin-PT and ammonia-HE axes provide useful
information for prognostication. Hepatic encephalopathy is a
spectrum of neurophysiological disturbances that occurs in the

background of acute or chronic liver failure (Aldridge et al.,
2015). Although classically linked with hyperammonaemia,
systemic inflammation is known to precipitate or cause
exacerbation of HE (Shawcross et al., 2011; Tranah et al.,
2013). While the exact link between systemic inflammation,
ammonia and HE remain unclear, systemic inflammation (due
to endotoxemia, or bacterial translocation) may increase the
susceptibility of the brain to hyperammonaemia thereby
derailing the correlation between increased serum ammonia
and HE. While there was a positive correlation between
ammonia and HE in survivors (r = 0.469, p = 0.002), the
severity of HE was not significantly associated with ammonia
in non-survivors (r = −0.027, p = 0.911). This show that factor(s)
other than ammonia may be contributing to HE in non-survivors.
Indeed, various studies have linked systemic inflammation with
increased severity and poorer prognosis of HE (Rolando, 2000;
Vaquero et al., 2003; Shawcross et al., 2004; Shawcross et al., 2007;
Sharifi, 2008). Thus, the increased parenclitic deviation along the
Ammonia-HE axis may reflect the contribution of a secondary
physiological factor which predisposes an increased mortality
from cirrhosis. This can be easily analysed using a parenclitic
approach as described here or more traditional statistical
methods such as analysis of covariance.

Our analysis showed that the correlation between albumin and
bilirubin is lost in non-survivors. There was a sharp reduction in
serum albumin with increased bilirubin in survivors compared to
non-survivors (Supplementary Figure S1). The reason for this
disruption is not well clear. However, we hypothesis that; 1) The
relatively high albumin observed even at significantly elevated
bilirubin level in non-survival may be due to clinical infusion
which may not improve the effective systemic albumin or
prognosis (Solà et al., 2018; Fernández et al., 2020) but may be
associated with increased serious adverse events as was recently
reported in the ATTIRE study (China et al., 2021); 2) The half-life

FIGURE 4 | Kaplan-Meier graphs showing 12-month survival predictions of parenclitic deviations along the (A) Albumin-Bilirubin (Alb_Bil) and (B) Albumin-
Prothrombin Time (Alb_PT) axes based on the cut-off values of 3.63 and 3.57 respectively [Log-rank (Mantel-Cox) test, Chi square = 19.034, p < 0.001 and 7.814, p =
0.005 respectively].
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of albumin is comparatively higher at about 3 weeks (Peters,
1995) compared to bilirubin which remains in circulation for
about 6 min (Reed et al., 1988). In addition, the half-life of
albumin might be altered in critically ill patients due impaired
microcirculation compared with healthier patients (Vincent et al.,
2014) a factor that may contribute to difference in albumin-
bilirubin correlation or survivors and non-survivors.

Albumin-PT was another axis that differentiated survivors
from non-survivors in our study. The liver produces most
procoagulant and anticoagulant proteins, responsible for
maintaining haemostasis. In cirrhotic patients, the production
of clotting factors and their inhibitors decreases, results in either a
“rebalanced” haemostatic equilibrium or a prothrombotic state
due to systemic inflammation (Baccouche et al., 2017). Increased
bleeding risk has traditionally been regarded as the most
significant haemostatic complication in patients with liver
dysfunction, especially in the context of elevated international
normalized ratio (INR) (Flores et al., 2017). However, the
predictive value of INR in indicating the risk of haemorrhagic
event has been contradicted in literature and remains unclear

(Lisman and Leebeek, 2007; Lisman and Porte, 2010). On the
contrary, there is an increasing recognition of hypercoagulability
in some patients with cirrhosis where the risk of thrombotic
events (e.g., portal vein thrombosis) might be higher than
haemorrhage (Tripodi et al., 2011; Tripodi et al., 2017; Talon
et al., 2020). Portal vein thromboses and clotting of
extracorporeal circuits are common in cirrhosis despite
elevated INR values, while elevated bleeding tendency has
been suggested to be associated with sepsis, hepatorenal
syndrome, hypotension, and endothelial dysfunction instead of
isolated liver dysfunction (Harrison, 2018). Indeed, venous
thromboembolism (VTE) is an underdiagnosed and serious
medical condition that occurs at a relative risk of >2% in
cirrhotic patients and associated with greater mortality in
higher Child-Pugh stages (Buresi et al., 2012; Yang et al.,
2012). Also, low serum albumin has been found to be strongly
predictive of increased risk of VTE, independent of INR or
platelet account (Northup et al., 2006). It is hypothesized that
lower serum albumin concentration is a surrogate for decreased
protein synthesis by the liver and therefore correlated with

FIGURE 5 | Kaplan-Meier graphs showing 12-month survival predictions of MELD (A) and two combined indices: MELD-δAlbumin-Bilirubin (MELD-Alb_Bil) (B) and
MELD--δAlbumin-PT (MELD-Alb_PT) (C).

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8331198

Zhang et al. Parenclitic Network and Prognosis in Cirrhosis

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


decreased production of endogenous anti-coagulant factors such
as Protein C and S. Our results share similar findings
(Supplementary Figure S2), that the albumin levels are
generally lower in non-survivors and remain low despite
increase in PT. While in survivors, albumin levels present
positive linear increase with PT. In cirrhosis, coagulopathy
involves a complicated network of haemostatic factors, with
the risks of thrombotic and haemorrhagic events reported to
be independent of current markers or scores (Harrison, 2018).
Therefore, a parenclitic approach to relationship between
albumin and PT might pave the way for assessment of this
relationship in routine clinical practice.

This study validates the feasibility of parenclitic network-based
approach for predicting the survival status of patients with liver
cirrhosis, and its independence from Child-Pugh and MELD
scores, indicating that including the correlation between
biomarkers improves current prognostic indices and may help
improve the accuracy of prognostication. This suggests that a
parenclitic approach has potential in complementing current
prognostic scoring systems for liver cirrhosis. However, there
are some limitations. Firstly, the data of survivors was used as
reference for measurement of deviations is limited in size and
from a single referral medical centre. Future studies need to look
at a more diverse multicentre cohort of patients with cirrhosis.
Full applicability of the parenclitic method in survival modelling
in cirrhosis requires further validation by applying the reference
parameters developed in the current study to an external dataset
of patients with cirrhosis. Alternatively, constructing parenclitic
networks in bootstrap replica of the data may provide further
information on reliability of this approach. Further studies can
investigate validation of such a network approach in a larger and
more clinically diverse patient population. Another limitation of
this study is that the relationship models of different clinical
variables were based on linear regression, which assumes a
correlative linear relationship between all pairs of variables.
More sophisticated methods such as the 2-dimensional kernel
density estimation (Whitwell et al., 2018) could potentially serve
as a better approach, as it provides compatibility of categorical
and continuous data. Further, various variables such as
inflammatory biomarkers (e.g., IL-6) and physiological
markers (e.g., heart rate variability, heart rate turbulence and
temperature variability indices), that were shown to predict
mortality in cirrhosis patients (Mani et al., 2009; Bottaro et al.,
2020) could be included in the analysis to widen the scope and
improve the prognostic value of the parenclitic method. In
addition, the results of this study might not be extendable to
all subgroup of patients with cirrhosis as data were selected from
patients referred to a tertiary referral clinic for evaluation of HE.
For example, the parenclitic network may exhibit a different
pattern in patients with acute-on-chronic liver failure (ACLF)
compared with other forms of decompensation. This may give
insight about the mechanism of decompensation and organ
failure in cirrhosis. Future studies can focus on more diverse,
and clinically relevant subgroups of patients with cirrhosis to
provide a more comprehensive picture of organ systems network

disruption in individual patients with cirrhosis. The present study
also lacks a time-dependent approach in predicting outcome
using the parenclitic networks. Assessment of network
structure over time can provide useful information on the
trajectory of alterations in physiological processes involved in
decompensation and might be of significant value for prognosis
evaluation.

In conclusion, this is the first study to use the parenclitic
network analysis of routine clinical data to assess organ system
disruption and predict survival in individual patients with
cirrhosis. Potential application of this method includes the
prediction of treatments response or patients likely to develop
serious adverse events due to certain treatments. For example,
patients with decompensated cirrhosis indicated for
vasoconstrictors and/or albumin treatment who may not
respond (Cavallin et al., 2015; Wang et al., 2018; Moore et al.,
2020) or those likely to develop respiratory failure (Wong et al.,
2021) or other side effects (Martín–Llahí, 2008; Neri et al., 2008;
Sanyal et al., 2008; Gluud et al., 2010). The holistic approach of
the parenclitic network analysis may prove to be a better
prognostic method and can provide novel pathophysiologic
insight for understanding complex diseases such as chronic
liver failure.
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