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In this study, we explored the possibility of developing non-invasive biomarkers for patients
with type 1 diabetes (T1D) by quantifying the directional couplings between the cardiac,
vascular, and respiratory systems, treating them as interconnected nodes in a network
configuration. Towards this goal, we employed a linear directional connectivity measure,
the directed transfer function (DTF), estimated by a linear multivariate autoregressive
modelling of ECG, respiratory and skin perfusion signals, and a nonlinear method, the
dynamical Bayesian inference (DBI) analysis of bivariate phase interactions. The
physiological data were recorded concurrently for a relatively short time period (5 min)
from 10 healthy control subjects and 10 T1D patients. We found that, in both control and
T1D subjects, breathing had greater influence on the heart and perfusion with respect to
the opposite coupling direction and that, by both employed methods of analysis, the
causal influence of breathing on the heart was significantly decreased (p < 0.05) in T1D
patients compared to the control group. These preliminary results, although obtained from
a limited number of subjects, provide a strong indication for the usefulness of a network-
based multi-modal analysis for the development of biomarkers of T1D-related
complications from short-duration data, as well as their potential in the exploration of
the pathophysiological mechanisms that underlie this devastating and very widespread
disease.
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INTRODUCTION

Type 1 diabetes (T1D) is a chronic condition affecting roughly 5% of the world’s diabetic population
(Ogurtsova et al., 2017), which is estimated to reach 642 million (95% CI: 521–829 million) by 2040
(it was 151 million in 2000 (Wild et al., 2004)) with dramatic social and financial implications. T1D is
associated with pathogenetic mechanisms that lead to the apoptosis of pancreatic beta cells and, thus,
to an inadequate production of the insulin hormone. There is no currently available cure for T1D,
and its clinical care is focused primarily on the normalization of blood glucose levels for averting the
onset of long-term complications including cardiovascular disease and renal failure. The treatment of
diabetic-related chronic complications accounts for a considerable percentage [about 80% in the
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United Kingdom (Ogurtsova et al., 2017)] of the total medical
costs of diabetes mellitus. Studies show that timing of medical
intervention is key to reducing effects of comorbidities of T1D,
with earlier interventions resulting in lower disease impact (Doria
et al., 2012). Thus, there would be benefits to patients and
healthcare systems alike from development of novel diagnostic
techniques for early and non-invasive detection of T1D-related
complications. Such diagnostic regimes could also have
implications in outpatient monitoring and disease progression
assessment.

The complex function of the cardiovascular system is realized
by the synergistic activity of self-sustained cardiac, respiratory,
and vascular oscillators (Ticcinelli et al., 2017), which is deemed
to convey the necessary adaptability to sudden variations in the
metabolic requirements of the organism or to changing
environmental conditions (Penzel et al., 2017). There is a wide
variety of clinically available devices for non-invasively
monitoring the physiological systems that may be impacted by
the progression of T1D. Such systems generate oscillatory modes
that span a wide range of characteristic time scales, which can be
isolated and separately characterized by means of established
time-frequency representation (TFR) techniques (Clemson et al.,
2016). In this regard, the wavelet transform (WT) analysis of laser
Doppler flowmetry (LDF) signals of microvascular perfusion
(Stefanovska et al., 1999) has contributed to the identification
of myogenic (Aalkjaer et al., 2011), neurogenic (Söderström et al.,
2003) and endothelial (Kvandal et al., 2006) frequency ranges in
the microcirculatory vasomotion, in addition to the ones of the
extrinsic cardiac and respiratory components (Stefanovska and
Hozic, 2000) transmitted to the distal microvascular beds
(Table 1). This, in turn, has enabled the non-invasive
assessment of the underlying vasomotor mechanisms in
pathological states.

Furthermore, the wavelet cross-spectrum (Clemson et al.,
2016) and the phase coherence of bivariate data, (Sheppard
et al., 2012; Tankanag et al., 2014; Perrella et al., 2018), along
with statistical properties translated from information theory
[e.g., Granger causality (Granger, 1969) and transfer entropy
(Vejmelka and Palus, 2008; Sabesan et al., 2009)], have been used
to gain insights into the presence of significant relations between
oscillatory sources, and to determine the existence of a mutual
physiological coordination, e.g., the well-known synchronous
modulation of the heartbeat period by the breathing rhythm,
produced at the respiratory centers located within the medulla
oblongata and pons of the brainstem (Eckberg, 2003). However,
beyond the effects manifested in the oscillators’ phase dynamics,

the fundamental functional mechanisms underlying these
interactions can be probed via more sophisticated techniques,
able to provide information about the directional strength of the
coupling and hence about the causality of the interaction
(Rosenblum and Pikovsky, 2001; Palus and Stefanovska, 2003;
Faes et al., 2004). Since the cardiovascular system must handle
time-varying conditions, the employed methods should be
capable of capturing non-stationary functional couplings. The
dynamical Bayesian inference (DBI) technique, more recently
introduced by Stankovski et al. (2012), seeks to account for such
non-stationarities. In DBI, the cardiovascular system is modelled
as a network of phase oscillators coupled by time-dependent
functions, which are identified dynamically through a Bayesian
estimation framework within subsequent time windows of the
oscillators’ phase time series. Several researchers have employed
DBI to investigate potential changes in the direct and indirect
coupling between the cardiac, respiratory and vasomotor
activities; their studies have detected a reduction in the
respiratory sinus arrhythmia with ageing (Shiogai et al., 2010;
Iatsenko et al., 2013; Stankovski et al., 2014; Ticcinelli et al., 2015;
Ticcinelli et al., 2017), and a weakening of the coupling between
the microvascular myogenic vasomotion and the central cardiac
and respiratory oscillations in the elderly population and in
primary hypertension (Ticcinelli et al., 2017). Since metabolic
diseases, such as obesity and diabetes, have been recognized as
models of accelerated ageing, the aforementioned alterations may
also be present in subjects diagnosed with T1D.

Non-stationary metrics of time-frequency activity could
elucidate stochastic coupling but require an adequate number of
data points over stationarywindows for inferences to be statistically
significant. Linearly modelling the data may provide a valuable
alternative. Multivariate autoregressive (MVAR) models have been
used for describing interactions between time series originating
fromdifferent nodes within a network (Baccalá et al., 2007; Vlachos
et al., 2017). In detail, MVAR-based parametric techniques can be
utilized to elucidate inter-node connections via coherence-based
measures of implicit causality. One such measure is the directed
transfer function (DTF), a frequency-domain descriptor of directed
network connectivity with fundamental implications fromGranger
causality (Baccalá et al., 2007). DTF measures cascaded direct and
indirect interactions, emphasizes source-based outflow and has
been employed in several neuroscience applications (Kamiński
et al., 2001; Blinowska et al., 2013; Kamiński and Blinowska, 2014;

TABLE 1 | Physiological frequency ranges in microvascular perfusion signals.

Oscillation Nominal range (Hz)

Cardiac (0.6, 2.0)
Respiratory (0.145, 0.6)
Myogenic (0.052, 0.145)
Sympathetic (0.021, 0.052)
Endothelial (NO-dependent) (0.0095, 0.021)
Endothelial (NO-independent) (0.005, 0.0095)

TABLE 2 | Study participants: general characteristics.

Characteristics Control T1D p-value

Gender (M/F) 7/3 5/5 0.361α

Age (years) 26.7 ± 1.5 29.7 ± 13.3 1.000β

Smokers (Y/N) 1/9 4/6 0.121α

Heart rate (bpm) 70.7 ± 7.2 74.1 ± 9.5 0.406β

Breathing rate (Hz) 0.25 ± 0.06 0.28 ± 0.03 0.149β

LDF cardiac power (%) 90.6 ± 6.6 91.7 ± 7.8 0.450β

T1D duration (years) - 13.8 ± 10.0 -
HbA1c (%) - 7.5 ± 1.1 -

α: via Pearson’s χ2 test.
β: via Mann-Whitney U test.
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Vlachos et al., 2017; Adkinson et al., 2018; Hutson et al., 2018).
DTF and other MVAR-based measures of directional connectivity
may also be applied to the evaluation of the directional coupling
between the cardiac, respiratory, and peripheral blood flow
systems. The utility of these measures in neuro-cardio-
respiratory network interactions has been shown lately in
animal studies of sudden unexpected death in epilepsy
(SUDEP), a condition that involves potential failure of central
control units of cardiac and respiratory behavior (Hutson et al.,
2020).

Employing directed connectivity measures to quantify the
inter-modulation of the biological oscillations originating from

separate but interconnected systems could have valuable
diagnostic potential for assessing the deterioration of the
cardiovascular and respiratory function in prevalent high-risk
conditions such as T1D. According to the results of a recent
review article (Klein et al., 2010), adult subjects diagnosed with
type 2 diabetes are characterized by reduced respiratory
parameters, which appear to be inversely related to blood
glucose levels and the time since the initial diagnosis. This
review has linked chronic hyperglycemia and inflammation,
autonomic neuropathy, microangiopathy of the pulmonary
arterioles, and stiffening of the lung parenchyma to the
possible biological mechanisms underlying the lung function

FIGURE 1 | Experimental recording setup.

FIGURE 2 | Example of (A) ECG, (B) breathing and (C) LDF perfusion signals recorded from a young control subject.
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impairment. This may then result in a detrimental impact on the
mutual physiological coupling between the breathing and heart
function. In light of the above, in the present study we employed
the DBI and DTF frameworks with the aim to non-invasively
detect characteristics of the potential decline of connectivity in
the cardio-respiratory oscillatory network in a preliminary,
relatively small group of healthy controls and patients
diagnosed with T1D.

MATERIALS AND METHODS

Experimental Setup and Subjects
10 healthy controls (age: 26.7 ± 1.5 years; M/F: 7/3) and 10 T1D
patients (age: 29.7 ± 13.3 years; M/F: 5/5) were recruited for the
present study. Research activities were carried out in accordance
with the guidelines of the Declaration of Helsinki of the World
Medical Association: the included subjects received detailed
information on the research protocol and its purpose and
signed an informed consent form. The general characteristics
of the participants are summarized in Table 2; one control subject
(i.e., 10%) and four T1D subjects (40%) were smokers. ECG,
breathing and microvascular perfusion signals were
simultaneously recorded. Microvascular perfusion was
measured on the distal phalanx of the right forefinger using a
Periflux 5,000 laser Doppler flowmetry (LDF) system (Perimed
AB, Sweden). The time constant of the output low-pass filter of
the instrument was set to 0.03 s in order to preserve pulse
waveforms. The heart and spontaneous respiratory activities
were instead monitored by means of a BioHarness 3.0
wearable chest strap sensor (Zephyr Technology,
United States) and transmitted to a PC via Bluetooth. A
graphical illustration of the recording setup is shown in Figure 1.

The above three signals were concurrently recorded and
digitized at a sampling frequency of 250 Hz (being synchronized
through a dedicated data acquisition software). Each recording
session lasted 5 min and took place in thermally stable conditions
(T ≈ 23°C) following a preliminary acclimatization time interval of
10 min. During signal acquisition, subjects were seated in a chair
with back support and leaned their right forearm on a table;
furthermore, they were instructed to carefully avoid abrupt
movements to prevent the displacement of the LDF probe and
thus the introduction of motion-related artifacts in the recorded

perfusion signals. An example of the raw signals acquired from a
young control individual is shown in Figure 2.

The mean breathing rate of all subjects was inside the nominal
physiological range, that is (0.145, 0.6) Hz (Table 1).
Furthermore, LDF perfusion signals recorded from the
pathological group did not exhibit a significantly different (p =
0.450) power within the nominal frequency range of the cardiac
rhythm (0.6, 2) Hz. However, T1D subjects included a larger
proportion of smokers and were on average older than the control
subjects. Nevertheless, these differences did not reach statistical
significance according to Pearson’s χ2 and Wilcoxon rank-sum
tests, respectively.

Dynamical Bayesian Inference
The functional physiological interaction between cardiac and
respiratory processes was investigated by means of the
dynamical Bayesian inference (DBI) technique (Duggento
et al., 2012; Stankovski et al., 2012). This method regards
the cardio-respiratory system as a network of coupled self-
sustained nonlinear phase oscillators and uses a Bayesian
inference scheme to dynamically estimate their time-
evolving coupling strength and causality (i.e., the direction
of interactions). Myogenic, sympathetic, and endothelial
microvascular oscillations (Table 1) were not considered in
the present study, due to the insufficient duration of the
recorded signals. A comprehensive description of the
approach can be found elsewhere (Duggento et al., 2012;
Stankovski et al., 2012; Iatsenko et al., 2013; Clemson et al.,
2016; Ticcinelli et al., 2017). Briefly, in DBI, the phase
dynamics of two interacting oscillatory processes p1 and p2

is modelled as follows:

_φ1(t) � ω1(t) + d1(φ2, t) + k1(φ1,φ2, t) + ε1(t) (1)
where ω1(·) is the natural frequency of the first oscillator, d1(·) and
k1(·) are the coupling functions that describe the direct and indirect
driving of the second oscillator (with the acceleration/deceleration of
the first oscillator’s phase φ1 depending on the second’s φ2), whereas
the stochastic term, ε(·), represents the noise (usually assumed to be
Gaussian and white (Stankovski et al., 2012)). Since the above
coupling functions are hypothesized to be 2π-periodic, the right-
hand side of Eq. 1 can be decomposed into a linear combination of
Fourier basis functions Φn � exp[i(n1φ1 + n2φ2)]:

FIGURE 3 | Time-frequency ridges of the (A) ECG, (B) breathing and (C) LDF perfusion signals shown in Figure 2. Ridges were estimated bymeans of the adaptive
parametric approach developed in (Iatsenko et al., 2016).
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_φ1(t) � ∑N
n�−N

c1,n · Φ1,n(φ1, φ2) + ε1(t) (2)

where N is the order of the expansion and Φi,0 � 1 (where
i � 1, 2). In general, the DBI technique sequentially applies the
Bayesian theorem to adjacent time windows of the oscillators’
instantaneous phases, φi(t), in order to infer the bank of time-
varying parameters ci,n characterizing the functional interaction
between the underlying physiological processes, and the noise
term, εi. The inferred ci,n values are then used to estimate a
dynamic index of directional coupling strength and directionality
of influence. In the present study, DBI analysis was based on the
related Matlab toolbox developed by the research group on
Nonlinear and Biomedical Physics at Lancaster University
(http://www.physics.lancs.ac.uk/research/nbmphysics/diats/tfr/).

In detail, DBI analysis usually requires the extraction of the
instantaneous frequency of the oscillations of interest, in order to
track their characteristic time-dependent phase φi(t). In this
regard, an adaptive parametric ridge reconstruction scheme

(Iatsenko et al., 2016) was applied to the time-frequency
representation (TFR) of the acquired signals in order to isolate
the breathing and cardiac oscillatory components. In the present
study, the cardiac component was isolated from both the ECG
and the LDF signals of cutaneous perfusion. The adjustable
parameters of the algorithm, which respectively tune the
tolerance to deviations from the component’s mean rate of
frequency change and mean frequency, were set to their
default value of 1. The wavelet transform (WT) was adopted
as TFR technique because of its logarithmic frequency resolution
(Stefanovska et al., 1999); specifically, a Morlet wavelet with
central frequency f0 � 1 was chosen as the mother function:

γm(t) �
1���
2π

√ ⎛⎜⎜⎜⎜⎜⎜⎝ei2πt − e−
(2π)2
2
⎞⎟⎟⎟⎟⎟⎟⎠e−t

2/2 (3)

Prior to the application of the WT, signals were downsampled to
50 Hz, detrended by means of a third order polynomial fit, and
band-passed inside the cardiac and respiratory frequency

FIGURE 4 |Cardio-respiratory directional coupling strength parameters estimated viaDBI (Eqs 4, 5; two per panel), and respective directionality indices (Eq. 6; one
per panel) obtained from a control subject (left) and a T1D patient (right).

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 8408295

Sorelli et al. Cardio-Respiratory Connectivity Analysis in Diabetes

http://www.physics.lancs.ac.uk/research/nbmphysics/diats/tfr/
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


intervals listed in Table 1, to remove the influence of components
lying outside the physiological range of interest. The
discretization of the frequency domain was performed with a
density of 128 voices/octave, which enabled the extraction of
smooth ridge curves. DBI was then applied to consecutive
overlapping windows of the original time series, with an
overlap factor of 50%. The window width was set so as to
include approximately five cycles of the slowest oscillatory
component for inference of the coupling parameters ci,n, as
reported in (Iatsenko et al., 2015; Clemson et al., 2016). For
the analysis of cardio-respiratory interactions, this resulted in the
adoption of 23 overlapping windows of 25 s. Thus, the lowest
frequency we could theoretically observe was 1/25 s = 0.04 Hz.
The characteristic time-frequency ridges extracted from the
signals in Figure 2 are shown in Figure 3.

As done by Iatsenko et al. (2013) and Ticcinelli et al. (2017), a
Fourier decomposition up to the second order (i.e., N = 2) was
chosen for the phase dynamics model expressed in Eq. 1.
Moreover, the propagation constant pw, that weights the
diffusion of information between consecutive data windows w
(Stankovski et al., 2012), was set to an arbitrary value of 0.2.
Iatsenko et al. (2013) have nonetheless reported that this internal
parameter of the DBI algorithm does not significantly affect the
outcome of the Bayesian inference. The Euclidean norm of the
coupling parameters ci,n estimated within each data window w
was finally used to quantify the overall influence (including direct
and indirect couplings) of the phase of the second oscillator on
the first one’s, and vice versa, yielding the following directional
coupling strength signals:

s1→2(w) �

������������∑N
n�−N

(c1,n(w))2√√
(4)

s2→1(w) �

������������∑N
n�−N

(c2,n(w))2√√
(5)

where w indicates the dependence of the coupling coefficients on
the particular time window.

Furthermore, a directionality index d1,2 (d1,2 ∈ [−1,+1]) was
estimated from each window w, in order to quantify the dynamic
asymmetry of the bi-directional interaction:

d1,2(w) � s1→2(w) − s2→1(w)
s1→2(w) + s2→1(w) (6)

This index, proposed by Rosenblum and Pikovsky (2001) has been
used in the recent literature for detecting the predominant
direction of influence between the cardiac and respiratory
oscillators (Stankovski et al., 2012; Iatsenko, et al., 2013;
Ticcinelli, et al., 2017). Namely, if d1,2 ∈(0,+1], then the first
oscillator drives the second more than the other way around;
conversely, if d1,2 ∈[−1, 0), the second drives the first one.
However, as reported in (Duggento et al., 2012), directional
coupling strengths si→j(w) obtained via DBI represent an
overall estimate of the combined phase relationships between
the analyzed time series. Thus, spurious non-zero values can be
inferred even when no functional interaction exists between the
underlying oscillatory processes. This is why the reliability of
si→j(w) should be ascertained by surrogate testing, i.e., rejecting
directional coupling strengths below a specified acceptance
threshold estimated from an adequately large set of surrogate
interactions. In this regard, we adopted the inter-subject
surrogate approach followed by Toledo et al. (2002) and
Ticcinelli et al. (2017) validating our coupling strength estimates
against the median value obtained from 100 unique combinations
of randomly selected inter-group signals and subjects. Each of the
100 surrogate datasets was composed of mutually independent
time series recorded from different individuals (e.g., ECG from
control subject A, breathing from T1D patient B, LDF perfusion
from control C). This technique allowed us to exclude from further
consideration any directional couplings whose strength was
equivalent to the one whichmight have arisen from chance or bias.

Directed Transfer Function
Multivariate autoregressive (MVAR)modelling of the data within
short-time segments, each data window aligned in time with
concurrent ones frommore than one time series, is recommended
for network connectivity analysis assuming that these signals are
recorded from different parts of a multi-dimensional, linear and
wide-sense stationary system. For each window, the estimated
array of MVARmodel coefficients can then be further analyzed in
the frequency domain and, depending on different types of
normalization utilized, provides frequency-specific measures of
directional functional connectivity between the nodes of the
assumed network configuration of the system (Baccalá et al.,
2007). We have successfully employed such measures in network
analyses of intracranial EEG (iEEG) (Vlachos et al., 2017;
Adkinson et al., 2018), and magnetoencephalographic (MEG)
recordings (Krishnan et al., 2015) from patients with focal
epilepsy for localization of their epileptogenic focus, as well as
the assessment of the dynamics of brain’s network connections en
route to a life-threatening neurological event, status epilepticus
(T. N. Hutson et al., 2018). In the current study we fitted a MVAR
model to each of 60-s consecutive non-overlapping data segments
from the three recorded signals (ECG, breathing, perfusion) over
5 min. By using a 60-s time window, our frequency resolution is
1/60 s = 0.017 Hz = 0.05 Hz/3, and thus the lowest frequency we
can deal with moving the analysis in the frequency domain is
three times less than the 0.05 Hz, the lowest frequency in the
frequency band of (0.05, 2) Hz we are interested in here. Thus, the
MVAR model was of dimension D = 3 [i.e., the data to be fitted
were placed in three-dimensional column vectors X(t)], and of

TABLE 3 | Median coupling strength values obtained from 100 inter-subject
surrogates.

Interaction DBI connectivity Median
surrogates (Nw = 2,300)

Lungs ↔ Pulse spulse→bre 0.08
sbre→pulse 0.24

Lungs ↔ Heart sECG→bre 0.09
sbre→ECG 0.19

Heart ↔ Pulse spulse→ECG 0.28
sECG→pulse 0.25
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order M = 7 per subject. Also, the window length of 60 s (15,000
data points x three channels = 45,000 data points) is enough for a
confident estimation of the 7 × 3 × 3 = 63 MVAR parameters as
we are using more than 100 times as many data points as we have
parameters to fit.

For each set of three 60-s running windows extracted at the
same time from all three signals, the model linearly fits the data in
the column vectors X(t) as follows:

X(t) � ∑M
τ�1

A(τ)X(t − τ) + E(t) (7)

where the time index t is from 1 to N, with N being the number of
data points per time series within a time window (N = 15,000), M
is the order of the model (M = 7), and τ is increasing in steps of
the time delay between samples (we used τ = 1, that is, in time
units, equal to the sampling period 1/(250 Hz) = 4 ms). Matrices
A(τ) contain the model’s coefficients, whereas the fitting error
values are the components of the vector E (in the ideal MVAR
model fit,E is multivariate Gaussian white noise). The coefficients
of the MVAR model were estimated via the Vieira-Morf partial
correlation method. Taking the discrete Fourier Transform of
both sides of Eq. 7 and rearranging, we have:
[I −∑p

τ�1A(τ)e−i2πfτ] ·X(f) � E(f), where I is the unitary
matrix. Then, by defining:

�B(f) � ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I −∑p

τ�1
Aij(τ)e−i2πfτ , for i � j

−∑p
τ�1

Aij(τ)e−i2πfτ , for i ≠ j

(8)

where i � ���−1√
in the exponents of Eq. 8, the directed transfer

function (DTF) can be derived by utilizing the transfer matrix,
H(f), defined as:

H(f) � �B
−1(f) (9)

Specifically, DTF is estimated via the following equation:

DTFj→i(f) � ∣∣∣∣Hij(f)∣∣∣∣2∑D

k�1
∣∣∣∣Hik(f)∣∣∣∣2 (10)

The statistical significance of the DTF values of each interaction
derived from each 60-s window was determined. The statistical
criteria for inferring the statistical significance and confidence
interval of the derived frequency-domain Granger causality-
based connectivity measures are recent and have been discussed
by a small number of researchers. In this study, we have followed
an asymptotic analysis for evaluation of the connectivity measures
from theMVARmodelling of our data (Baccalá et al., 1997; Baccalá
et al., 2016). In detail, the significance of the connectivity measures
DTFj→i(f) at a specific frequency f between two nodes i and j
was tested according to the following null hypothesis:

H0:
∣∣∣∣DTFj → i(f)∣∣∣∣2 � 0 ∀i, j∈{1, . . . , D} (11)

RejectingH0 at a specified significance level (typically α = 0.05)
also required to reject non-statistically significant DTF values.
Confidence intervals for the existing connections were
estimated by determining the asymptotic distribution of
DTF according to (Toppi et al., 2016). Only the thus
identified statistically significant DTF values (ssDTF) were
further analyzed in this study. Analogously to the DBI

FIGURE 5 | Box plots of DBI measures of connectivity (Eqs 4–6). Top panel: comparison of all (six) cardio-respiratory coupling parameters estimated with DBI for
the control (blue) and T1D (red) groups. Bottom panel: comparison of the (three) directionality indices per pair interaction for the control (blue) and T1D (red) groups.
Statistically significant decreases, identified by one-tailed Wilcoxon rank-sum tests, are denoted by (*) above the respective boxes.
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analysis, an index of directionality was finally obtained from
the ssDTF estimates as follows:

di,j(f) � ssDTFi→j(f) − ssDTFj→i(f)
ssDTFi→j(f) + ssDTFj→i(f) (12)

RESULTS

Dynamical Bayesian Inference
Figure 4 shows sample coupling strength signals of the time-
evolving pairwise interactions among peripheral pulse,

respiratory and ECG signals, estimated using DBI in a control
subject and a T1D patient. Directional coupling strength
estimates below the corresponding median values of the
surrogates reported in Table 3 (100 surrogate subjects, for a
total of Nw = 2,300 windows), were rejected. Also, only those
windows for which both directional coupling strengths per paired
interaction were found to be statistically significant according to
the above rule were further considered in the statistical analysis of
the directionality index, di,j. The overall results of the DBI
analysis of the control and pathological groups including their
statistical comparison (p-values) are shown in Figure 5 and
summarized in Table 4. Statistically significant differences

TABLE 4 | Median of statistically significant (p < 0.05, vs. surrogates) DBI coupling strengths and directionality indices per interaction in controls and T1D patients. The
statistical significance of the differences observed between the groups was estimated by one-tailedWilcoxon rank-sum tests comparing the null hypothesis H0 (medians
in the two groups are equal) to two alternative hypotheses: H1a, the median of controls being greater than that of T1D; and H1b, the median of T1D being greater than that of
controls. The p-values for each of the two performed Wilcoxon tests (last two columns) refer to the probability of accepting hypothesis H0 to be true over the alternative
hypotheses H1a or H1b.

Interaction DBI connectivity Median (controls) Median (T1D) p-value H1a p-value H1b

Lungs ↔ Pulse spulse→bre 0.120 0.134 0.949 0.051
sbre→pulse 0.361 0.363 0.326 0.674
dbre, pulse 0.539 0.455 0.011a 0.990

Lungs ↔ Heart sECG→bre 0.127 0.140 0.887 0.113
sbre→ECG 0.360 0.314 <0.001a 1.000
dbre, ECG 0.503 0.396 <0.001a 0.999

Heart ↔ Pulse spulse→ECG 59.21 37.51 <0.001a 0.999
sECG→pulse 82.86 33.44 <0.001a 1.000
dECG, pulse 0.013 0.042 0.556 0.445

aStatistically significant at α = 0.05 level (one-tailed Wilcoxon rank-sum test).

FIGURE 6 |Box plots of DTF measures of connectivity in the (0.05, 2) Hz frequency band (Eqs 10, 12). Top panel: median ± first and third quartiles of ssDTF values
across all directed interactions for control (blue) and T1D (red) groups. Bottom panel: directionality indices per pair interaction for the control (blue) and T1D (red) groups
(*) above boxes denotes p-value < 0.05 estimated from non-parametric one-tailed Wilcoxon rank-sum tests comparing T1D and control groups.
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between the two groups were detected by means of one-tailed
Wilcoxon rank-sum tests for independent samples.

Lungs–Heart interaction. Compared to controls, T1D patients
exhibited a significant reduction in the directionality index dbre, ECG
(p < 0.001), which reflects a lowered asymmetry of the cardio-
respiratory interaction in the pathological group. This was due to a
weakened influence of the breathing activity on the cardiac rhythm,
as expressed by the statistically significant decrease in the directional
coupling strength sbre→ECG (p < 0.001; Table 4, row 4). Conversely,
the directional coupling from the heart to the lungs was not
significantly different between the two groups (Table 4, row 5).

Lungs–Pulse interaction. T1D patients also exhibited a significant
decrease in the dbre,pulse index (p = 0.011), which indicates a higher
symmetry of the interaction between the breathing activity and the
cardiac oscillatory mode of the LDF signals. However, in this case,
none of the corresponding directional coupling strengths was
significantly different between the compared subjects (Table 4,
rows 1 and 2).

Heart–Pulse interaction. With respect to the healthy group,
T1D patients were characterized by significantly lowered
directional coupling strengths, spulse→ECG (p < 0.001; Table 4,
row 7) and sECG→pulse (p < 0.001; Table 4, row 8). However, no
statistically significant difference emerged in the overall
directionality of influence, as expressed by the dECG,pulse index
across the control and pathological groups (Table 4, row 9).

Directed Transfer Function
The statistically significant DTF values (ssDTF) of directional
connectivity estimated per interaction from MVAR modelling
(six directional interactions between the three recorded signals)
were aggregated over all windows (60-s non-overlapping data
segments) and subjects within the same group (control or T1D)
and averaged over the physiologically relevant frequency band
(0.05, 2) Hz. The median and quartiles of the ssDTF values
obtained from the control and T1D groups are shown in
Figure 6. It is relevant to highlight that MVAR modelling
evaluate signals across identical frequencies over the entire
physiological range of interest, in contrast to DBI which is
based on the extraction of the specific time-varying frequency
component of the cardiac pulsatility, within an effectively tighter
range. Therefore, in this section interactions involving LDF signals

are denoted as “perfusion”, rather than “pulse”. From Figure 6, we
make the following statistically significant observations about the
assessed directional interactions: “Perfusion→Breathing”,
“Perfusion→ECG” and “ECG→Breathing” connectivity
strengths are elevated in T1D subjects compared to controls.
Conversely, the “Breathing→ECG” interaction in T1D is lower
than the controls’. It is also noteworthy that “Breathing→ECG” is
significantly higher in connectivity than “ECG→Breathing” for
both T1D and controls. Also, the “Perfusion→ECG” coupling is
higher than “ECG→Perfusion” in both groups.

Statistically significant directional interactions (p < 0.05)
between the network nodes for each pair of recorded signals
are reported in Table 5 (columns 3 and 4) together with their
directionality index di,j. Inter-group comparisons were
conducted via one-tailed Wilcoxon rank-sum statistical tests,
whose p-values are also included in Table 5 (last two columns).

Lungs–Heart interaction. In agreement with the results from the
DBI method, DTF shows that T1D patients exhibit a statistically
significant reduction (p < 0.001) in the directional coupling strength
from the lungs to the heart, as well as in the directionality index
dbre, ECG, compared to controls. The latter is due to a statistically
significant increase (p < 0.001) in the directional strength
ssDTFECG→bre observed in the pathological group, with a parallel
significant decrease (p< 0.001) in ssDTFbre→ECG (Table 5, rows 4–6).

Lungs–Perfusion interaction. Similarly to the DBI analysis, the
DTF measures of connectivity showed a decrease in the dbre,pulse
index of T1D patients compared to the one estimated from the
control group (0.729 vs. 0.276), implying a lowered asymmetry of
the interaction between breathing and LDF signals. However, this
decrease was not as significant (p = 0.084) as the one estimated via
DBI (p = 0.011). This outcome is due to the mixed results
(decrease with p = 0.031, and increase with p = 0.019) related
to the directional coupling strengths ssDTFbre→perf and
ssDTFperf→bre, respectively (Table 5, rows 1 and 2).

Heart–Perfusion interaction. T1D patients exhibited increased
connectivity compared to the controls in both directions, with the
difference in the “Perfusion→ECG” coupling reaching statistical
significance (p = 0.002) (Table 5, rows 7 and 8). The above trends
contributed to a diminished absolute value of the directionality
index dECG,perf in the pathological group, which implies a more
balanced interaction with respect to controls (Table 5, row 9).

TABLE 5 |Median of statistically significant (p < 0.05, vs. surrogates) DFT values (ssDTF) and directionality indices aggregated over subsequent timewindows, and averaged
over the frequency range (0.05, 2) Hz. The statistical significance of the differences observed between the control and T1D groups is also illustrated as in Table 4.

Interaction DTF connectivity Median (controls) Median (T1D) p-value H1a p-value H1b

Lungs ↔ Perfusion ssDTFperf→bre 0.027 0.074 0.982 0.019a

ssDTFbre→perf 0.310 0.129 0.031a 0.970
dbre, perf 0.729 0.276 0.084 0.918

Lungs ↔ Heart ssDTFECG→bre 0.002 0.011 1.000 <0.001a
ssDTFbre→ECG 0.897 0.634 <0.001a 1.000

dbre, ECG 0.992 0.954 <0.001a 1.000

Heart ↔ Perfusion ssDTFperf→ECG 0.055 0.121 0.998 0.002a

ssDTFECG→perf 0.002 0.006 0.763 0.258
dECG, perf −0.940 −0.865 0.646 0.379

aStatistically significant at α = 0.05 level (one-tailed Wilcoxon rank-sum test).
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Finally, within each group, a few interesting features were also
observed from the DTF results in relation to the difference in the
strength of the directional couplings per interaction. In particular,
in both control subjects and T1D patients, the median coupling
strengths from the lungs to the heart and from the lungs to the
microcirculation were considerably higher than in the opposite
direction (the same outcome of the DBI analysis). However, the
inter-group differences in the directional strengths between heart
and microcirculation were contradictory with respect to the DBI
analysis, which associated a higher level of bidirectional
connectivity to the control group (Table 5, columns 3 and 4).

DISCUSSION

Towards the goal of developing reliable and non-invasive
biomarkers for T1D, we employed both nonlinear (bivariate)
and linear (multivariate) measures to assess possible impairments
in the coupling strength and directionality of influence between
three representative nodes of the cardiovascular and respiratory
systems (heart, lungs, microcirculation) in patients diagnosed
with T1D compared to control subjects. The two adopted
methods can capture equivalent or different features in the
communication between the nodes of a physiological network
because of their different capabilities, that is: linearity (DTF) vs.
nonlinearity (DBI) in the data; multivariate (DTF) vs. bivariate
(DBI) data analysis; measure of connectivity between signals at
the same frequency (DTF) vs. different frequencies (DBI).
Employing these two techniques, we did identify impairments
(by both or one of the approaches) in the functional directional
interactions between heart, lungs, and microcirculation in T1D
patients. In detail, an impairment was defined as a statistically
significant difference (p < 0.05) in the directional coupling
strengths between the respective nodes, compared to the
homologous estimate obtained from the control group
(i.e., rejection of the null hypothesis H0).

Regarding the functional interactions between heart and lungs,
DBI, the nonlinear framework, revealed a significantly reduced
(p < 0.001) influence of the respiratory activity on the phase of the
cardiac rhythm in the T1D group. A similar, statistically
significant (p < 0.001) finding also emerged from the linear
network analysis, using DTF. Moreover, the imbalance in the
two communication channels from the lungs to the heart and vice
versa, as captured by the directionality index, was also highly
significantly different in both methods (p < 0.001). It is well
known that the phase of the respiratory activity directly
influences the action of the heart pump, as breathing-related
changes in the intrathoracic volume alter the cardiac pre-load,
thus affecting cardiac filling, post-load and other circulatory
variables. Furthermore, respiration gates the timing of
autonomic motoneuron firing (Eckberg, 2003), thus
modulating the peripheral autonomic nervous system’s outflow
to the heart, an indirect cardio-respiratory coupling occurring via
neuronal control (Iatsenko et al., 2013; Kralemann et al., 2013).
Therefore, our finding of a reduced driving relationship of the
lungs to the heart in T1D patients could be related to autonomic
neuropathy, vascular degeneration or lung tissue stiffening,

common co-morbidities associated with diabetes mellitus
(Klein et al., 2010).

An analogous decrease of the influence of respiration on the
microvascular perfusion in the T1D group compared to
controls was observed by DTF analysis (p = 0.031) but
could not be verified by DBI (p > 0.05). However, like for
the lungs-heart interaction, the imbalance in the directional
coupling strengths between lungs and microcirculation, as
reflected by the directionality index, was significantly less
(p = 0.011) in T1D than in controls as shown by DBI as
well as by DTF, though without reaching a statistical
significance level (p = 0.084). Also, regarding the DBI
analysis of phase interactions, it is notable that control
subjects exhibited similar statistics with respect to the
evaluation of breathing and ECG signals. This result would
be in line with previous findings by Jamšek and Stefanovska on
the coupling information among cardiac and respiratory
processes which propagates to the distal microvascular beds
(Jamšek and Stefanovska, 2007), and can be characterized
through the analysis of LDF signals recorded non-invasively
from the skin.

In T1D subjects, the DBI analysis highlighted a significantly
decreased communication in both directions between the ECG
and the microvascular pulse signal extracted from LDF signals.
This finding, however, could not be validated by DTF too. It is
noteworthy that these directional interactions were associated
with significantly higher coupling strength values (Table 4). This
could be due to the way DBI evaluates causal relationships and
what it can capture. In this case, DBI basically assesses the phase
coupling between ECG and pulse signals that, although recorded
at different anatomical locations, originate from the same source,
representing the electrical and mechanical activities of the heart,
respectively (Kralemann et al., 2013).

Finally, the estimated directional couplings from the lungs to
the heart and microvasculature, via either the DBI or DTF
methods, were considerably higher than the ones from the heart
and vasculature towards the lungs, in both control subjects and
T1D patients. Since this outcome was common in both groups, it
cannot be used as a biomarker for T1D. However, it agrees with the
findings of Palus and Stefanovska (2003), which have shown that
the respiratory process drives the heart activity at all breathing
frequencies, whether paced or spontaneous, and may shed more
light on the involved physiological mechanisms en route to a better
understanding of the cardio-respiratory system.

A potential limitation of this study is the availability and
analysis of signals from only a small number of nodes (lungs,
heart, microcirculation) in the network under investigation.
Both DTF and DBI measure the global (direct and indirect)
interactions between two nodes A and B, the indirect
interactions from A to B or from B to A occurring through
other node(s) C that we may not have access to in the network
(Kamiński et al., 2001; Baccalá et al., 2016). In this regard, it is
established that each respiratory cycle is tightly controlled by
four separate control centers in the pons and medulla (Smith
et al., 1991; Hilaire and Pásaro, 2003; Dampney, 2017), which
cannot operate without central intervention from the brain,
and direct feedback from the heart. Furthermore, central
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autonomic neural control has a well-known role in the low-
and high-frequency variability of the heart rate (Shaffer and
Ginsberg, 2017). Thus, ignoring the brain (EEG) and
investigating this complex neuro-cardio-respiratory network
from only three nodes (lungs, heart, microcirculation) could
have skewed the level of the estimated bivariate interactions in
both T1D and control groups. However, the comparative
statistical analysis of each measure across the two groups
may take care of this skewness if it were in the same
direction in both groups, per interaction.

In summary, we found that in both control and T1D subjects,
breathing had greater influence on the heart and peripheral
microvascular perfusion, compared to the opposite directional
couplings and that, by both the employed methods of
connectivity analysis, the causal influence of the respiratory
activity on the heart was significantly decreased (p < 0.05) in
T1D patients compared to the control group. These preliminary
results can be linked to established comorbidities of T1D and,
although obtained from a limited number of subjects, provide a
strong indication for the usefulness of a network-based multi-
modal analysis for the development of biomarkers from short-
duration data, and for monitoring the disease and T1D-related
complications over time, as well as its potential in the exploration
of the pathophysiological mechanisms that underlie this
devastating and very widespread disease.
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