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Here we dispel the lingering myth that Partial Directed Coherence is a Vector
Autoregressive (VAR) Modelling dependent concept. In fact, our examples show that it
is spectral factorization that lies at its heart, for which VAR modelling is a mere, albeit very
efficient and convenient, device. This applies to Granger Causality estimation procedures
in general and also includes instantaneous Granger effects. Care, however, must be
exercised for connectivity between multivariate data generated through nonminimum
phase mechanisms as it may possibly be incorrectly captured.
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1 INTRODUCTION

The aim of Granger time series connectivity modelling is to examine how observations from different
simultaneously observed time series may be related in the hope of exposing possible mechanisms
behind their generation. This goal is intrinsically limited by a number of factors: chief among them
are potential structural artifacts that result from unobserved series (confounders). This plus the fact
that Granger analysis rests exclusively on observations rather than active intervention (Baccalá and
Sameshima, 2014a) means that one must characterize interactions as “Granger-causal” rather than
causal in the strictest sense.

In spite of this, and in connection to situations where intervention is either impossible, such as
when impacting phenomena on a geophysical scale as for Solar spot/Melanoma data (Baccalá and
Sameshima, 2014b) or undesirable as in physiological data analysis where noninvasive methods, at
least in the human case, are always to be preferred, Granger Causality remains of interest in providing
clues as to the dynamics behind the observed variables.

In recent years a vast array of methods have been developed; they originated in economics
research following Granger’s seminal paper (Granger, 1969) who used vector autoregression as a
device to model data relationships in the time domain. His “causality” notion rests on how well the
knowledge of one time series’s past can enhance one’s ability to predict another time series, which
once vindicated, implies their connectivity. Though initially a strictly bivariate concept, the idea has
been extended to the analysis of more than two simultaneously observed time series in an attempt to
disentangle the effect of other series that might be acting as interaction confounders to pairwise
observations (Baccalá and Sameshima, 2001a). Historically, most developments that followed rest on
Geweke (1984)’s work who used Vector Autoregressive (VAR) modelling for more than two time
series as a preliminary step to deduct the effect of the other observed series from the time series pair of
interest. After that subtraction, the method consists of looking at a power ratio of the prediction
errors between when the past of a series is taken into account against when it is not.
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Much along the lines of improved estimation and inference of
Granger time domain representations has been made since then
and can be read in (Lütkepohl, 2005).

As a general rule, much of what followed is patterned on the
representation of temporal data in terms of “output-only”
systems, i.e., systems where the observed time series, x1(n), . . .,
xN(n), are represented as conveniently filtered versions of white
noise—the so called innovations.

Because VAR models can be naturally interpreted in terms of
linear filtering, already some aspects of a spectral interpretation to
the Granger connectivity scenario were present in (Geweke,
1984)’s work. Further specifics have been developed since
(Lütkepohl, 2005; Barrett and Seth, 2010).

The spectral nature of these problems, specially in connection
to EEG data processing which are naturally characterized in terms
of oscillatory behaviour, was boosted by the introduction of
Directed Transfer Function (DTF) (Kamiński and Blinowska,
1991) and later by partial directed coherence (PDC) (Baccalá
and Sameshima, 2001b). Both quantities employed VAR
modelling for their definition. Also both have since evolved to
more accurate, and thus, more appropriate measures, please see
(Baccalá and Sameshima, 2021a) for their development. A
leitmotif of those improvements was the growing realization of
the importance and consequent incorporation of the estimated
covariance of the innovations noise driving the observed outputs
xi(n) (Baccalá et al., 2007; Takahashi et al., 2010; Baccalá and
Sameshima, 2021a; Baccalá and Sameshima, 2021b).

In fact, explicit consideration of innovations covariance effects
are important in connection to the so-called “instantaneous”
Granger causality (iGC) and are helpful in unveiling aspects of
cardio-hemodynamic behaviour (Faes, 2014). Much as in the case
of GC itself, iGC was originally only seen as a time domain aspect.
There have been early efforts to portray it in the frequency
domain (Faes and Nollo, 2010; Faes, 2014); more general
efforts have only recently appeared with Cohen et al. (2019)
and Nuzzi et al. (2021) along Geweke’s line of description and
along PDC/DTF lines (Baccalá and Sameshima, 2021b).

All of the latter developments have relied heavily on VAR
modelling. This paper, by contrast, aims to dispel the notion that
PDC (Baccalá and Sameshima, 2001b) (and DTF, its dual) or any
of its related quantifiers require vector autoregressive (VAR)
modelling as a mandatory prerequisite. This notion coupled
with limited familiarity with VAR modelling may have been a
hindrance to their spread as methods of choice for Granger time
series connectivity modelling among non time series specialists.
We show here that absolute reliance on VAR modelling is not a
must, but rather a matter of convenience, even though PDC and
DTF were originally introduced with the help of VAR models.

As we have been alerted in the review process to this paper, an
early precursor to the present developments is contained in
(Jachan et al., 2009), which undeservedly does not seem to
have attracted much following having just 22 citations at the
Web of Science at the moment of this writing with only a small
fraction of them reflecting actual practical method employment,
mostly by its proponents. The present exposition not only
confirms those results but provides evidence that they hold for
more general PDC/DTF versions as well.

To dispel the VAR reliance misconception we employ a
set of examples comprising a variety of methods, parametric
and nonparametric, that, as we show next, yield essentially
the same results. The methodological equivalence between
them holds even for total PDC (tPDC) and total DTF (tDFT)
as defined in (Baccalá and Sameshima, 2021b) which
represent recently introduced extensions that incorporate
the effects of instantaneous Granger causality to connectivity
descriptions.

For brevity, we only show results for total PDC since it
incorporates a consistent frequency domain description of
instantaneous Granger interactions to PDC that automatically
extends to total DTF’s, given their duality (Baccalá and
Sameshima, 2021a; Baccalá and Sameshima, 2021b).

The rest of this paper is organized as follows: Section 2 reviews
the theoretical basis and is followed in Section 3 with a brief
description of the methods employed in the comparative
computations which are illustrated in Section 4 and
commented in Section 5 leading to the conclusion in Section
6 that tPDC/PDC (tDTF/DTF) representations are essentially
canonical factors of the joint power spectral density of the data
which portrays the relationship between multivariate data.

A concept that turns out to be key in the present setup is that of
spectral factorization and the notion of aminimum phase spectral
factor covered in more detail in Section 2.1.

The concept of a minimum versus a nonminimum phase
system is important for our discussion. This is briefly
examined in the development that follows as we show it can
lead to possibly false connectivity inference when nonminimum
phase mechanisms are behind the data generation process.

2 MATHEMATICAL CONSIDERATIONS

2.1 General Linear Models With Rational
Spectra
A general class of linear stationary multivariate processes x(n) �
[x1(n) . . .xN(n)]T is represented (Lütkepohl, 2005) by:

x n( ) � ∑p
r�1

Arx n − r( ) +∑q
s�0

Bsw n − s( ), (1)

where w(n) � [w1(n) . . .wN(n)]T is a stationary (zero mean
without loss of generality) multivariate innovations process
with covariance matrix Σw. The process defined by (1) is
termed a Vector Autoregressive Moving Average process,
denoted VARMA (p, q), whose structure is defined by the
Ar ,Bs matrices (Lütkepohl, 2005). VAR processes and vector
moving average (VMA) processes are special cases, respectively
when Bs � 0,∀s> 0, or Ar � 0, ∀r. The equivalences between
VAR(p) and VMA (∞), and between VMA(q) and VAR(∞) are
well known, where p and q refer respectively to the AR and MA
orders that make up the model.

We implicitly assume that (1) is stable, i.e., the associated x(n)
is wide sense stationary. For simplicity we consider only the case
of finite p and q. This is guaranteed if the magnitude of the
roots of
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det A z( ) � 0 (2)
are less than 1 for

A z( ) � I −∑p
r�1

Arz
−r (3)

where det stands for the determinant.

Definition 1. | The system represented by (1) is minimum phase
if the magnitude of the roots of

det B z( ) � 0 (4)
are less than or equal to 1 for

B z( ) � ∑q
s�0

Bsz
−s (5)

Definition 1 guarantees that stablew(n) innovations sequences
for n ≥ 0 may be found that lead to the observations, i.e. the
system defined by (1) has a stable inverse.

Remark 1 | Strictly speaking when the roots in (5) are equal to 1,
the impulse response of the inverse is merely bounded.

Remark 2 | When used as a data generating mechanism for x(n),
(1) does not need to be minimum phase. However, data
modelling through (1) always leads to an estimated minimum
phase counterpart system. This follows from the fact that only
second order statistics are used for estimating (1) coefficients.
When the data is Gaussian, this is the only available alternative, as
higher order statistics are redundant and offer no additional
information that might expose any evidence of possible phase
nonminimality.

It is easy to show that the power spectral density matrix of x(n)
(1) is given by:

Sx ]( ) � A−1 ]( )B ]( )Σw B
H ]( )A−H ]( ), (6)

where

A ]( ) � I −∑p
r�1

Are
−j2πr] (7)

B ]( ) � ∑q
s�0

Bse
−j2πs], (8)

for 0 ≤ |]| < 0.5 which represents the normalized frequency and
j � ���−1√

. Naturally (7) and (8) are associated with making z =
ej2πr] in (3) and (5) respectively.

It is easy to realize that (6) is of the form

Sx ]( ) � H ]( )ΣwH
H ]( ) (9)

containing the frequency dependent factor, H(]), and a
frequency independent factor, Σw.

Remark 3. | Equations (6) and (9) hold regardless of whether (1)
is minimum phase or not.

From (9) it is easy to write the coherency matrix C(]) with
entries:

Cij ]( ) � Sij ]( )����������
Sii ]( ) Sjj ]( )√ (10)

by writing

C ]( ) � D Sx ]( )( )−1/2 Sx ]( )D Sx ]( )( )−1/2
� D Sx ]( )( )−1/2 H ]( )Σw H

H ]( )D Sx ]( )( )−1/2
� Γ ]( )R ΓH ]( )

(11)

where D(·) is the diag matrix operator, i.e. one that produces a
matrix that is nonzero except for the diagonal elements of the
operand so that

Γ ]( ) � D Sx ]( )( )−1/2H ]( )D1/2 (12)
and

R � D−1/2ΣwD
−1/2 (13)

is a correlation matrix with ones along the main diagonal for
D � D(Σw).

Writing (11) as a product of the frequency dependent part Γ(])
mediated by a correlation matrix R allows one to apply the
definition of total DTF matrix (Baccalá and Sameshima, 2021b) as:

⁀Γ(v) � Γ(v) ⊙ Γp(v) + Γ(v)ρ ⊙ Γp(v) (14)
where ρ � R − IN, and IN is an N × N identity matrix with ⊙
standing for the Hadamard element-wise matrix product.

The entries i, j from ⁀Γ(v) reduce to the absolute square value
of directed coherence from j to i, which is a scale invariant form of
DTF (Baccalá et al., 1998), when instantaneous Granger causality
is absent. Eq. 14 describes what we have termed Total Granger
Influentiability (Baccalá and Sameshima, 2021b).

An entirely parallel development allows defining total partial
directed coherence (Baccalá and Sameshima, 2021b), taking
advantage of the fact the partial coherence matrix can be
shown to equal:

K ]( ) � C−1 ]( )
� ΠH ]( ) ~RΠ ]( ) (15)

for

Π ]( ) � D1/2H−H ]( )D Sx ]( )( )1/2 ~D1/2
(16)

and

~R � ~D
−1/2

Σ−1
w

~D
−1/2

(17)
which is a partial correlation matrix between the wi(n)
innovations where ~D � D(Σ−1

w ).
The form in (15) is what allowed us to define total PDC as:

⁀Π(v) � Πp(v) ⊙ Π(v) +Πp(v) ⊙ ~ρΠ(v) (18)
where ~ρ � ~R − IN. The i, j entries describe what we termed the
Total Granger Connectivity from j to i (Baccalá and Sameshima,
2021b), which reduce to generalized PDC (Baccalá et al., 2007)
when instantaneous Granger causality is absent.

Whenever one can properly write the spectral density matrix
as in (9), one may employ the latter quantities to describe
multivariate time series within the tPDC-tDTF framework. A
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case in point which we describe briefly in Section 3.3 is provided
by Wilson’s spectral factorization algorithm (Wilson, 1972),
which has been used before in connection with alternative
Granger causality characterizations (Dhamala et al., 2008) and
is also behind Jachan et al. (2009)’s results.

3 ESTIMATION METHODS

Eq. 1 was used as a general data mechanism for imposing
relationships between the time series we examine in Section 4.
The data generated were analysed via the three main approaches
we briefly describe next.

3.1 Vector Autoregressive Modelling
Vector autoregressive modelling is a traditional subject
(Lütkepohl, 2005). The version used here was implemented in
the AsympPDC package (Sameshima and Baccalá, 2014) and
employs Nuttall-Strand’s method to obtain the autoregression
coefficients (Marple, 1987). One important step in this sort of
procedure involves finding the best model order p. Here Hannan-
Quinn’s method was chosen; it is a variant from the better known
Akaike’s method (Lütkepohl, 2005).

3.2 Vector Moving Average and Vector
Autoregressive Moving Average Modelling
A traditional means of fitting VMA(q) and VARMA (p, q) models
is to determine a preliminary VAR model of very large order (p =
50 was adopted here) and use its residuals ϵi(n) to fit the observed
data xj(n) through a mock multi-input/multi-output system via
least-squares. An univariate version of this approach can be
appreciated in (Stoica and Moses, 2005).

In practical applications, determining p and q can be achieved
through minimizing model order choice functions as in Akaike’s
method. Whereas, minimizing Akaike-type penalization is trivial
in the VMA case, bidimensional search of tentative p and q is
required in the VARMA case. To simplify matters here, we have
employed the theoretical model orders used to get the estimates.

3.3 Wilson’s Algorithm
Wilson’s method is an iterative method that decomposes (9) into
estimates for H(]) and Σw (Wilson, 1972). It starts by guessing a
H(]) with the restriction of its representing filters to have
impulse responses that are identically zero for negative time
(the so-called filter causality condition, sometimes referred as
nonanticipative filters whose output cannot anticipate the input).
The solution essentially amounts to Newton’s root finding
iterations until a maximum prescribed error is achieved. In
the present case, a maximum error of 10−6 was adopted.

Wilson’s method has been used before in connection with
other Granger causality descriptions both related (Jachan et al.,
2009) and directly unrelated (Dhamala et al., 2008) to PDC/DTF
descriptions. It has the advantage that it can be applied to
nonparametric spectral estimates, whether they are obtained
by periodogram smoothing (Percival and Walden, 1993) or
other means like wavelets (Lima et al., 2020).

The spectral estimates used here (henceforth referred as WN,
nonparametric Wilson estimates) employed Welch’s method as
implemented in Matlab’s cpsd.m function with von Hann’s data
window and 50% segment overlap (Percival and Walden, 1993).

The reader may obtain a working Python implementation in
(Lima et al., 2020). Here a similar Matlab version was used.

3.4 Brief Comments
The time series modelling methods of Section 3.1, 3.2 are
essentially least squares approaches. Wilson’s algorithm on the
other hand is a numerical square-rooting procedure that also
achieves the spectral factorization of the power spectral density
matrix S(]). In all cases, one obtains the so-called minimum
phase spectral factor represented by H(]) in (9).

All Matlab routines used in this paper have been included as
Supplementary Material. For convenience, Dhamala’s most
recent implementation (Henderson et al., 2021) was also
included and essentially leads to the same results we report next.

4 NUMERICAL ILLUSTRATIONS

In the following illustrations, the data comprise ns = 16,384
observed points to minimize misinterpretation due to short
time series effects. In all cases, the theoretical models can be
used to compute the theoretical total PDC as in (Baccalá and
Sameshima, 2021b). In each case, the mean-squared frequency
domain approximation error of each estimation method was
computed and is presented in Table 1 after averaging over
R = 100 realizations. Here Wilson estimates employed 256-
point long data tappers.

Next we present three examples whose allied graphs contain
the real and imaginary parts of tPDC plotted against the
background of the expected theoretically computed results.
These examples share the property of being generated by
minimum phase (1) models.

Finally, a fourth example generated by a nonminimum phase
(1) is examined. Its numerical results are contrasted to the
theoretical tPDC computed with help of the actual generating
model parameters.

Example 1. | Vector Moving Average Model (VMA)
We start with conceivably the simplest possible kind of vector

moving average example with unidirectional influence and with
the clear presence of iGC described by

x1 n( ) � w1 n( ) + w2 n − 1( )
x2 n( ) � w2 n( ) + w2 n − 1( ){

with innovations noise covariance

Σw � 1 1
1 5

[ ] (19)

whose influence of x2(n) onto x1(n) is clear due to its lagged
dependence on w2(n) which is the sole input that determines
x2(n). The presence of iGC is clear from (19)’s non diagonal
nature.
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From Figure 1, it is clear that for large ns, all estimates of total
PDC agree with the theoretically expected one within the
constraints of estimator nature. A case in point is Wilson’s
factorized version computed from the nonparametric power
spectral estimates which is rippled as expected (red lines),
following what happens with the original spectral estimates.

Example 2. | Vector Autoregressive Moving Average Model
(VARMA)

The next example is a bit more elaborate. It has a VARMA (2,
2) data generating procedure described by

x1 n( ) � 2 r cos θ( )x1 n − 1( ) − r2x1 n − 2( ) + w1 n( ) + w3 n( ) + w3 n − 1( )
x2 n( ) � b x1 n − 1( ) + a x2 n − 1( ) + w2 n( )
x3 n( ) � c x3 n − 1( ) + w2 n( ) + w2 n − 2( ) + w3 n( )

⎧⎪⎨⎪⎩
where r = 0.95, θ = π/3, b = 0.5, a = −0.5, c = 0.7 and Σw equal to
the identity matrix.

As in the previous example, total PDC estimates match one
another regardless of method, see Figure 2.

Albeit at little surprise, it is important to realize that the use of
the VARMA modelling scheme (Section 3.2) yields substantially
better fit. This is confirmed by Table 1 results.

Example 3. | Vector Autoregressive Model (VAR)
The third toy example covers the one used in (Baccalá and

Sameshima, 2021b) and was borrowed from (Faes, 2014)
involving three channels whose connectivity is assessed via a
VAR model taking iGC effects into account through tPDC. One
obtains essentially the same results irrespective of the
computational approach, see Figures 3A, B.

Example 4. | Nonminimum Phase Data
Consider a moving average data generation scheme using (1)

with

TABLE 1 | Table containing means squared error to fits of the theoretical tPDC according to estimation method for each Example. Missing values portray when certain
estimation approaches were not used.

Example ns VMA VAR VARMA WN

1 16,384 1.27 × 10−5 6.84 × 10−6 0.15 × 10–2

4,096 5.76 × 10−5 3.06 × 10−5 0.61 × 10−2

1,024 2.45 × 10−4 1.57 × 10−5 3.26 × 10−2

2 16,384 0.21 × 10−2 1.72 × 10−4 2.96 × 10−8 0.67 × 10−2

4,096 0.84 × 10−2 7.09 × 10−4 5.02 × 10−7 2.77 × 10−2

1,024 3.10 × 10−2 2.60 × 10−3 6.65 × 10−6 12.36 × 10−2

3 16,384 6.11 × 10−4 3.20 × 10−5 0.13 × 10−2

4,096 0.20 × 10−2 1.37 × 10−4 0.57 × 10−2

1,024 0.90 × 10−2 5.30 × 10−4 3.50 × 10−2

FIGURE 1 | Superimposed graphs of total partial directed coherence, tPDC, estimates for the VMAmodel simulated for ns = 16, 384 data points (Example 1)
and three estimation methods (VAR, VMA, WN), where the real (A), and the imaginary (B) components are plotted separately. The theoretical tPDCs are depicted in
blue lines. WN estimates ripple around theoretical values (topmost red lines), yet they closely resemble that of theoretical values. VAR and VMA estimation methods
results—plotted as the two bottommost black lines—are visually indistinguishable from the theoretical values (blue lines).
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B0 � 1 0
0 1

[ ], B1 � 2 1
0 0

[ ], B2 � 4 2
0 2

[ ], (20) whose allied (4) roots {−1 + ± j
�
3

√
,± j

�
2

√ } have magnitudes that
are larger than 1, making this a nonminimum phase data
generating mechanism as opposed to all previous examples, as
computing their (4) easily shows. It is clear from (20) that x2(n)

FIGURE 2 | tPDC estimates by all four methods—VAR, VMA, VARMA, and WN—for the VARMA model in Example 2 simulated for ns = 16, 384 data points are
depicted, with real (A), and imaginary (B) components plotted separately. As before, the theoretical tPDCs are also shown (blue lines). Again note that WN estimates
(topmost red lines) ripple around theoretical values. In this case, VMA estimates (purple lines) also ripple around theoretical values (blue lines) illustrating estimator
accuracy limitations. This is also apparent on Table 1. VAR and VARMA results—plotted as the two black bottommost lines just underneath the theoretical
values—represent much closer approximations.
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Granger-causes x1(n) but not otherwise. This is reflected in the
computed tPDCT blue lines of Figure 4. Here, (19) was adopted
as the innovations covariance matrix.

Use of Section 3 algorithms leads to the results of Figure 4
where the estimation methods agree among themselves, but are
markedly different from the tPDC computed using (20).

FIGURE 3 | tPDC estimates for Example 3 are shown for VAR, VMA, and WN methods (ns = 16, 384) with real (A), and imaginary (B) components plotted
separately. As before, theoretical tPDCs are also shown (blue lines). Once again, WN estimates (topmost red lines) ripple around theoretical values. Here so do too VMA
estimates (purple lines) signalling their poor expected accuracy when fitting VAR data. This is confirmed by results presented on Table 1. VAR results are plotted as the
two bottommost black lines underneath the theoretical values.
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The reader may easily verify using the Supplementary
Material that the estimated solution using VMA modelling
leads to (4) roots whose magnitudes are all smaller than 1.

Most importantly, however is that this example shows that GC
causal relationships imposed through nonminimum phase
systems can be wrongly inferred. The consequences of this are
further elaborated in the discussion.

5 DISCUSSION

It is perhaps surprising that PDC/DTF have so long, and
unnecessarily so, remained inextricably associated with VAR
modelling even in view of early evidence to the contrary
(Jachan et al., 2009). Partial explanation may lie in the early
virtual exclusive reliance on VAR modelling that also dominated
initial approaches to Granger Causality characterization
(Granger, 1969; Geweke, 1984). This scenario in connection to
time series modelling in the time domain slowly changed as VMA
and VARMA approaches have been shown viable and possibly
desirable depending on the nature of the data under study
(Boudjellaba et al., 1992; Boudjellaba et al., 1994). The latter
methods are attractive because they more parsimoniously fit the
underlying data as in Example 2 via fewer parameters. This
reflects Parzen’s Parsimony Principle which formalizes the
statistical advantage of describing data via the least possible
number of parameters (Yaffee and McGee, 2000) that in the
present case leads to lower average estimation error (see Table 1).
More details on alternative time domain characterization can be
appreciated in Lütkepohl (2005).

Because of its prediction improvement ethos, Granger
Causality, when originally defined, rested on VAR modelling’s
predictive ability (Granger, 1969). Moreover, at that time it was

the only practical alternative from a computational perspective. It
is thus unsurprising that other predictive methods like VMA and
VARMA modelling also can fit the purpose.

Given PDC/tPDC’s frequency domain ties with Granger
causality (Baccalá and Sameshima, 2021a) (with the inclusion of
full instantaneous effects) (Baccalá and Sameshima, 2021b), it is
therefore no wonder that they too can be carried out via other
methods like VMA or VARMA modelling.

Thus we have shown that PDC/DTF (total or otherwise) are
not irrevocably tied to VAR data modelling, though today, VAR
remains the best studied and most widely applied option. It has
the advantage of having rigorous asymptotic results in the
squared PDC/DTF case (Baccalá et al., 2013; Baccalá et al.,
2016). Work is in progress to provide the asymptotics to the
allied total PDC/DTF quantities.

Further research is needed to pinpoint which of the latter
methods is best for what purpose. It is comforting to know that
many methods provide equivalent descriptions if used properly.

For example, even though it is possible to combine the response
of different trials in event-related experiments while employing
VARmodels (Rodrigues and Baccalá, 2015), this feat may also, and
perhaps more easily in some cases, be achieved through the
application of Wilson’s method to estimate nonparametric
spectra and cross-spectra averaged over trials. Other methods
have been proposed to deal with spectral matrix factorization
that still need proper practical appraisal (Amblard, 2015).

Though Wilson-type spectral factorization methods seem less
effective in practice, it does not mean that they should be
discarded. Here we only used Welch’s spectral estimator. More
research is needed, by employing other spectral estimation
procedures like multitappering for instance (Percival and
Walden, 1993) that could improve accuracy as they may more
appropriately fit certain spectral shapes.

FIGURE 4 | tPDC estimates for VARMA model with nonminium phase data in Example 4 using the VAR, VMA, and WN methods (ns = 16, 384) portraying its (A)
real and (B) imaginary components. As before theoretical tPDCs are shown as blue lines. Here,WN estimates (topmost red lines) also ripple and agree with VMA (black
lines) and VAR estimates (gray lines) are very close to one another but differ significantly from the theoretical values (blue lines). Note the parameters in (20) imply no
connection from x1(n) onto x2(n), yet all three estimation methods wrongly indicate a non zero tPDC real component reflecting strong estimated GC.
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Here we have employed large data sets, but one should expect
substantial performance differences for shorter time series. In this
case, too, as hinted by Table 1 results, VARmethods remain quite
efficient, except when better approximation can be made through
models that portray the data more closely as in the VARMA
Example 2.

Other approaches have been proposed to obtain Granger-type
estimates, namely state space modelling is one such example
(Barnett and Seth, 2015); present research is on-going to evaluate
them. In fact, as Sayed and Kailath (2001)’s theoretical appraisal
of univariate spectral density factorization methods suggests,
even state-space models can be seen as spectral factorization
providers.

All the above methods, by providing minimum phase spectral
factors to the spectral density matrix, ideally portray identical
Granger relationship representations within the accuracy and
characteristic limitations of the employed spectral estimation/
factorization techniques.

At this point, before we examine the nonminimum phase data
generation issue, and even if the theoretical realization that GC
connectivity reduces to a spectral factorization problem were not
important, the practice oriented reader might be wondering why so
much ado about a VAR ‘myth’ if in the end VAR remains a
reasonable practical compromise? To answer this, please have in
mind that spectral fitting is a method of approximation of whatever
the real spectra are. According to Parzen’s principle the best
conceivable statistical inference reliability rests on having the
least number of descriptive parameters for a given approximation
error (which one can gauge by the residual covariance matrix).
Hence, though at present VMA and VARMA methods are not as
mature as VAR methods in so far as inference is concerned, they
hold the promise of potential higher inference accuracy in
appropriate cases as they get to be further developed.

Another question that may be bothering those who are
practice oriented is: why use nonparametric methods if their
performance is not so good and if they call for much longer data
sets to furnish the same level of accuracy? In fact, this may well
behind their infrequent use in the past. First remember the issue
of ease of use as in the analysis of event related cases we
mentioned. Remember too that many investigators remain
uneasy about parametric methods because they require model
order decisions added to the often glossed over problem of model
diagnostic checking (Li, 2003). Despite their wiggly nature,
Wilson nonparametric methods dispense with these decisions
and can be helpful in providing hints to the approximative quality
of contending parametric models. They have issues of their own
that also merit further examination. These problems lie in
nonparametric spectral estimation shortcomings (Percival and
Walden, 1993) that many applied users often overlook.

In short, having more options in one’s analysis toolkit is
beneficial and should not be discarded.

Now moving on, there is the important caveat we have
shown: due to their intrinsic minimum phase limitation, the
methods we explored here are unable to properly capture GC-
type relations when the underlying data generation mechanism
is nonminimum phase as in Example 4. This happens because
these methods, either through classical time series modelling or

direct spectral factorization, employ only second order
statistics.

Though we do not show this explicitly here, Geweke-based
approaches also suffer from the same limitations. This is easy to
realize if one takes into account that they lead to conclusions that
are similar to those reached via PDC/DTF-type approaches.

This scenario evokes two intertwined questions: 1) whether
dynamical (viz. physical, physiological or economical)
observations of phenomena actually conform to nonminimum
phase generation mechanisms that might obscure their
connectivity inference and 2) whether real data using GC
methods in the past actually hold in view of this observation.

As an example consider a situation when nonminimum phase
signals are a practical reality. It happens in wireless
communication, and is due to signal propagation through
dispersive multipathway media that leads to serious bit-error
rate impairment. As a man made system, this problem is
circumvented by the transmission of pre-arranged pseudo
random data (training) sequences the receiver uses to estimate
channel nonminimality. Use of these sequences maps the receiver
“output-only” problem into an equivalent “input-output”
problem that can reveal nonminimum phase effects through
second order statistics alone. This solution is sometimes
unsatisfactory as it imposes a penalty on the transmission rate
of useful data. During the 1990’s a considerable body of literature
appeared to address this problem by dispensing with training
sequences and using the received (output) data only (Haykin,
1994). This is possible when the data is nongaussian, i.e., there is
information beyond the ordinary second order statistics of the
spectrum, something that can be made by design in
telecommunication systems. Signal diversity in both time and
space, via telecom signal characteristics or through employment
of redundant receiver antennas is also an option. This general
field has been known as that of “blind” identification/equalization
(see Chi et al., 2006, for an overview). Whereas real data
properties cannot be ‘designed’ as in man made systems, they
are often nongaussian and this could in principle be exploited to
overcome the nonminimum phase generation limitation on GC
inference we described here.

The answer to 2) must thus await further analysis in what is a
matter for further exciting research that may entail the revision of
many conclusions regarding formerly analysed real data.

6 CONCLUSION

The first take home lesson is that PDC/DTF-type estimators of
Granger connectivity/influentiability (Baccalá and Sameshima,
2014a) even in their latest and most general total form (tPDC/
tDTF), incorporating instantaneous Granger effects, do not
require vector autoregressive modelling as a mandatory step
but can be obtained through any other means of spectral
factorization of the spectral density matrix into minimum
phase factors. The second lesson is that, though not
mandatory, VAR modelling, since it can be used to obtain
consistent spectral factors, and because of its practicality and
efficiency, remains the method of choice, specially for short data
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sets. The third no less important lesson is that care as to
conclusions about real data must be exercised as possible
unknown nonminimum phase data generating mechanisms
may be at play that can confound results as to the actual true
underlying connectivity when methods of the present spectral
factorization class are used.
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