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In this paper, we studied the time-domain irreversibility of time series, which is a

fundamental property of systems in a nonequilibrium state. We analyzed a

subgroup of the databases provided by University of Rochester, namely from

the THEW Project. Our data consists of LQTS (Long QT Syndrome) patients and

healthy persons. LQTS may be associated with an increased risk of sudden

cardiac death (SCD), which is still a big clinical problem. ECG-based artificial

intelligence methods can identify sudden cardiac death with a high accuracy. It

follows that heart rate variability contains information about the possibility of

SCD, which may be extracted, provided that appropriate methods are

developed for this purpose. Our aim was to assess the complexity of both

groups using visibility graph (VG) methods. Multivariate analysis of connection

patterns of graphs built from time series was performed usingmultiplex visibility

graphmethods. For univariate time series, time irreversibility of the ECG interval

QT of patients with LQTS was lower than for the healthy. However, we did not

observe statistically significant difference in the comparison of RR intervals time

series of the two groups studied. The connection patterns retrieved from

multiplex VGs have more similarity with each other in the case of LQTS

patients. This observation may be used to develop better methods for SCD

risk stratification.
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1 Introduction

Physiological systems, such as the human body, for example, are considered complex

(Seely and Macklem, 2012). Such systems use energy to build increasingly complex and

ordered structures. This ability of self-organization is related to the directivity of energy

flow and the irreversibility of the processes taking place (Costa et al., 2005). Healthy

organisms are believed to work under conditions that are far from equilibrium. Such states

are characterized by the production of entropy. This results from the fact that organisms

form an ordered structure during development, therefore, for the second law of

thermodynamics to be preserved, this process must be balanced by the production of

entropy (Seely and Macklem, 2012). There is also a hypothesis that the assessment of this

OPEN ACCESS

EDITED BY

Alireza Mani,
University College London,
United Kingdom

REVIEWED BY

Milan Paluš,
Czech Academy of Sciences, Czechia
Rossella Rizzo,
University of Palermo, Italy

*CORRESPONDENCE

Małgorzata Andrzejewska,
malgorzata.andrzejewska.dokt@
pw.edu.pl

SPECIALTY SECTION

This article was submitted to Systems
Interactions and Organ Networks,
a section of the journal
Frontiers in Network Physiology

RECEIVED 16 February 2022
ACCEPTED 24 August 2022
PUBLISHED 04 October 2022

CITATION

Andrzejewska M, Żebrowski JJ, Rams K,
Ozimek M and Baranowski R (2022),
Assessment of time irreversibility in a
time series using visibility graphs.
Front. Netw. Physiol. 2:877474.
doi: 10.3389/fnetp.2022.877474

COPYRIGHT

© 2022 Andrzejewska, Żebrowski,
Rams, Ozimek and Baranowski. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Network Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 04 October 2022
DOI 10.3389/fnetp.2022.877474

https://www.frontiersin.org/articles/10.3389/fnetp.2022.877474/full
https://www.frontiersin.org/articles/10.3389/fnetp.2022.877474/full
https://www.frontiersin.org/articles/10.3389/fnetp.2022.877474/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnetp.2022.877474&domain=pdf&date_stamp=2022-10-04
mailto:malgorzata.andrzejewska.dokt@pw.edu.pl
mailto:malgorzata.andrzejewska.dokt@pw.edu.pl
https://doi.org/10.3389/fnetp.2022.877474
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://doi.org/10.3389/fnetp.2022.877474


production can be used to diagnose the state of dynamic

equilibrium of the organism (Seely and Macklem, 2012).

In physiology, the condition in which the stable conditions of

the internal environment of the body are maintained is called

homeostasis. To survive, the organism requires the maintenance

of an appropriate concentration of many quantities, such as

nutrients, oxygen concentration and various ions. In addition,

the maintaining of appropriate temperature and blood pressure

levels is required (Chladekova et al., 2012). There are gradients of

these quantities in the body, which are related to metabolism and

have a significant impact on the rate of production of entropy of

the system. In turn, it is known from statistical physics that this

rate is related to the irreversibility of the studied processes (Seely

and Macklem, 2012).

In the case of healthy and young organisms are characterized

by a greater complexity, related to the greater adaptability of such

organisms (Seely and Macklem, 2012). The decrease in the

possibility of self-organization, and, therefore, the decrease in

irreversibility over time, can be associated with aging of the

organism or may be due to diseases (Costa et al., 2005). Many

studies show that such a decrease may be associated with a

decreased heart rate variability (Seely and Macklem, 2012). In

statistical terms, a signal can be considered irreversible when its

statistical properties change after reversing the passage of time.

Different studies, e.g. (Jose and Taylor, 1969), have showed

that pharmacological blockade of cardiac autonomic control

reduces heart rate variability and increases its basal beating

rate in humans. This is due to autonomic control by both

sympathetic and parasympathetic nervous system and

dominant inhibition of cardiac pacemaker by the vagus

nerve in healthy humans. This natural rate of an

unperturbed sinus node is called intrinsic heart rate (IHR)

and it declines with age (Jose and Taylor, 1969; Opthof, 2000).

Assessing IHR may provide an insight into the pathological

mechanisms and help with antiarrhythmic therapies (Marcus

et al., 1990). The difference between IHR and mean HR defines

an operational range for neural and hormonal regulation. As

this difference diminishes in time, it is observed that heart rate

variability measures will also decline with age (Jandackova

et al., 2016).

Regarding the Long QT syndrome (LQTS), an inherited

proarrhythmic cardiac abnormality, the clinical target of our

research is not to simply diagnose the disease. There are simple

ECG-based methods to distinguish patient from healthy

individuals (Schwartz et al., 2012). We rather refer to the fact

that the patients with LQTS are more susceptible to develop fatal

cardiac arrhythmias (Mathias et al., 2013). It follows that LQTS is

a risk factor for sudden cardiac arrest (SCA) (Goldenberg et al.,

2011). The clinical goal of this study is to assess irreversibility in a

group that has an arrhythmic substrate (Vijayakumar et al.,

2014). This substrate is present in all LQTS patients, but its

severity is unknown. Risk stratification in this group will be a

difficult task which requires a prospective study.

On the other hand (Suboh et al., 2019), have shown that the

use of artificial intelligence (AI) algorithms can predict sudden

cardiac arrest from ECGs with up to 92% efficiency. This means

that the even a short ECG strip, and most notably the normal

sinus rhythm variability contains information about the

possibility of SCA. AI is usually non-conclusive, and it is

difficult to relate the results of its performance to the

measured parameters. Explainable artificial intelligence is

evolving (Samek et al., 2019), but the information it provides

is formulated in the feature space of the model, e.g., the

convolutional network, and not in the concept space of

traditional ECG or HRV analysis. However, the exceptionally

high success rate of the AI methods convinces that there is reason

to study individuals at increased risk of sudden cardiac arrest and

compare them with healthy individuals. The key feature of the

normal cardiac rhythm, which is believed to carry important

clinical information is its complexity. The concept of complexity

is complicated and can be explained using different methods, e.g.,

fractal analysis, entropy, or irreversibility (Fiskum et al., 2018).

When studying heart rate variability, the question of which

concept space will be the best to describe the patient’s clinical

condition recurs. Measures of irreversibility applied here can be

used to differentiate groups, and they become interesting

candidates to better assess the risk of SCA and improve

patient management, to increase life expectations and reduce

mortality.

In this paper, we analyze only a part of the physiological

network of the human, namely, we assess time irreversibility of

time series taken from ECG recordings. The purpose of this paper

is to analyze irreversibility in a group of patients with the LQTS

(Long QT syndrome) and compare them to a group of healthy

persons to identify dynamical correlates of the arrhythmogenic

substrate. However, comparing time irreversibility descriptors

presented below with standard statistics shows that both

approaches provide similar results in distinguishing between

groups (Figure 6 below). The mean and standard deviation of

QT intervals are greater in the LQTS group. These indicators are

simplified, however, and the use of irreversibility over time

provides a way to distinguish between differences in the

dynamics caused by reversible and irreversible processes

(Lacasa et al., 2012). The presence of time irreversibility

indicates the existence of nonlinear processes such as

dissipative chaos (Li et al., 2021). Ilya Prigogine discovered

the existence of dissipative structures (Prigogine, 1978), which

are spontaneously self-organizing complex system states that

arise far from equilibrium. Living organisms, including humans,

can be looked at as dissipative structures far from a

thermodynamic equilibrium (Li et al., 2021). They are

characterized by a high degree of complexity, which can be

estimated using non-linear properties of human heartbeat

(Seely and Macklem, 2012). To compare the results for time

asymmetric patterns with irreversibility measures using KLD, we

calculated the Porta and Guzik indices.
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LQTS is a genetically determined dysfunction of ion channels

or the proteins that regulate them. This disease leads to serious

symptoms, including fainting or loss of consciousness. It can also

cause sudden cardiac arrest (SCA). A prolonged QT interval can

be acquired or congenital. The clinical course of the disease varies

depending on which gene has been mutated. The most common

types of LQTS are LQTS 1, 2 and 3. In the case of LQTS type 1,

which is most of the cases we study in this paper, the mutation

disrupts the slow potassium current (Seebohm et al., 2008).

Symptoms of the disease most often occur during exercise, in

contrast to, for example, LQTS2, where they are induced during

increased catecholamine release in early morning (Wilde et al.,

1999).

Complex networks are increasingly used in various fields

of science. Currently, graphs are used in many practical

problems, including in computer networks, where the

representation of the network in the form of a graph

facilitates the routing of data packets on the Internet

(Oehlers and Fabian, 2021), in medicine to study the

spread of viruses (Keeling and Eames, 2005; Alarcón-

Ramos et al., 2018), or research on the dynamics of social

networks, e.g., the spread of rumors (Agliari et al., 2017).

Historically, Kullback-Leibler divergence (KLD) was

proposed for measuring time asymmetry in the beginning

of the 1950s and during the next decade its relation to entropy

production was shown (Gaspard, 2004; Parrondo et al., 2009).

In our study, we used visibility graphs (VG) methods (Lacasa

et al., 2008) to assess the time irreversibility of selected time

series. VG allow to map time series to the form of graphs. This

makes it possible to study the information contained in such

records with the use of complex network research tools. In

this way, graph theory can be used to study nonlinear signals

(Lacasa et al., 2008).

This paper is constructed as follows: in Section 2, we

introduce time irreversibility methods both for one

dimensional time series and multivariate time series. In

Section 3, we describe the data, which were used for our

analysis, and introduce our methodology for preparing data

extracted from ECG recordings from the THEW database

(University of Rochester Medical Center, 2022; University of

Rochester Medical Center Healthy Individuals, 2022). In Section

4, we present our results for nighttime recordings of

healthy people and of patients with LQTS. In Section 5, we

conclude.

2 Methods

2.1 Visibility graphs

Graphs were also looked at from the medical point of view

(Mason and Verwoerd, 2007). The authors of the publication

(Lacasa et al., 2012) showed that the increase in entropy per

unit time can be described by determining the Kullback-

Leibler divergence (KLD), usually denoted KLD (p || q) for a

given random variable x and probability distributions p(x)
and q(x). However, this measure gives only the lower bounds

of entropy production (Lacasa et al., 2012). For two

probability distributions p and q, describing the process in

accordance with and contrary to the passage of time, KLD it is

given by the relationship (Lin, 1991):

KLD(p����q) � ∑
x
p(x)log p(x)

q(x). (1)

Such a graph is created by connecting the vertices that meet a

specific visibility criterion. Figure 1 shows an example of a time

series in the form of a bar graph. When analyzing human heart

rhythm records, each bar corresponds to a single value of the RR

interval (measured as the time between two successive R-waves in

the ECG trace). Each such interval is also the vertex of the graph,

into which the time series is transformed (Iacovacci and Lacasa,

2016).

Two vertices are connected to each other when the heights of

the corresponding bars meet the following visibility criterion

(Lacasa and Flanagan, 2015). For the time series S � {x(t)}Tt�1 for
each element xi(t) being the vertex of such a graph, two vertices i
and j are connected by an edge, if each different xk(t) satisfies
condition:

xk <xi + k − i

j − i
[xj − xi], for each i< k< j. (2)

2.2 Horizontal visibility graphs

Another type of graph is the horizontal visibility graph. It

differs from the basic version in that, in this case, two vertices

are connected to each other only if they can be joined together

in a bar graph of the time series by a horizontal line without

intersecting the vertices between them (Lacasa et al., 2012).

An example is shown in Figure 2.

In general, for the time series S � {x(t)}Tt�1 the following

condition of horizontal visibility can be written (Lacasa and

Flanagan, 2015):

Two vertices xi(t) of the graph are connected with each other
if and only if the following relation is satisfied:

xi, xj > xn, for every i< n< j. (3)

2.3 Directed horizontal visibility graphs

This is a graph that is an extension of the horizontal visibility

graph. The direction of the flow of time is taken into

consideration. The temporal arrow is considered by using
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directed graphs. For each vertex, you can specify the edges that

enter it from the vertices that precede it, and the edges that

connect it to the next vertices that follow it in time. The direction

of connections is consistent with the passage of time (Lacasa and

Flanagan, 2015).

The degree of the vertex k(t) consists of the following sum:

k(t) � kin(t) + kout(t). (4)

kin(t) is the number of edges entering a given vertex,

associated with vertices in the past. On the other hand,

kout(t) is defined as the number of edges emerging from a

given vertex. This is related to the connections of a given

vertex with the “future” elements of the time series (Lacasa

and Flanagan, 2015). An example of such a graph is shown in

Figure 3.

The analysis of the dHVG allows the use of information

on the degree distributions of the incoming and outgoing

vertices. Based on the difference in these distributions, the

degree of irreversibility of the time series tested can be

estimated. This difference can be interpreted as the

distance (in the sense of distributions) between the

probability distributions of the input vertices Pin(k) and

that of the output Pout(k). Generally, P(k) is the fraction

of all nodes in the network that have degree k and it describes

the probability that a randomly selected node will have degree

k (Lacasa and Flanagan, 2015).

One of the measures that allows to describe the difference

between the distributions Pin(k) and Pout(k) is the Kullback-

Leibler divergence:

KLD[Pout(k)‖Pin(k)] � ∑
k
Pout(k) · lnPout(k)

Pin(k) , (5)

where:

k - vertex degree and k � kin + kout
Pin(k)- degree distribution of input vertices

Pout(k) - degree distribution of exit vertices.

In statistical physics, the measure KLD can be used

to measure the time irreversibility of non-equilibrium

processes and to estimate the entropy production during

such processes (Lacasa et al., 2012). It was shown in

(Lacasa et al., 2012) that this measure enables to

distinguish discrete time series obtained from reversible

and irreversible time series.

The signal is invertible when:

FIGURE 1
Graphical illustration of visibility graph (VG). This graph is based on an extract from one of the records studied in the paper.
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lim
n ����→∞

KLD[Pout(k)‖Pin(k)] � 0. (6)

where n is number of vertices in the graph. In this case, the

probability distributions Pin(k) and Pout(k) are equal.
For stationary signals, KLD is the lower limit of the non-

equilibrium entropy production during the time evolution of the

process.

The Jensen-Shannon Divergence (JSD) is a measure of

divergence based on KLD. Its main advantage is that, in

contrast to the Kullback-Leibler divergence, it always has a

finite value, which allows to avoid infinity obtained when

calculating KLD (Nielsen, 2020).

JSD can be determined as the mean KLD divergence of the

distributions Pin(k), Pout(k) and their mixed distribution M �
Pin(k)+Pout(k)

2 (Nielsen, 2020):

JSD[Pout(k)‖Pin(k)] � 1
2
(KLD[Pout(k)‖M]
+ KLD[Pin(k)‖M]. (7)

After the substitution, the final formula is:

JSD[Pout(k)‖Pin(k)] �

� 1
2
⎡⎣∑

k
Pout(k) · ln Pout(k)

1
2
· [Pout(k) + Pin(k)]

+∑
k
Pin(k) · ln Pin(k)

1
2
· [Pout(k) + Pin(k)]

⎤⎦. (8)

2.4 Multivariate methods

Now, we consider an M-dimensional real valued time series.

Using such data, an M-layer Multiplex network is constructed

(Lacasa et al., 2015). In our case, we have a set of α data (α � 3 for

the intervals RR, QT and DI of the ECG trace). Each of them is a

series of real data from index 1 to the length of signalN. For each

of them, we construct the HVG in accordance with the single-

layer algorithm (Lacasa et al., 2012; Lacasa et al., 2015; Lacasa

et al., 2017). The Multiplex Visibility graph is created in such a

way that it is described by a matrix A � {A[1], A[2], A[3]}, the

FIGURE 2
Graphical illustration of horizontal visibility graph (HVG). This graph is based on an extract from one of the records studied in the paper.
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elements of which are the adjacency matrices of the VG of each of

the examined data sets (in our case, the intervals RR, QT and DI).

Average edge overlap < o> is defined as follows (Lacasa

et al., 2015):

< o> � 1
K
∑

i,j
oij, oij � 1

M
∑

α
a[α]ij . (9)

where K is the total number of edges and oij is the overlap of the

edges between the vertices i and j situated in different layers. It is

defined as follows: we sum for each pair ij the appropriate terms

in the adjacency matrix (equal to 1 if these vertices are connected

to each other in each layer, 0 otherwise). This is then normalized

by the number of layers. oij � 0, when the nodes i and j are not

connected to each other in any layer, and 1 when they are in all of

them. Next, we sum these values over i, j and average over the

number of i, j pairs. Thus, the more similar the connection

patterns in the layers are, the larger < o> we obtain. < o> equals

1, when all the layers are identical (Lacasa et al., 2015; Lacasa

et al., 2017).

We compute the adjacency matrices for directed graphs

according to the passage of time and after inverting the sequence

of the records. Then, we will obtain matrices which in KLD are used

to determine Pin(k)—the degree distribution of input vertices and

Pout(k)—the degree distribution of output vertices. Having these

two data sets, for each of them we calculate the average edge overlap

and then calculate the absolute value from the difference of these

values. Directed average edge overlap:

davo � abs(< oin > − < oout > ). (10)

We also used interlayer mutual information (IMI) (Lacasa

et al., 2015) as another measure of quantification of the presence

of interlayer correlations. For two layers α and β, IMI between the

degree distributions kα and kβ is defined as:

Iα,β � ∑
kα
∑

kβ
P(kα, kβ)log P(kα, kβ)

P(kα)P(kβ) (11)

During the calculation of IMI, after the division of the signal

into non-overlapping windows of 600 interval length, we used the

EMDmethod (Stallone et al., 2020) to remove the trend from the

data. To do so, we separated the last four IMFs and their sum we

FIGURE 3
Graphical illustration of directed horizontal visibility graph (dHVG). This graph is based on an extract from one of the records studied in the
paper.
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subtracted from the signal. This was required for proper

calculations of mutual information (Hoyer et al., 2005).

2.5 Asymmetry indices

Porta’s Index (P%) (Porta et al., 2008) compares the number

of negative increments between consecutive members of the time

series with the number of all non-zero increments. It is defined by

the formula:

P% � N(ΔRR−)
N(ΔRR ≠ 0)*100%. (12)

This index can range from 0 to 100%. The irreversibility

over time is implied by P% values significantly different from

50%. Moreover, P% values greater than 50% indicate that the

number of negative increments ΔRR- in the signal RRi −
RRi+1 is greater than the number of positive

increments ΔRR+.

To make the values of this index more readable, below we

subtract 50 from all values obtained for the different cases

studied. In this way, the zero of this index indicates a

completely reversible time series. We treat the next index

(described below) in the same way.

Guzik’s index (G%) (Piskorski and Guzik, 2007; Porta et al.,

2008) is determined as the ratio of the sum of the squares of the

positive differences RRi − RRi+1 > 0 to the sum of all differences

RRi − RRi+1 in the signal squared. This index can also be defined

as the ratio of the sum of squared of positive differences RRi −
RRi+1 > 0 from diagonal in the Poincaré plot (this is a scatter plot

describing the dependence RRi+1 � f(RRi) (Piskorski and

Guzik, 2007)) signal to the distance of all ΔRR from the

diagonals. It is given by the formula:

G% � ∑N(ΔRR+)
i�1 ΔRR+2(i)
∑N(ΔRR)

i�1 ΔRR2(i) p 100%. (13)

G% can take values from 0 to 100%. The signal

irreversibility over time is implied, as in the case of the

Porta’s index, by G% values significantly different from

50%. For clarity, we subtract 50 form the value obtained

for each case studied. This is the same procedure that we used

for Porta’s index.

3 Data and methodology

Two databases from the THEW Project (University of

Rochester Medical Center, 2022; University of Rochester

Medical Center Healthy Individuals, 2022) were used to

provide the RR, QT, and the DI intervals (diastolic interval -

the time between the end of the T segment and the beginning of

the next QRS complex). We used the following THEW databases:

E-HOL-03-0202-003 (202 ECGs of healthy individuals) and

E-HOL-03-0480-013 (480 ECGs of the Long QT Syndrome

patients forming 4 subgroups by genotype).

In this paper, we analyze a subgroup for each of these

databases: It consists of 61 (38 women) LQTS patients and

114 (59 women) healthy persons. The range of age is limited

to 18–60 years.

FIGURE 4
Fragment selected from the IWN patient’s heart rhythm record. The total analyzed record length was from N = 100 to N = 11,200 iterations.
Successive fragments of increasing length were selected, starting at the beginning of the time series.
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FIGURE 5
(A,B)—Dependence of KLD on the length of the series for a fragment of the signal derived from the heart rhythm of a healthy person: (A)—linear
scale, (B)—logarithmic scale.

FIGURE 6
(A) Mean value of RR intervals time series, (B) Standard deviation of RR intervals time series, (C) Mean value of QT intervals time series, (D)
Standard deviation of QT intervals time series.
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FIGURE 7
Porta P% and Guzik G% indices for QT intervals. Window length equals 600 intervals. p-values for each comparison are presented in boxes
below the name of the given irreversibility parameter.

FIGURE 8
(A)—Kullback-Leibler divergence (KLD) for RR intervals. (B) Jensen-Shannon divergence (JSD) for RR intervals. Window length equals
600 intervals. p-values for each comparison are presented in boxes below the name of the given irreversibility parameter.
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To calculate the RR and QT intervals, firstly, the R waves in the

ECG signals had to be obtained. To achieve that, proper annotation

files derived from the THEW database were placed onto the signals

and then filtered to delete those R waves that had not been annotated

as either normal or arrhythmic. This method, however, resulted in

the R waves being misplaced by an irregular offset, rendering them

incorrect. To compensate for these offsets a hybrid algorithm was

developed. The algorithmused the Rwaves detection toolset available

in the Neurokit2 package for Python 3, which allowed for correct

detection of the Rwaves. However, the results of this operationwould

have had to bemanually selected for each separate file, as thismethod

gave no information if the peak was normal, arrhythmic or of other

kind. In addition, it was oversensitive towards labelling other types of

waves as R waves when the signal was of especially bad quality. The

hybrid algorithm combined the two methods, i.e., using the

annotation files and the Neurokit2 toolset, and compared the

results of both, deleting the offsets from the first method. Based

on the obtained R waves, the wave detection toolset available in the

FIGURE 9
(A)—Kullback-Leibler divergence (KLD) for QT intervals. (B) Jensen-Shannon divergence (JSD) for QT intervals. Window length equals
600 intervals. p-values for each comparison are presented in boxes below the name of the given irreversibility parameter.

FIGURE 10
(A)—Kullback-Leibler divergence (KLD) values for DI intervals. (B) Jensen-Shannon divergence (JSD) values for DI intervals. Window length
equals 600 intervals. Values presented in boxes on charts are corresponding p-values. p-values for each comparison are presented in boxes below
the name of the given irreversibility parameter.
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Neurokit2 package was used to find other waves, among which there

were the Q waves and T waves offsets. To obtain the RR and QT

intervals, the difference between R(i) and R(i+1) as well as the

differences between Q(i) and T_offset(i) were calculated.

KLD values andmultivariate methods were determined using

Matlab R2021b, while statistical tests and graphs were done using

OriginPro 2021b.

All signals were divided into non-overlapping windows of

length 600 intervals. The numbers next to the pairs of boxplots

on Figures 6–11 are the corresponding p-values (Kolgomorov-

Smirnov test). This non-parametric test was chosen because the

data distributions do not meet the criterion of fitting a normal

distribution (Shapiro-Wilk normality test).

KLD was calculated only for the nighttime recordings of the

heart rhythm. Because of the different time for every patient for

going to sleep, for each case the period of observation was

selected using the average RR value over time (Gierałtowski

et al., 2012; Żebrowski et al., 2015). These records were also

analyzed with the use of windows (the tested signal was divided

into adjacent, non-overlapping windows). Windows with the

lengths of 400, 600, 900, 1,200 and 2000 intervals were used. A

window with the length of 600 RR intervals was finally used for

the analysis, this value was considered optimal. The selection of

such a window width was made after analyzing the results for

other window widths. For the 600 interval window length, we

obtained the best results in comparing the study groups. The

window with a width of 400 intervals is too short for the method

to give perfect identification of irreversibility (Zanin and Papo,

2021), while the results for windows of 900, 1,200 and

1800 intervals showed a dispersion of the results which was

too large. The result is the average obtained from all windows of a

given length into which the time series was divided into.

FIGURE 11
Average edge overlap calculated for pairs of time series: (A) RR and QT intervals time series, (B) RR and DI intervals time series, (C) QT and DI
intervals time series. Using the Kolgomorov-Smirow test, we obtained the p-values presented in the boxes. The window length equals 600 intervals.

Frontiers in Network Physiology frontiersin.org11

Andrzejewska et al. 10.3389/fnetp.2022.877474

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.877474


The dependence of the results of irreversibility measures on

the length of the analyzed time series was also checked. For this

purpose, a fragment of a record of the heart rhythm of a healthy

male from the database of the Institute of Cardiology (patient

IWN, Figure 4) was checked. The total record length analyzed in

the study was from N = 100 to N = 11,200 intervals. Successive

fragments of increasing length were selected, starting at the

beginning of the time series.

For windows of the length 600 intervals, KLD still do not fully

stabilize, but it is the optimum between the correctness of the

method (low dependence on the length of the tested time series),

the quality of the obtained results (statistical significance

measured in the Kolgomorov-Smirnov test using the p-value

value), and the time required to carry out the calculations

(Figure 5A). To represent the dynamics more clearly for

shorter signals, for which there is a large difference between

the analyzed values, the results are also presented in a logarithmic

scale (Figure 5B).

4 Results

4.1 Assessing time irreversibility of
nighttime recordings using VG

The analysis on signal level using simple statistics shows that

statistically significant differences between groups are present in

QT mean (which follows from the definition of LQTS) and in

both standard deviations, which are greater in LQTS group

(Figure 6).

Asymmetry indices are based on differences between

adjacent values of time series intervals. On the contrary,

KLD estimates time irreversibility using number of points

that each value of time series could reach without crossing

with other points (Li et al., 2021). The asymmetry indices

show no difference between groups (Figure 7). Therefore, we

are interested in more complicated descriptors of dynamics of

time series.

FIGURE 12
Directed average edge overlap (davo) calculated for pairs of nighttime series (window length 600 intervals): (A) RR and QT intervals time series,
(B) DI and QT intervals time series, (C) RR and DI intervals time series. p-values for each comparison are presented in the boxes.
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In the case of VG, we compare the average and maximum

values obtained from the calculations in non-overlapping

windows of the selected intervals. Because in many cases the

minimum values were close to zero, they were omitted from the

results.

The comparison of the results for RR intervals for the healthy

subjects with the patients with LQTS indicates that there are no

statistically significant differences (Figures 8A,B), which would

indicate no influence of the studied disease on the irreversibility

of the heart rhythm. On the other hand, differences manifest

themselves in the case of QT intervals (Figures 9A,B). Healthy

persons are characterized by statistically significant greater

irreversibility with respect to time of the QT intervals than

that of the patients with LQTS.

However, there are also significant differences between the

KLD and JSD for the RR and QT intervals. In the former case,

they are lower. For healthy persons, the median for average KLD

for the RR intervals is 0.01984 nats and median for average JSD is

0.05071 nats, while for QT it is respectively 0.01725 nats and

0.03468 nats.

The analysis of max values of KLD and JSD using the DI

intervals (Figures 10A, B) follows the results obtained for the RR

time series, which is consistent with the results in (Ozimek et al.,

2021). There is no difference in the irreversibility between

analyzed groups. However, in the case of average KLD and

average JSD here we observe higher values for the healthy

indicating a larger irreversibility for the healthy.

For night recordings, statistically significant differences with

the use of VG were obtained only in the case of mean and

maximum values of KLD and JSD for the time series of QT

intervals. However, there are no differences in the irreversibility

in time between the healthy and the LQTS patients for heart rate

variability. In the statistically significant cases presented above,

healthy persons are characterized by a larger value of

irreversibility with respect to time.

4.2 Assessing time irreversibility of
nighttime recordings using multivariate
time series

Our next step was to analyze multivariate time series. First,

we calculated the average edge overlap between two of the three

analyzed intervals. The results are presented on Figure 11.

The difference between average edge overlaps for the healthy

and LQTS patients is present in all pairs of time series. The edge

overlaps for LQTS patients are larger, which indicates that the

graphs from these time series are more similar in all the group.

Directed average edge overlap, davo (Eq. 14) equals zero for

reversible signals, the greater the value of davo, the more

FIGURE 13
Interlayer mutual information of RR and QT time series.
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irreversible the signal, as the degree of layer similarity will vary

depending on the direction of the passage of time. In the case of

significant statistical differences, the davo obtained is, on the

average, larger for LQTS patients (Figure 12), however we

noticed this behavior only for the pair RR and DI intervals,

where davo is much lower than for RR, QT and QT, DI intervals.

The differences between groups observed in the case of average

edge overlap are significantly reduced when davo is calculated,

which indicates the level of irreversibility of the selected time

series pairs.

For our data, only in the case of the comparison interlayer

mutual information of the RR and QT intervals, we obtained

statistically significant results (Figure 13). Interlayer mutual

information was larger for the LQTS group.

5 Discussion and conclusion

It should be noted, that for the several measures presented

above, we were able to obtain a statistical significance. This

proves that the arrhythmogenic substrate manifests itself in

irreversibility measures, which is the research hypothesis of

this paper. This result encourages us to design a prospective

study, in which the irreversibility measures will be correlated

with the clinical findings in the follow-up period, to directly

assess cardiac mortality. Irreversibility measures have proved

themselves to be good candidates for such a study.

In this paper, we used signals divided into non-overlapping

windows of length of 600 intervals. Such short cardiovascular

series are processed to assess the short-term regulation of heart

rate variability (Cohen and Taylor, 2002; Porta et al., 2009)

Summarizing the results of using VG for univariate time

series, we obtained a statistically significant difference between

the healthy and LQTS patients in the time irreversibility of QT

intervals. The time irreversibility of QT intervals is larger for the

healthy. This difference is larger for the maximum values of both

KLD (Figure 9A) and JSD (Figure 9B). Moreover, using the

Jensen-Shannon divergence gives a better group differentiation

in this case. However, no significant difference between the

groups was obtained for the heart rhythm. The choice of

divergence is also important: changing from KLD to JSD

results in a better differentiation of the groups (i.e., a lower

p-value) for RR and QT intervals.

For multivariate time series, when the average edge overlap

was analyzed, the connection patterns between RR and QT

intervals were more like each other for the LQTS patients

than for the healthy. However, when we introduce time

irreversibility, namely in the form of directed average edge

overlap, the results change. In this case, we did not obtain a

statistically significant difference for pairs of the RR and QT and

as well as the DI and QT intervals. Interlayer mutual information

shows that the degree distributions between HVG obtained for

the RR and QT intervals are more correlated for the LQTS

patients. The presence of nonstationarities can affect the results

for interlayer mutual information (Hoyer et al., 2005). Before

analysis, trend-like nonstationarities were removed from the

signals using EMD (Hoyer et al., 2005).

Jiang et al. (2013) found that the degree distribution of VGof RR

intervals changes during meditation, which corresponds to an

adjustment of the autonomous neural system. Here, we compare

the difference in the degree distribution according to the direction

and opposite to the direction of the time arrow. This difference used

to calculate KLDdoes not change in LQTS subjects for the heart rate,

whereas a difference between the groups occurs for QT intervals. On

the contrary, multivariate methods show that the similarity of these

dynamics in pairs of values is greater for individuals with LQTS,

while after considering the opposite direction in time, i.e., estimating

the irreversibility of such similarity, it turns out that the only

difference is for the pair RR, DI where the direction of similarity

is also preserved, i.e., it is greater for individuals with LQTS.

A direct comparison of the results obtained for different time

series intervals can be difficult, because two systems, which have

similar 1/f scaling may have different level of complexity (Ivanov

et al., 2009). Ivanov et al. showed that comparing healthy people with

a group with cardiopulmonary instability expresses different power-

law scaling behavior (Ivanov et al., 1996). However, Mathias et al.

performed a population study (Mathias et al., 2013), where

1,206 patients with LQTS were studied. The results shows that

the estimated higher QTc (QT corrected for heart rate)

intervals variation can be associated with a higher risk of

cardiac events. This phenomenon depends on which gene

was mutated and it is greatest for persons with LQTS1. In

the case of QT, we observe lower values of KLD, i.e., a smaller

level of irreversibility for patients with LQTS.

The measures presented in this paper do not allow a risk

stratification in the LQTS group, due to insufficient patient

information. However, knowing which of these parameters

has the highest statistical power concerning distinguishing the

groups, it is possible to define them as candidates for the

identification of a clinical parameter to support the work of

physicians, especially in the evaluation of SCD.
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