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Studying functional connectivity may generate clues to the maturational changes

that occur in children, expressed by the dynamical organization of the functional

network assessed by electroencephalographic recordings (EEG). In the present

study, we compared the EEG functional connectivity pattern estimated by linear

cross-correlations of the electrical brain activity of three groups of children (6, 8, and

10 years of age) while performing odd-ball tasks containing facial stimuli that are

chosen considering their importance in socioemotional contexts in everyday life. On

the first task, the children were asked to identify the sex of faces, on the second, the

instruction was to identify the happy expressions of the faces. We estimated the

stable correlation pattern (SCP) by the average cross-correlation matrix obtained

separately for the resting state and the task conditions and quantified the similarity of

these average matrices comparing the different conditions. The accuracy improved

with higher age. Although the topology of the SCPs showed high similarity across all

ages, the two older groups showed a higher correlation between regions associated

with the attentional and face processing networks compared to the youngest

group. Only in the youngest group, the similarity metric decreased during the sex

condition. In general, correlation values strengthened with age and during task

performance compared to rest. Our findings indicate that there is a spatially

extended stable brain network organization in children like that reported in

adults. Lower similarity scores between several regions in the youngest children

might indicate a lesser ability to cope with tasks. The brain regions associated with

the attention and face networks presented higher synchronization across regions

with increasing age, modulated by task demands.
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Introduction

The brain is a hyperconnected structure, enclosing

anatomically and functionally organized networks. Its intrinsic

connectivity patterns can be reconfigured dynamically and

adaptively as a consequence of environmental demands

(Cohen & D’Esposito, 2016) and may suffer maturational

changes at the functional (Smit et al., 2012; Qin et al., 2015)

and structural level (Hagmann et al., 2010; Fan et al., 2011).

A close relationship between structural and functional

connectivity has been proposed, although there is no perfect

match because function reflects complex multisynaptic

interactions in structural networks (Park & Friston, 2013;

Suárez et al., 2020). Suárez et al. (2020) remark that

functional connectivity at rest is thought to reflect the

spontaneous neural activity of a finely orchestrated spatio-

temporal pattern, which should be reproducible like those

observed during tasks performance which patterns are highly

organized, reproducible, and comparable with tasks-driven

activation patterns. Most of the studies addressing the

structural and functional brain connectivity relationships have

been conducted using functional magnetic resonance (fMRI)

(Park & Friston, 2013; Suárez et al., 2020). Nevertheless, some

related work has also been performed using brain electrical

activity (EEG) (Chu et al., 2015). Moreover, Arzate-Mena

et al. (2022) encountered a straight relationship between the

EEG stable correlation pattern (SCP) and the fMRI resting-state

network that reflects different time expressions of the same brain

activity.

EEG has proven useful to study functional connectivity, as its

fine temporal resolution allows the assessment of fast dynamic

processes. Different approaches have emerged to extract brain

dynamics information from EEG (Pereda et al., 2005; Ansari-Asl

et al., 2006; Boccaletti et al., 2006; Bullmore & Sporns, 2009;

Bakhshayesh et al., 2019). However, even when highly nonlinear

systems are under consideration, linear measures may perform

equally well or even better than nonlinear techniques (Mormann

et al., 2005; Ansari-Asl et al., 2006; Bakhshayesh et al., 2019),

which seems particularly true for the analysis of EEG-signals

(Mormann et al., 2005; Müller et al., 2011; Bakhshayesh et al.,

2019). Therefore, in the present study, we focus on linear cross-

correlations to estimate functional networks.

Regarding linear cross-correlation between selected

electrodes located in different scalp regions, Corsi-Cabrera

et al. (1997, 2007) observed high within-subject stability in

repeated measures across weeks and months in healthy

women. In the studies of Müller et al. (2014) and Olguín-

Rodríguez et al. (2018), a well-pronounced average cross-

correlation pattern was found that spans over the whole

scalp. This pattern seems to be independent from the

physiological state of a subject like different sleep stages, or

awake with open or closed eyes, and remains stable even

during a peri-ictal transition of a focal onset seizure.

Moreover, this correlation structure seems to have a universal

character, since it shows notably high similarity also between

subjects. Undoubtedly, finding stationary patterns in otherwise

highly nonstationary multivariate data is an important topic, as it

can give us insight into the main mechanisms controlling the

dynamics of a complex system such as the human brain.

The present study was motivated by the hypothesis

articulated by Olguín-Rodríguez et al. (2018) that the SCP

reflects the necessarily correlated ongoing brain activity

whose one of its principal functions consists in

maintaining the brain in an optimal dynamical mode for

information processing such that deviations or fluctuations

around this stable scaffold are expressions of the actual

physiological brain state.

However, the brain develops during the lifespan, and

particularly during childhood and adolescence, it suffers

crucial structural changes. Thus, the question remains whether

a distinct stationary pattern of relationships encompassing the

entire scalp is also found in children as in adult subjects, and

second, whether the SCP based on functional relationships also

undergoes changes such as those in the structural reorganization

of brain networks. Furthermore, it might be interesting to prove

whether also in children cognitive brain states could be better

described and characterized by deviations from the SCP.

Some hints in favor of this hypothesis can be found in the

literature. Generally, changes in frequency bands amplitude have

been described in children while they are at rest and during the

performance of cognitive tasks (i.e. Benninger et al., 1984;

Marshall et al., 2002; Clarke et al., 2001; Perone et al., 2018).

Concerning EEG functional connectivity maturation, some

studies have been conducted in the resting state. In an early

report, Marosi et al. (1992) found an increase in EEG coherence

with higher age. In another study (Thatcher et al., 2008), authors

observed maturational changes in intra-hemispheric coherence

in children and adolescents aged 6 months to 16 years. That

study reported large changes in EEG coherence and phase in

children aged 6 months to 4 years, followed by a significant linear

trend towards higher coherence in short inter-electrode

distances, and longer phase delays in long inter-electrode

distances. Along this line, Fair et al. (2009) observed that

functional brain development proceeds from a local to a

distributed communication organization. It is worth noting

that disruptions in EEG functional connectivity have been

described in different disorders such as attentional deficit-

hyperactivity disorders (Barry et al., 2002; Murias et al., 2007),

autism spectrum disorder (Kikuchi et al., 2013), and intellectual

disability (Gasser et al., 1987).

However, only sparse data exist that addressed EEG

functional connectivity during cognitive processing in

typically-developing children. Machinskaya and Kurganskiĭ

(2012) compared coherent activity between children (7-8 years

old) and adults during a working memory task. While they

reported for the adult group, an increase of the coherence in
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the alpha band between frontoparietal regions, predominantly in

the right hemisphere, in children they detect significant

coherence values in the inferior-temporal and parietal cortical

regions coherence in the theta band. These results are interpreted

in terms of a relative immaturity of the mechanisms of executive

control of working memory in children. In adults, variations in

functional connectivity during the processing of diverse tasks

include global and specific network changes associated with

information processing (i.e. Daume et al., 2017; Hearne et al.,

2017; Maurits et al., 2006; Vatansever et al., 2017).

In the present study, we were interested in exploring the

developmental changes during attentional processes using high

salient emotional stimuli such as facial expressions, due to their

relevance in social interaction and adaptation (Dekowska et al.,

2008). As Driver and Frackowiak (2001) state, selective attention

allows people to process some stimuli more thoroughly than

others, which is partly under voluntary control, and partly

determined by stimulus salience. Like other cognitive abilities,

facial and emotional recognition improves with age in school-age

children. For example, Damaskinou and Watling (2018)

presented evidence that 10-year-olds overperform 6-year-olds

on emotional recognition tasks.

One of the most widely used paradigms for studying brain

electrical responses originated during facial emotional

recognition is the odd-ball task. Fichtenholtz et al. (2007)

propose that the odd-ball task may be useful to study the

interaction of the attention and emotion processing. In this

paradigm, the participant is asked to respond to a specific

low-probability target stimulus which is presented within a

stream of high-probability non-target stimuli.

Some EEG and MEG studies employing several analysis

approaches have achieved to find functional connectivity

among the face-sensitive brain areas of the ventral visual

pathway that includes primary occipital regions, the inferior-

temporal cortex, and especially the fusiform face area (Yang et al.,

2015; Maffei & Sessa, 2021; Yin et al., 2021). However, little is

known about developmental changes in functional connectivity

during cognitive activity, particularly during face processing.

Cohen Kadosh et al. (2011) examined the fMRI connectivity

of the core face network and observed that it develops during

childhood. However, children did not show the modulation in

the functional network connections by task demands found in

adults.

A recent fMRI study (Harrewijn et al., 2021) was conducted

to test the similarity in functional connectivity between rest and

while performing a dot-probe task with neutral, happy, and angry

faces in 13 years-old children. Results revealed that functional

connectivity during rest and a dot-probe task was positively

correlated and that the similarity levels were related to threat bias.

In another study in adults, Yin et al. (2021) found that during face

processing, the EEG brain network was more efficient for

information transfer and exchange compared with non-face

processing.

To our knowledge, the presence of a SCP in EEG activity has not

been studied in children so far, neither at rest nor during task

performance. Studying EEG functional connectivity in typically-

developing children may shed light on the normal maturational

changes in the brain dynamics organization while performing a

cognitive task with salient stimuli (faces) across ages and it may

provide a basis for the understanding of functional abnormalities in

special populations. Finally, the estimation of variations from the

stationary correlation patterns may provide differentiation of

dynamical transient changes during different cognitive states in

children like those observed in adult subjects (Olguín-Rodríguez

et al., 2018). Therefore, the aims of the present study were threefold:

1) To identify a possible SCP in children similar to that found in

adults;

2) To evaluate the global variations via similarity estimates

between SCP and the correlation pattern of each condition

during an odd-ball task with facial stimuli.

3) To identify the effects of age via possible changes of

the coupling between brain regions, during the

performance of two tasks that requires attention and

face processing.

We hypothesized that a correlation pattern like that found in

adults would exist in children. The similarity metric will show

lower values during cognitive activity than during resting state,

indicating higher transient dynamical features. In addition, we

predicted that cross-correlations would increase with age and will

be modulated by task demands.

Methods

Participants

The sample consisted of 64 right-handed children,

distributed into three age groups, each with a range of

11 months (G1: 10 boys and seven girls, mean age = 6.30,

SD = 0.44; G2: 13 boys and nine girls, mean age = 8.31, SD =

0.37 and; G3: 15 boys and 10 girls, mean age = 10.2, SD = 0.45).

The children group were homogeneous with respect to their age

and school grade and normal IQ scores. None had any history of

neurological disorders. The parents provided their written

informed consent for their children´s participation in this

study. The project was approved by the Ethics Committee of

the Institute of Neurosciences following the Declaration of

Helsinki.

EEG recording

EEG was continuously recorded during the experimental

conditions: at rest with eyes opened and during task
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performance in the leads F3, F4, Fz, C3, C4, Cz, T3, T4, T5, T6,

P3, P4, Pz, O1, and O2 according to the 10/20 International

System with linked earlobes as a reference with a sampling rate of

500 Hz. To this end, we used a Medicid five acquisition device.

Electrode impedances were assured to be less than 5 kOhms. To

control artifacts caused by ocular movements an

electrooculogram was recorded simultaneously via two

electrodes located at the extreme upper corner of the right eye

and the lower outer edge of the left eye, respectively. During

acquisition, the signal was bandpass filtered between 0.01 and

50 Hz.

Experimental design

An oddball paradigm was used for the presentation of two

tasks. In one of them, the children had to recognize the facial

expressions of happiness; and in another one, they had to identify

the sex of the models. For each task, a total of 200 stimuli were

randomly presented, of which 70% were non-target frequent

stimuli and the remaining 30% were the target infrequent ones.

Each trial started with a fixation point (a white cross) in the

center of the screen with a variable duration between 800 and

1,300 ms, followed by either a frequent or a target stimulus

presented for 700 ms.

Participants were asked to respond to the target stimuli by

pressing a key. For the happiness condition, the target stimuli

were faces with a happiness expression, while the non-target

stimuli consisted of men´s and women´s faces with a neutral

expression. For the sex recognition task, the target stimuli were

female faces and the non-target male ones.

Procedure

Once the presence of the inclusion criteria for each

participant were determined, we asked the child to sit 60 cm

away in front of the computer screen and perform the task,

avoiding eye and head movements while the faces were shown.

We counterbalanced the presentation of the two tasks among

participants and allowed a 5-min rest period between them.

Before starting each task, participants underwent a training block

of 10 trials to assure that they have completely understood the

instructions.

EEG analysis

After visual inspection, data preprocessing was conducted

applying Independent Components Analysis (ICA) to remove

eye movements (Delorme & Makeig, 2004). On the average we

used 25 artifacts free EEG segments that corresponded

exclusively to correct responses to the targets which were

considered for further analysis. Anterior-temporal electrodes

(T3 and T4) were excluded because signals were contaminated

with artifacts in some children and these regions are not directly

involved in face identification or attentional processes. The

computer codes for the numerical analysis were elaborated

using MATLAB.

Continuous EEG signals were first segmented into windows

of T = 1 s length. In the case of the tasks, this window began in

synchrony with the stimulus presentation. We then, filtered the

signals by a fourth-order Butterworth filter (1-25 Hz). We

calculated for each segment the Pearson’s correlation

coefficients, viz. zero-lag cross-correlations,

Cij � 1
T
∑
T

k�1
Xi(tk)Xj(tk)

between each pair of electrodes, adapting the procedure

followed in previous studies (Arzate-Mena et al., 2022; Müller

et al., 2014; Olguín-Rodríguez et al., 2018). Here Cij denotes the

cross-correlation matrix of two time series Xi(tk)Xj(tk), T
denotes the number of samples of the data segment (i,j = 1,

. . . , N and k = 1, . . . T) and N the number of electrodes. In this

formula, the data Xi(tk)Xj(tk) are normalized to zero mean and

unit variance, such that the correlation coefficient takes values

between ± 1. The resulting matrix is real-symmetric and all

diagonal elements are equal to one. Then we estimated the

individual stable correlation pattern (SCP) by averaging all the

correlation matrices of all conditions (resting state and tasks) for

each participant.

To obtain the similarity metric, we calculated the correlation

values (Pearson´s analysis) between the SCP and the correlation

matrix of each EEG segment based on the procedure used by Olguín-

Rodríguez et al. (2018) and Arzate-Mena et al. (2022). Thereby, we

ordered the triangle of each matrix in a vector and normalized its

elements to zero mean unit variance to ensure that Pearson

coefficients take values between one and minus one. Then we

estimated the Pearson coefficients between these vectors. Note,

lower similarity indicates larger topological changes of the

functional network with respect to the average. These changes, viz

deviations from the SCP might be characteristic for the condition

under consideration.

Statistical analysis

For testing behavioral differences in the number of correct

responses and reaction times between conditions as a function of

age, we applied mixed ANOVAs (age x conditions). The SCP

correlation coefficients were compared among age groups

through a Welch´s t-test. In addition, we applied a mixed

ANOVA (age x conditions) to evaluate similarity metric

differences. Greenhouse corrections were applied when

necessary and Bonferroni corrections for multiple testing of
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pairwise comparisons. A p-value less than 0.05 was considered

for significant differences.

To observe an overall effect of age and conditions, we

calculated the average difference (task–rest) of the correlation

matrices for sex and happiness, and their empirical cumulative

distribution functions using the elements below the main diagonal.

Then, a two-sample Kolmogorov-Smirnov (K-S) test was applied

to determine the probability that two samples derived for the

different age-groups (6 vs. 8, 8 vs. 10, and 6 vs. 10 years) stem from

the same probability distribution. We illustrate our results of

considerable changes of the average cross-correlation matrices

like a network upon the scalp, where “considerable” means that

the changes surpass a threshold of one standard deviation above or

below the SCP-value.

Results

Behavioral results

At the behavioral level, the percentage of correct responses

increased and the reaction times decreased with higher age

(Table 1). However, differences were apparent between the

two tasks, with the sex-based one showing greater difficulty. A

significant interaction of age X conditions (F(2,61)= 5.43, p =

0.01,η2 = 0.15) revealed that the accuracy rate was lowest in the

youngest group in relation to the other two groups on the sex task

(p < 0.01), and in relation to the 10-years-olds on the happiness

task. The sex task showed lower accuracy than the happiness one

in all groups (p < 0.01).

Reaction times to the target stimuli showed significant

differences for both age (F(2,61)= 17.69, p = 0.001,η2 = 0.36)

and conditions (F(1,61)= 11.72, p = 0.01,η2 = 0.16). Reaction times

were shorter in the older groups than in the group of 6-years-old

(p < 0.001), and shorter for the happiness than the sex condition

(p < 0.001).

Stable correlation pattern

As it can be observed in Figure 1, the structure of the

average correlation matrices is very similar across the age

groups. However, some differences are observable among the

age groups. Systematically, we observed that correlations

increase with age. In the graph on the right-hand side of

Figure 1 we show the correlation coefficients of between those

electrode pairs that resulted significant on a 5%-level

according to the t-test. The differences were basically seen

in a longitudinal arranged network that includes frontal,

central, and parietal regions, and another posterior network

that includes posterior-temporal, parietal, and occipital

regions.

Note, the SCP obtained in the present study is

qualitatively different from those presented in Müller

TABLE 1 Percentage of correct responses and the reaction times in each age group (6, 8 and 10 years old).

Correct responses Reaction times

Sex Mean (SD) Happiness Mean (SD) Sex Mean (SD) Happiness Mean (SD)

6 50.68 (17.52) 76.27 (12.11) 766.98 (73.46) 723.27 (79.24)

8 70.15 (19.75) 80.83 (15.91) 681.76 (95.04) 659.31 (58.75)

10 76.27 (12.20) 90.67 (7.33) 647.42 (55.78) 619.17 (56.50)

FIGURE 1
Stable correlation pattern (SCP) for each age
group. Connection lines indicate the age-significant differences
(6, 8, and 10-year-old) in cross-correlation values on a 5%
significance level according to the t-test. Correlation
estimates turn out to be systematically higher in the older group in
all comparisons.
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et al. (2014) and Olguín-Rodríguez et al. (2018). This

striking difference is due to the different reference

schemes used. While in those studies the median

reference has been chosen, in the present work we used

here linked earlobes. As outlined in Rios-Herrera et al.

(2019), the earlobe reference may induce redundant

information to all data channels, which provokes elevated

correlations between all electrode pairs. However, the fact

that we obtained also a pronounced stationary correlation

pattern using this reference scheme, substantiates the

argumentation expressed in those studies (Müller et al.,

2014; Olguín-Rodríguez et al., 2018).

Similarity between the stable pattern and
the correlation matrices averaged
separately for each condition

In Figure 2, the Pearson coefficients for the comparison of the

SCP and the correlation matrix averaged separately for each

condition are displayed for each age group. The

ANOVA revealed significant differences for the factors of age

(F(2,61) = 10,41, p = 0.01,η2 = 0.25), conditions (F(4,122) = 38.87,

p = 0.01,η2 = 0.38) and for interaction between them (F(4,122) =

8.77, p = 0.01,η2 = 0.22). We observed lower similarity metric

values in the youngest children compared to the eight- and 10-

year-old groups in the sex condition (p < 0.01).

Rest-to-task cumulative distributions

Figure 3A illustrates rest-to-task subtraction in correlation

values for the sex and happiness conditions according to the

thresholds obtained by the cumulative distributions functions

including the three age groups. Regions that showed an

increment (red), as well as those which showed a decrement

(blue) during performance of each task in relation to the resting

state, are presented. As it can be observed, in the 6-year-olds

group, an increase in synchronization between some electrode

pairs occurred but there was also a decrease between several pairs

FIGURE 2
Similarity estimated via Pearson correlations (mean and
standard errors) between the stable pattern and the average
correlation matrix of each condition and for each age group are
displayed.

FIGURE 3
(A) Representation of task-to-rest subtraction in correlation values (Δr). Edges are traced when Δr surpassed the positive and negative
thresholds. Red lines indicate an increase in correlation values and the negative ones a decrease. For sex condition: +Th � 0.04 and −Th � −0.04. For
happiness: +Th � 0.03 and −Th � −0.05. (B) Age differences in cumulative distribution curves of task-to-rest subtraction for each task. Dotted arrows
indicate the thresholds used for tracing the graphs.
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in both conditions. In the 8-year-olds group, there was only an

increase in correlation, on one hand, between pairs of those

regions related to the attentional network (frontal, central, and

parietal), and on the other, those related to the face core network

(posterior-temporal, parietal and occipital). Finally, in the oldest

group, there was also an increase between some of the same

regions, mainly in the sex condition, adding frontal-parietal

connections. As well, there was a decrease between some

long-distance connections including occipital regions.

The K-S test revealed significant differences among the age

groups in the cumulative distributions. In general, all

distributions were statistically different (Figure 3B).

Differences were found to be significant for the sex condition

(6 vs. 8, D(78) = 0.48, p = 0.001; 8 vs. 10, D(78) = 0.21, p = 0.04;

6 vs. 10, D(78) = 0.32, p = 0.001) and in the happiness condition

(6 vs. 8, D(78) = 0.7, p = 0.001; 8 vs. 10, D(78) = 0.41, p = 0.001;

6 vs. 10, D(78) = 0.33, p = 0.001). On both tasks, the 6-years-old

children had negative values, indicating lower correlation values

during the tasks compared to the resting condition. In contrast,

results for the groups of eight- and 10-years-old displayed

positive values, indicating increased correlation.

Discussion

We first verified the existence of a stable stationary

correlation pattern (SCP) in children aged 6-10 years.

Functional connectivity increased with age mainly in a

longitudinal network that included frontal, central, and

parietal regions, but also in a posterior network comprised of

posterior-temporal, parietal, and occipital regions. The similarity

coupling of the SCP with each condition pattern showed age-

dependent changes as a function of task demand. Overall, the

youngest children showed a lower correlation value while

executing the sex task.

Children displayed a similar SCP to that observed previously

in healthy adults in different physiological states -wakefulness

and sleep stages-as well as with epilepsy using the same analytical

approach. In addition, pronounced correlations between distant

electrode pairs has been found using the median EEG-reference,

but then with negative sign (Arzate-Mena et al., 2022; Müeller

et al., 2014; Olguín-Rodríguez et al., 2018). The finding of an SCP

indicates that children´s brains exhibit a stable functional

organization pattern from an early age, while also highlighting

the importance of spontaneous brain activity in the resting state

where, though not related to a known synchronized event,

diverse cognitive activity is occurring. Since similarities

between structural and functional connectivity have been

described (Suárez et al., 2020), and the structural pattern is

established early in development (Fan et al., 2011), one could

expect a stable functional pattern to emerge in early childhood.

Based on their study of brain connectivity in five- and 7-year-olds

in the resting-state, Boersma et al. (2011) posited that a shift from

random to more organized small-world functional networks

characterize normal brain maturation.

Although the SCP was quite similar among the three groups,

age-dependent differences appeared. Overall, correlation values

from the SCP increased with age between electrode pairs

corresponding primarily to regions related to the attentional

network (frontal, central and parietal), and those related to the

face network (posterior-temporal, parietal and occipital). The

differences between the six- and 8-year-olds were clearly

lateralized in the right hemisphere. Similar differences were

observed between the six- and 10-year-olds but with a more

local increase in the attentional network, and between regions

related to the face network. The structure of these age pattern

changes shows a relation to tasks type (odd-ball) and stimuli

(faces) used. On a working memory task, Baum et al. (2019)

described an increase of the structural-functional coupling,

primarily in the rostrolateral prefrontal cortex across

development (8-23 years), that showed higher inter-individual

variability during task performance than at rest. Shirer et al.

(2011) observed shifting patterns of fMRI connectivity associated

with distinct cognitive states in adults.

Our results partially concur with other studies which found

that EEG coherence within hemisphere regions increases as a

function of age (Marosi et al., 1992; Barry et al., 2004; Thatcher

et al., 2008). The increase in functional connectivity may be

partially due to the increase of anatomical connections in the

corpus callosum and other fibers and its myelination, which have

been associated with the maturation of various cognitive

functions (Hagmann et al., 2010; Tanaka-Arakawa et al.,

2015). In this regard, the maturation of the corpus callosum

and other cortical connections may form anatomical substrates

that facilitate information transfer during task performance in

older children. Fair et al. (2008) found that a similar default

network to the one in adults is only sparsely connected in

children aged seven to nine, and that there is a continuous

increase in correlation strength over age between long-range

connections of the network.

The similarity coupling analysis revealed global changes

in the stability of the SCP and the changes that emerged from

specific ongoing activity during execution of the odd-ball

tasks. The youngest children showed a marked decrease in

the similarity metric in the sex condition that did not happen

in the other two groups. It is noteworthy that the sex task

proved to be more difficult than the happiness one, with the

difficulty residing in the perceptual features of the faces

presented, since all the clues that facilitate identifying sex

-hair and make-up- were removed, leaving only the face

contour. Apparently, the youngest children had not

completely developed the abilities required to process

specific identifying features of faces. In contrast, happiness

expressions are the ones recognized best and more quickly

and precisely from childhood through adulthood (Juth et al.,

2005; Mancini et al., 2013; Chronaki et al., 2015; Brechet,
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2017) and may be processed using a more holistic strategy.

Another point to consider is that happiness is the emotion

that most attracts people´s attention (Becker et al., 2011), so

it could help improve performance on odd-ball tasks. Hearne

et al. (2017) described that although the increment in task

complexity did not change the established modular

architecture, it did affect selective patterns of connectivity

among frontoparietal, subcortical, cingulo-opercular, and

default-mode networks. Larger increases in network

efficiency within the newly established task modules were

associated with higher reasoning accuracy. Our results

partially agree with those obtained by Harrewijn et al.

(2021) with fMRI, as they determined that functional

connectivity patterns during rest and while executing a

dot-probe task -with neutral, happy, and angry faces-were

positively correlated, and that the similarity levels in

13 years-old children were primarily related to threat bias.

Some fMRI studies, conducted in adults, mention the

relationship between the resting-state and active cognitive

patterns. Smith et al. (2009) demonstrated that the functional

networks utilized by a brain in action are continuously and

dynamically active even when subjects are at rest. In their

work, Cole et al. (2014) identified a whole-brain network

architecture across different tasks that was quite similar to

the resting-state network architecture, suggesting an

intrinsic, standard architecture of functional brain

organization. However, the task-general network

architecture was able to distinguish task states from the

resting condition. Based on the foregoing, we propose that

the similarity metric is a global brain connectivity index that

is appropriate for estimating age-related and dynamic

changes according to task demand.

Differences across ages related to task demands were also

visible in the cumulative distributions. The 6-years-old children

had negative values on both tasks, indicating lower correlation

values during the tasks compared to the resting state. The two

older groups, in contrast, showed mainly positive values,

indicating enlarged correlation. As it can be seen in the rest-

to-task subtractions, network changes indicate that an increase in

synchronization between some electrode pairs occurred in the 6-

year-old-group, accompanied by a decrease between several pairs

in both conditions. The correlation decrements displayed a

different pattern between tasks, though. The 8-year-old group

only showed an increase in correlation, on the one hand, between

pairs of regions related to the attentional network (frontal,

central, and parietal), and on the other, those related to the

face core network (posterior-temporal, parietal and occipital).

Finally, the oldest group showed an increase between some of the

same regions, mainly in the sex condition, but added frontal-

parietal connections. There was a decrease between some long-

distance connections, including occipital regions. Miskovic et al.

(2015) observed that the oldest age group in their work (11-years-

old) exhibited the densest patterns of EEG functional

connectivity across distant cortical regions, specifically in the

alpha band. Those findings are broadly consistent with one of the

more replicable fMRI results involving a trend toward increased

integration among distant neural networks (Betzel et al., 2014;

Fair et al., 2008; 2009; Supekar et al., 2009). In an fMRI study,

Brázdil et al. (2007) found a bidirectional information flow

between frontal and parietal regions, mainly in the right

hemisphere, involved in attentional processing during an odd-

ball task. Those regions are also some of the principal structures

considered in the generation of P3b, which has been implicated

in the closure of the cognitive event encoding cycle (Halgren,

et al., 1998).

With respect to the core face network, Cohen Kadosh et al.

(2011) examined the fMRI connectivity during identity and

happiness task, observing that although the overall structure

of the final mature network was present in 7 years-old children, it

develops across childhood. The children in that study, however,

did not show the modulation in the functional network

connections by task demands that was seen in adults. The

authors suggested that the emergence of the face network is

due to continuous specialization and fine-tuning within the

regions of this network.

While most previous research has analyzed resting-state EEG

functional connectivity, we observed changes during task

performance that required the involvement of various

processes and the activation of underlying neural networks.

Briefly, our results support the notion that EEG functional

connectivity accounts for age-related developmental changes

in cognitive abilities related to processes of attention and face

identification.

Our study does, however, presents some limitations, first, the

small sample size. Second, we used only the 10/20 System

montage, including a few electrodes associated to the main

regions involved in odd-ball task performance. Further studies

could address changes in all frequency bands, since some studies

have found major changes in functional connectivity in the theta

and alpha bands during task performance. Moreover, the study of

sex differences in functional connectivity across ages would be

desirable, since there is evidence of different EEG patterns in both

sexes in adults, and during the resting stage in children.

Conclusion

Findings from this study suggest that a base EEG

functional network pattern exists from early childhood,

which reorganizes across child development. Moreover,

functional connectivity is modulated to dynamically adapt

to the demands of information processing. The similarity

metric may represent an index of global brain connectivity

that could be useful in estimating age- and task-related

changes. Rest-to-task correlation variations could indicate

that the older children in our study generated more
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efficient coupling of the areas related to the attentional- and

face networks, which may underlie the improvement

performance they achieved. The study of EEG functional

connectivity, therefore, seems to offer a promising

approach to discerning maturational changes during the

development of diverse cognitive processes and to our

understanding of functional disorders in clinical populations.
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