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In this work, we propose a dynamical systems perspective on the modeling of sepsis and
its organ-damaging consequences. We develop a functional two-layer network model for
sepsis based upon the interaction of parenchymal cells and immune cells via cytokines,
and the coevolutionary dynamics of parenchymal, immune cells, and cytokines. By means
of the simple paradigmatic model of phase oscillators in a two-layer system, we analyze the
emergence of organ threatening interactions between the dysregulated immune system
and the parenchyma. We demonstrate that the complex cellular cooperation between
parenchyma and stroma (immune layer) either in the physiological or in the pathological
case can be related to dynamical patterns of the network. In this way we explain sepsis by
the dysregulation of the healthy homeostatic state (frequency synchronized) leading to a
pathological state (desynchronized or multifrequency cluster) in the parenchyma. We
provide insight into the complex stabilizing and destabilizing interplay of parenchyma and
stroma by determining critical interaction parameters. The coupled dynamics of
parenchymal cells (metabolism) and nonspecific immune cells (response of the innate
immune system) is represented by nodes of a duplex layer. Cytokine interaction is modeled
by adaptive coupling weights between nodes representing immune cells (with fast
adaptation timescale) and parenchymal cells (slow adaptation timescale), and between
pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling).
The proposed model allows for a functional description of organ dysfunction in sepsis and
the recurrence risk in a plausible pathophysiological context.

Keywords: adaptive networks, cluster synchronization, coupled oscillators, pattern formation, sepsis, cytokine
activity, multiplex networks

1 INTRODUCTION

The Systemic Inflammatory Response Syndrome (SIRS) is a life-threatening organ dysfunction, which is
induced by infectious pathogens or endogenous antigens. It is an induced disease of the innate immune
system. Because of its complexity no detailedmodel is available. Sepsis, which is the largest subclass of SIRS,
is defined as an infect-induced organ failure, where, however, only in 30–40% of all cases the pathogen can
be identified. Organs far from the location of primary infection are disturbed in their proper function by the
host reaction (Singer et al., 2016). The lethality of sepsis or septic shock in spite of high-performance
medicine is as high as 45% in intense care units (hospital mortality) and 74% after 48months (Schmidt
et al., 2020). A gold standard for diagnosis of sepsis is stillmissing (Brunkhorst et al., 2020), clinical diagnosis
rests upon infection-related organ dysfunction of lungs, kidney, liver, circulatory system, blood count, or
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central nervous system (Schmidt et al., 2020). In a particular case with
severe infection like pneumonia or peritonitis and the same risk
factors like age, sex, and underlying medical condition, it cannot be
predicted whether the patient will survive unscathed, or whether the
infection progresses and ends up lethally within a short time bymulti-
organ failure. There exists a highly individual inflammatory reaction
of the host, and a specific therapy for pro-inflammatory dysregulation
is not available (Weis et al., 2017).

The organ-damaging host reaction is caused by dysregulatory,
pro-inflammatory cytokines. This condition is known as cytokine
storm. The organ damage resulting from this can occur sequentially
or simultaneously in several organs, and itmay bemild, moderate, or
severe. Clinically, the organ functioning is monitored and rated on a
daily basis in terms of the four-stage Sepsis-related Organ Failure
Assessment (SOFA) score. In case of SIRS not all organs are always
and to the same extent disturbed. One may hypothesize that in each
individual patient certain organs possess a more or less pronounced
resilience against the cytokine storm. The aim of this work is to
model the conditions for organ failure, the induced organ
dysfunction, and resilience of organs, as well as the overall state
of the organism after recovery.

A unified disease model with the innate immune system as
reference point is the basis for our modeling approach in terms of
nonlinear dynamics of complex networks. Note that this is not a
biochemical or genetic or cellular or tissue model, but it rather
describes the functional interplay of the immune system with
parenchymal cells of the organs in terms of a simple generic
model of coupled nonlinear oscillators which may exhibit
coherent or incoherent collective dynamics. The role of
synchronization is an important aspect in the field of network
physiology, where multi-component physiological systems
continuously interact in an integrated network to coordinate
their functions (Bashan et al., 2012; Ivanov et al., 2014;
Bartsch et al., 2015; Lin et al., 2016; Moorman et al., 2016).
The structural organization and functional complexity of human
organisms has been associated with phase synchronization as well
as phase transitions (Chen et al., 2006; Xu et al., 2006; Ivanov
et al., 2009; Bartsch et al., 2012) between different modes of
synchronization in real physiological systems. In case of complex
diseases, the progression from a healthy to sick state can be abrupt
and may cause a critical transition (Chen et al., 2012; Liu et al.,
2012; Liu et al., 2013a; Liu et al., 2013b; Shi et al., 2022).

In this paper, we employ a two-layer network model for sepsis
based upon the interaction of parenchymal cells and immune cells via
cytokines and the coevolutionary dynamics of parenchymal and
immune cells and cytokines (Sawicki et al., 2022). Parenchyma is
the bulk of functional substance in an organ or structure, in contrast to
the stroma, which refers to the structural tissue of organs or structures,
namely, the unspecific connective tissues. In many organs the
parenchyma consists of epithelial cells. A simple paradigmatic
model of adaptively coupled phase oscillators (Aoki and Aoyagi,
2009; Aoki and Aoyagi, 2011; Nekorkin and Kasatkin, 2016; Kasatkin
et al., 2017; Berner et al., 2019a; Berner et al., 2020a; Berner et al.,
2021a) is chosen as a first step to model the coupled dynamics of
parenchymal cells and unspecific immune cells, which are represented
by nodes of a duplex network. Multiplex networks are special
multilayer networks (Kivelä et al., 2014), where the network layers

are interconnected such that the layers contain the same number of
nodes, and only pairwise connections between corresponding nodes
from the layers exist. Duplex networks are simple representatives of
multiplex networks consisting of two layers, and are known to exhibit
complex synchronization scenarios (Leyva et al., 2018; Sawicki et al.,
2018; Sawicki, 2019; Berner et al., 2021b). The cytokine interaction
within both layers is modeled by adaptive coupling strengths between
the nodes representing the parenchymal cells (slow timescale) and
between the nodes of the immune cells (faster timescale, but still
slower than the timescale of the cell metabolism governed by phase
oscillator dynamics).We stress that our model is not a detailed model
of organs, such as for instance specific biochemical models for
carcinogenesis (Vineis et al., 2010), but a functional model of
dynamic interactions. Thus the cytokines are not modeled as
concentrations but rather by information flow between the
parenchymal layer and the immune layer describing the cytokine
activity. In both layers the base topology is global (all-to-all) coupling;
while the coupling in the parenchymal layer has a fixed time-
independent contribution and an adaptive time-dependent
contribution modeling the cytokine activity, the coupling in the
immune layer is only adaptive. In further work more sophisticated
local dynamics, such as activator-inhibitor kinetics of FitzHugh-
Nagumo type with two variables (fast activator and slow inhibitor,
respectively) andmore elaborate network topologies might be chosen.

In this article, we analyze the parameter dependency of an
organ-damaging interaction between the dysregulated immune
system and the parenchyma. In terms of our proposed functional
model, we investigate the emergence of synchronization and
frequency synchronization in the parenchyma, which is related
to a healthy and unhealthy condition of the organ system,
respectively. In (Sawicki et al., 2022), it has been shown that
an initially activated immune system may induce an activation of
the parenchyma, i.e., emergence of frequency clusters, or leave the
parenchyma unaffected depending on a patient’s individual
characteristics. The present study provides insight into the
robustness of the emerging pathological state with respect to
changes of parameters. We utilize a numerical analysis to find
critical parameters that are crucial for the interaction of the
immune system with the parenchyma. We shed further light
on the question how a dysregulated immune system triggers the
onset of organ failure.

The article is organized as follows: In Section 2 we provide a
pathophysiological description of sepsis. In Section 3 we
introduce the functional model that we employ for the
analysis of sepsis. Section 4 gives a systematic survey of
critical parameters of sepsis in our model simulations. Finally,
in Section 5 we draw conclusions.

2 PATHOPHYSIOLOGICAL DESCRIPTION
OF SEPSIS

2.1 Innate Immune System
The innate immune system is the phylogenetically oldest part of
the immune system. It is composed of several humoral and
cellular components and has evolved in parallel with the
development of multicellular life within a period of 2.4 billion
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years, which corresponds to 75% of the total evolutionary time
(Storch et al., 2013; Delves et al., 2016). Pathogens first come into
contact with the innate immune system, which alone can render
harmless over 99% of all potential threats. In addition to
destroying bacteria, it is also capable of very efficiently
attacking and destroying endogenous cells infected by viruses,
thus stopping viral replication.

The function of the innate immune system is maintained
constantly throughout the lifetime with almost the same level of
response by spatially mobile cells throughout the organism. The
communication in order to identify an infection and its location,
the initiation of an acute phase response and the simultaneous
control of inflammatory response including its extend is provided
by cytokines and other mediators. These cytokines and mediators
are distributed in the organism through the blood stream. If they
meet cells with corresponding receptors, these can respond to the
cytokine signals. Cytokine sources that do not originate from the
immune system are considered as perturbations and can usually
alter the balance of the inflammatory response in a
proinflammatory direction. Unregulated sources of cytokines
not originating from the immune system are adipose tissue,
acute and chronic inflammation, and concomitant diseases.
Lifestyle factors such as physical inactivity or smoking also
influence the cytokine dynamics. Cytokine polymorphisms are
responsible for the resilience of the innate immune system upon
perturbations and thus for the high individual inflammatory host
response (Rosendal et al., 2004; Egger, 2005; Tisoncik et al., 2012;
Schulte et al., 2013; Hotchkiss et al., 2016; Xia et al., 2016; Elisia
et al., 2017; Thomas, 2020).

The pathophysiological situation is complicated by the fact
that many pathogens (bacteria, fungi, viruses, endogenous
material) can trigger an inflammatory response. Moreover, the
innate immune system consists of many interacting components,
there are many inflammation triggering pathways, and the
signaling pathways and cytokines have a high redundancy and
additionally a pronounced pleiotropy. Inflammation is usually
localized, encapsulated and healed by destruction and
phagocytosis of destroyed cells. Via the cytokines IL-1, IL-6
and TNF-α released locally in the inflammation focus by
macrophages, lymphocytes, fibroblasts and endothelial cells, a
multistage defense process is started. Further, cytokines stimulate
the anterior pituitary to synthesize cortisol in the adrenal cortex.
Cortisol stimulates hepatocytes to synthesize cytokine receptors,
which can then receive the cytokine signals and produce acute
phase proteins (APP). Besides, temperature elevation occurs due
to central nervous system stimulation and leukopoiesis is
enhanced in the bone marrow. Acute phase proteins comprise
a variety of proteins that restrict the inflammatory process. The
functionally distinct proteins are produced and released step by
step according to the course of the inflammatory response and are
controlled by feedback mechanisms. At the center of
inflammation, inhibition of the inflammatory response does
not occur due to the stoichiometric ratio of acute phase
proteins to proinflammatory cytokines. In the bloodstream,
the ratio is reversed, acute phase proteins are clearly
dominating, and they neutralize proinflammatory cytokines
and can thus prevent the start of systemic inflammation.

If a local focus of inflammation cannot be adequately localized
by the acute phase response and if its supplies in the blood are
depleted by consumption, the proinflammatory cytokines,
mediators, and immune cells have the potency to damage or
destroy the function of organs far from the focus of inflammation.
Reactive oxygen species (ROS) and other proinflammatory
cytokines are released via cytokine-induced activation of
polymorphonuclear leukocytes (PMNs) and macrophages in
the bloodstream and their interaction with endothelium. This
process creates the initial condition for the Systemic
Inflammatory Response Syndrome (SIRS) (Egger, 2005).

The mechanism of damage in the systemic inflammatory
response syndrome and sepsis is, on the one hand, the lack of
oxygen availability to the parenchyma due to disruption of the
microcirculation by intravascular coagulation triggered by
inflammation. In addition or alternatively, cytokines may
induce a shutdown of mitochondrial cellular respiration.
Cellular oxygen utilization now occurs only via aerobic
glycolysis. Which process dominates in which phase of the
disease, in which organ, or in which patient is not yet known.
Cytokines have cardiotoxic and central nervous system toxic
effects.

2.2 Relaps
The long-term outcome after surviving sepsis or septic shock is
poor. Late effects include myopathic, neuropathic, and cognitive
changes, worsening of pre-existing conditions, and increased
mortality. Long-term survival is reduced regardless of pre-
existing conditions, and 74% of patients are deceased two
years after illness. Causes include re-infection with sepsis,
cardiovascular disease and tumors. The increased vulnerability
after survived sepsis is attributed to the dysregulated
inflammation during the acute phase of the disease with the
tissue damage that occurred in the acute process and the
continuing inflammation (Prescott et al., 2016; Mostel et al.,
2019; Brunkhorst et al., 2020; Schmidt et al., 2020).

3 MODEL

In this section, we introduce the functional model that we employ
for the analysis of sepsis. We introduce all parameters and
variables and provide details on the measures used to analyze
the system.

3.1 Schematic Sepsis Model
A schematic illustration of organic tissue consisting of
parenchymal cells and immune cells is shown in Figure 1.
Panel A depicts the initial configuration of a tissue element.
The tissue element consists of the epithelial parenchyma, the
basal membrane and the stroma. The parenchyma is the organ-
specific functional layer. The basal membrane separates the
parenchyma and stroma and is made of collagen of type IV
which is a network-forming collagen underlying epithelial and
endothelial cells. In the stroma, blood supply, lymphatic drainage
and immune response occur. The stroma consists of an
extracellular matrix and embedded cells that do not form a
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solid association. The extracellular matrix is structurally
composed of collagen, glycoproteins, proteoglycans and water.
Cells in the stroma are resident fibroblasts and fat cells, and
mobile cells (macrophages, mast cells, granulocytes, and plasma
cells). Panel B shows the functional interactions in the two-layer
network model of the parenchymal layer and the immune layer.

Figure 1 shows the functional structure of the tissue
element, in particular the reactants interacting during
sepsis. With the blood supply via capillaries, pro- and
inflammation-inhibiting molecules are delivered to the
stroma of each organ. They originate from the primary
focus of infection (pathogen-associated molecular patterns,
damage-associated molecular patterns, cytokines), from the
liver (acute phase proteins) and from the innate immune
system (macrophages, polymorphonuclear leukocytes). The
concentration of all reactants changes as the inflammatory
response progresses. They initially interact with the
endothelium of the capillaries. With the influx of pro- and
inflammation-inhibiting reactants, the overall system
(Figure 1A) tries to maintain a local inflammation-
inhibiting equilibrium. Blood flow and oxygen supply,
especially to the parenchyma, must be ensured.

An ongoing blood flow and oxygen supply is achieved by the
individual and locally adapted information processing of all cells
of the innate immune system (macrophages, polymorphonuclear
leukocytes), of the stroma (endothelial cells, fibroblasts), the
specific activation of platelets, the pleiotropy of cytokines,
i.e., their concentration- and pattern-dependent reaction
patterns, and the acute phase proteins produced and released
in the liver via cytokines in a time-delayed manner. All cells
involved are potential cytokine sources.

The pathophysiological positive response pattern is the
maintenance of the inflammation-inhibitory balance. The
pathological situation is the initiation of disseminated
intravascular coagulation, interruption of blood flow, oxygen
diffusion pathways prolonged by fluid influx into the stroma,
and breakdown of parenchymal oxygen supply. In parallel and in
addition, cytokines interact with the parenchyma and reduce
parenchymal function via impairment of mitochondrial cellular
respiration. This process may develop an autocatalytic
characteristic with the involvement of reactive oxygen species,
ending in organ failure.

3.2 Functional Two-Layer Network Model
The unified disease model is centered around the nonspecific
immune system, which includes disease-specific initial conditions
and infection-driven cytokine dysregulation. For the analysis of
an emergening sepsis, we consider a volume element of tissue
consisting of parenchyma, basal membrane and stroma, see
Figure 1A. In (Sawicki et al., 2022), we have introduced a
functional model to describe the dynamic interaction of
parenchyma (organ tissue) and stroma (immune layer). The
network layer of parenchymal cells (superscript 1) are
represented by N phase oscillators ϕ1i , i = 1, . . . , N and the
network layer of immune cells (superscript 2) are presented by N
phase oscillators ϕ2i . The coupling weights in the parenchymal
layer are considered to be partly fixed and partly adaptive while in
the immune layer the coupling weights are completely adaptive.
We model the communication through cytokines which mediate
the interaction between the parenchymal cells by the coupling
weights κ1ij, and those between the immune cells by coupling
weights κ2ij. Note that ϕ

2
i and κ

2
ij represent the collective dynamics

FIGURE 1 | Schematic illustration of the sepsis model. (A) A tissue element is depicted, in which the basic processes of sepsis take place: shown are the cells
(colored) involved such as parenchymal, fibroblast, endothelial cells, and macrophages, polymorphonuclear leukocytes and thrombocytes in the parenchyma (grey), the
stroma (yellow), and the capillary blood vessel. (B) depicts the functional interactions within and between the two corresponding network layers in our model, the
parenchyma and the stroma (immune layer).
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of all dynamical units of the stroma, see Figure 1B. Hence, this set
of variables can be regarded as collective dynamical variables used
in our functional modeling approach. The use of phase oscillators
for the functional modeling of the interacting parenchymal cells
and immune cells is motivated by the fact that phase oscillator
networks are a paradigmatic model for collective coherent and
incoherent dynamics. The healthy state is assumed to be
characterized by regular periodic, fully synchronized dynamics
of the phase oscillators. Healthy and pathological cells differ by
their metabolic activity, i.e., pathological cells shut down their
mitochondrial cellular respiration and switch to aerobic
glycolysis. Therefore they are less energy-efficient and thus
have a modified cellular metabolism and reduced function,
which is reflected in our phase oscillator model by a different
frequency, and the system splits into multifrequency clusters.

We consider a general multiplex network with two layers each
consisting of N identical adaptively coupled phase oscillators:

_ϕ
1

i � ω1 − 1
N

∑N
j�1

a1ij + κ1ij( )sin ϕ1
i − ϕ1

j + α11( ) − σ sin ϕ1
i − ϕ2

i + α12( ),
_κ1ij � −ϵ1 κ1ij + sin ϕ1

i − ϕ1
j − β( )( ), (1)

_ϕ
2

i � ω2 − 1
N

∑N
j�1

κ2ij sin ϕ2
i − ϕ2

j + α22( ) − σ sin ϕ2
i − ϕ1

i + α21( ),
_κ2ij � −ϵ2 κ2ij + sin ϕ2

i − ϕ2
j − β( )( ), (2)

where ϕμi ∈ [0, 2π) represents the phase of the i − th oscillator (i =
1, . . . ,N) in the μ − th layer (μ = 1, 2), ωμ are the natural oscillator
frequencies of the oscillators in the μ − th layer. The interaction
between the oscillators within each layer is determined by the
intralayer connectivity weights a1ij ∈ [0, 1] (fixed interaction
within an organ) and κμij ∈ [−1, 1] (adaptive interaction
mediated by cytokines). We assume that the parenchymal
layer has both fixed and adaptive couplings, while the immune
layer has only adaptive coupling. Further the interactions within
the layer depend on the phase lag parameters α11 and α22.

In this work our focus is on the interaction between the two
layers and their synchronization. In particular, we analyze the
onset of desynchronization in the parenchymal layer induced by
an activated immune layer. The interaction of the layers is
controlled by two main parameters, the interlayer coupling
weight σ and the interlayer phase lag parameters α12 and α21.
Between the layers the interlayer coupling weights σ ≥ 0 are fixed
and symmetric for both directions of interaction. The phase lags
can be considered to model interaction time delays (Sakaguchi
and Kuramoto, 1986; Madadi Asl et al., 2018).

The adaptation rates 0 < ϵμ ≪ 1 separate the time scales of the
slow dynamics of the coupling weights and the fast dynamics of the
oscillatory system. The adaptation rate of the parenchymal layer ϵ1 is
assumed to be slow compared to the adaptation rate of the immune
layer ϵ2, i.e., ϵ1≪ϵ2 to account for the faster reaction of the immune
cells, see also (Sawicki et al., 2022). Thus we have two classes of
adaptive coupling weights modeling two different cytokine
mechanisms on two different timescales. Consequently by
choosing two significantly different values for ϵ1 and ϵ2, a system
withmultiple times scale dynamics is obtained, i.e., “slow-fast-faster”
dynamics (ϵ1 ≪ϵ2 ≪ 1) (Desroches et al., 2012; Kuehn, 2015).

From a neuroscience perspective, the phase lag parameter
β of the adaptation function sin(ϕμi − ϕμj − β) can also be called
plasticity parameter (Aoki and Aoyagi, 2009) which accounts
for different adaptation rules that may occur. Depending on
the value of β the adaptation rule can be symmetric, i.e., with a
cosine shape (β = π/2), or causal, i.e., with a sine shape (β = π).
Symmetric as well as causal relationship are well-known
forms for spike timing-dependent plasticity in
neuroscience (Maistrenko et al., 2007; Caporale and Dan,
2008; Popovych et al., 2013; Lücken et al., 2016; Röhr et al.,
2019). The shape of the adaptation function for different
choices of the parameter β is provided in Figure 2. By varying
β from 0.4π to π, we can see that the maximum of the coupling
term − sin(Δϕ − β), where Δϕ ≡ ϕμi − ϕμj , shifts from Δϕ =
−0.1π to Δϕ = 0.5π. Thus, for β = 0.5π we have a Hebbian
adaptation rule where the coupling term gives a maximum
positive feedback for synchronization (fire together, wire
together), while for β ≠ 0.5π the feedback is asymmetric,
i.e., maximum positive feedback occurs for some phase lag
ϕμi − ϕμj � β − 0.5π. Thus the adaptation lag β = 0.5π seems to
be most favorable for synchronization. For β = π the coupling
term is zero for synchronization, negative for ϕμi < ϕ

μ
j and

positive for ϕμi > ϕ
μ
j , i.e., the coupling weight κ

μ
ij, and hence the

input from node j to node i, is increased if ϕμi > ϕ
μ
j , i.e., if the

ith oscillator is advancing the jth, and vice versa. The
parameter β plays an essential role in the model because it
governs the adaptivity rule of the cytokines. It will be called
age parameter, since it mimics a systemic sum parameter
which accounts for different influences such as physiological
changes due to age, inflammaging, systemic and local
inflammatory baseline, adiposity, pre-existing illness,
physical inactivity, nutritional influence, etc.

In the following we use a simplified model, where the natural
frequencies of both layers are identical and set to zero in a co-
rotating frame: ω1 = ω2 = 0. Further we assume phase lag
parameters α11 = α22, and α12 = α21 = α throughout the
article. The matrix elements a1ij ∈ {0, 1} of the adjacency
matrix A in the parenchymal layer are chosen as a1ij � 1 if i ≠
j (global coupling).

FIGURE 2 | Illustration of the adaptation function in dependence of the
age parameter β.
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3.3 Methods of Analysis
In (Berner et al., 2019a; Berner et al., 2019b) it has been shown
that complex heterogeneous dynamical states such as
multifrequency clusters may emerge in a self-organized way in
networks of adaptively coupled dynamical systems, for instance,
phase oscillators. It is even more surprising that these states arise
in systems with homogeneous sets of parameters and simple
coupling structure (Kasatkin et al., 2017; Berner et al., 2019b;
Berner et al., 2020b). In addition to the plethora of dynamical
states, adaptivity also induces a high degree of multistability
(Maistrenko et al., 2007). In this study, we build on the
findings from (Sawicki et al., 2022) and extend these in order
to understand certain parameter dependencies for the emergence
of sepsis.

We assume that all cells possess the same natural frequency.
Tomodel the initial state for the potential occurrence of sepsis, we
introduce a fixed initial perturbation of the cytokine activity in
the immune layer representing a systemic immune response, see
Figure 3. We study the effect of this initial system perturbation on
the emergence of the healthy state, i.e., synchronization, in
dependence of the age parameter β. Under certain conditions
depending on various parameters summarized by β (age,
inflammaging, chronic inflammation, other basic diseases,
obesity, smoking, lack of exercise, gene polymorphisms) the
unregulated cytokine expression can progress into the
parenchyma and desynchronize it. In these cases, the healthy
(synchronized) state is not resilient anymore against the
perturbation of the immune layer.

Further, we analyze how this dependency changes depending
on other parameters that shape the interaction between the
parenchyma (layer 1) and the immune system (layer 2),
namely the interlayer coupling strength σ, the form of the
initial immune layer activation expressed by the size of the
perturbation 1 < C < N, and the interlayer coupling phase lag
α12 = α21 = α. The latter parameter accounts for a delay in the
layers’ interaction where α = 0 can be regarded as instantaneous.

In order to quantitatively characterize the dynamical collective
state of the two-layer network, in particular its degree of
frequency and phase synchronization, we introduce several
measures. If the frequency of all adaptively coupled phase

oscillators is the same, the phases may still be different. They
may either be all the same (complete in-phase synchronization)
or they may be phase-locked such that each phase oscillator
oscillates with the same frequency but a fixed, time-independent
phase difference. A special case is a splay state, where the phase
differences of all oscillators average out, for instance if the phase
of the jth oscillator is 2πj/N, j = 1, . . . , N. In systems of the form
Eqs 1, 2, it is possible to find in-phase synchronization and splay
states, and they may be interpreted as different quality of
synchronization (Berner et al., 2020a). In our set-up a splay
state is interpreted as a more vulnerable collective state where
small perturbations can quickly lead to partial or complete
desynchronization.

First, we introduce the mean phase velocities of the oscillators j
in both layers μ = 1, 2

〈 _ϕμ

j〉 � 1
T
∫t+T

t

_ϕ
μ

j t′( )dt′ � ϕμ
j t + T( ) − ϕμ

j t( )
T

(3)

with averaging time window T, and the spatially averaged mean
phase velocity (frequency) for each layer �ωμ � 1

N∑N
j�1〈 _ϕ

μ
j〉. In case

of frequency synchronized states within the layers, we further
consider a classical measure for the phase coherence within each
layer, namely, the Kuramoto-Daido order parameter (Kuramoto,
1984; Daido, 1994). In particular, we look at the second moment
of the order parameter Rμ

2 as it is the most suitable characteristic
for these kinds of patterns in adaptive networks as shown in
(Berner et al., 2019a; Berner et al., 2020a). This measure of phase
coherence is given by

Rμ
2 t( ) � 1

N
∑N
j�1

ei2ϕ
μ
j t( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣. (4)

It takes values 0≤Rμ
2 ≤ 1, where the lowest and the highest

coherence correspond to 0 and 1, respectively. We recall that for
Rμ
2 � 0 we call a state a splay state and for Rμ

2 � 1 an antipodal
state (Berner et al., 2021c). A well-known example of a splay state
is a state with fixed phase difference of 2π/N between neighboring
oscillators on a ring network of N phase oscillators. Further we
note that in-phase and anti-phase synchronized states are

FIGURE 3 | Initial conditions of sepsis: Cytokine dysregulation expressed by a cluster structure of the cytokine activity matrix κ2 imposes a systemic activation of the
immune layer representing the beginning of sepsis. The figure shows an initial condition used for simulations of (1)–(2) with N = 200. The initial cytokine activities in the
parenchymal layer κ1ij and the initial phases in both layers are randomly drawn from a uniform distribution on the interval [ − 1, 1] and the interval [0, 2π], respectively. The
cytokine activities in the immune layer κ2ij are initially given by a two-cluster structure where the smallest cluster has sizeC. The cytokine activities κ2ij are 1 within and
0 between the clusters.

Frontiers in Network Physiology | www.frontiersin.org June 2022 | Volume 2 | Article 9044806

Berner et al. Sepsis Modeling

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


included in the class of antipodal states. We emphasize that splay
states are still frequency synchronized, and hence are considered
as healthy states, however, due to their weaker phase coherence
properties, they may be considered as more vulnerable and less
resilient than in-phase synchronized states.

Furthermore, for both layers μ = 1, 2 we calculate the ensemble
average sμ (ensemble size NE with ensemble elements E) of the
standard deviation σχ(�ωμ) �


















1
N∑N

j�1(〈 _ϕμj〉 − �ωμ)2
√

of the mean
phase velocities

sμ � 1
NE

∑
E

σχ �ωμ
E( ), (5)

and the ensemble average of the corresponding normalized
standard deviation σχ( �ωμ

E)
�ωμ
E
. If the latter quantities are non-zero,

they indicate the formation of frequency clusters, where the
respective layer splits into clusters with different frequencies,
which is indicative of a pathological state. The ensemble
average is necessary to account for the multistable nature of
the system, i.e., for random initial conditions some of the
simulations may give a pathological state, while some may still
give a healthy state. This is similar to the real physiological
situation where some patients will develop sepsis, while some
will not.

We further introduce another complementary measure to
quantify the occurrence of pathological states, which we call
the frequency cluster ratio. The frequency cluster ratio f μ is
defined as the ratio between the number of frequency clustersNμ

f
in layer μ found for an ensemble of initial conditions and the size
of the ensembleNE, i.e., fμ � Nμ

f/NE. We consider an asymptotic
state to be a frequency cluster (desynchronized, pathological
state) if there exist one or more nodes j ∈ {1, . . . , N} such
that 〈 _ϕμj〉 ≠ �ωμ (deviating frequencies).

Table 1 summarizes the dynamical variables, parameters and
measures of the model. In the right column the physiological
meaning of all quantities is given in a concise manner. For more
details on the pathological interpretation, we refer the reader to
(Sawicki et al., 2022).

For the parameter scans presented in the subsequent
sections, we simulate system (1)–2) for each set of
parameters for the same ensemble of random initial
conditions.

4 CRITICAL PARAMETERS FOR SEPSIS

This section is devoted to the numerical analysis of critical
parameters controlling the interaction of the parenchyma with
the immune system, i.e., σ and α, and the initial activation of the
immune system, i.e., activation cluster size C, see Figure 3. In the
following, we analyze the impact of these parameters in addition
to the age parameter β that has been found to be crucial for the
description of the patient’s physiological condition (Sawicki et al.,
2022).

4.1 The Interlayer Interaction Strength as a
Critical Parameter for Modeling Sepsis
In this subsection we investigate the influence of the interlayer
coupling strength σ on the emergence of sepsis. The interlayer
coupling strength appears naturally as an important parameter in
order to understand the mechanism acting during the
progression of sepsis. In fact, proinflammatory cytokines act
on endothelial cells and hence cause an increased blood vessel
leakiness (Egger, 2005). As a result, more immune cells and
cytokines enter the stroma, which consequently enhances the
immune-parenchymal interaction.

In the following, we present simulation results in the (β, σ)-
plane showing that after an initial cytokine perturbation in the
immune layer either the healthy frequency-synchronized state is
likely to be restored (dark shading), or the system is more likely to
transition to a pathological desynchronized multifrequency
cluster state (light shadings).

The top panels of Figure 4 depict the ensemble average sμ of
the standard deviation of the spatially averaged mean phase
velocities, which measures the average frequency
desynchronization, corresponding to the amount of
heterogeneous activity in system. A high or low degree of
desynchronization represents a pathological or healthy
physiological condition, respectively. Splitting into
frequency clusters corresponds to a pathological state of the
parenchyma (μ = 1) or activation of the immune layer (μ = 2).
Figure 4 shows three regimes of the coupling strength σ for
which the system behaves qualitatively different. Within the
first regime (σ < 0.5), the parenchyma, Figure 4A, evolves

TABLE 1 | Physiological meaning of the dynamical variables, parameters and measures of the model (superscripts referring to layers μ = 1 and μ = 2 omitted).

Symbol Name Physiological Meaning

Dynamical Variable ϕi Phase Metabolic activity
κij Coupling weight Cytokine activity

Parameter α Phase lag Metabolic interaction delay
β Plasticity rule Age, inflammaging, pre-existing diseases, etc.
ω Natural frequency Natural frequency of cellular metabolism
ϵ Time scale ratios Time scales of cytokine activity
C Initial network perturbation Local infection
aij Connectivity Fixed parenchymal cell-cell interaction
σ Interlayer coupling Interaction between immune and parenchymal cells

Measure 〈 _ϕi〉 Mean phase velocity Collective frequency of cellular metabolism

s Standard deviation of Pathogenicity (parenchymal layer)
Frequency (see Eq. 5) Activation (immune layer)

f Frequency cluster ratio Probability of a pathological state
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independently of the immune system, Figure 4B. This can be
concluded from the different values of the average activity s1

and s2. In fact, for sufficiently large age parameter β the initial
perturbation of the immune layer leads to persistent
desynchronization (activation) of the immune layer. As
shown in previous work (Sawicki et al., 2022), the average
activity s2 increases with increasing age parameter. Up to the
critical value σc ≈ 0.5, the parenchyma synchronizes in most of
the simulations independently of the age parameter, hence no
organ-threatening desynchronization s1 occurs. It is worth
mentioning that below but near the critial value σc, the
boundaries between low and high activity in the immune
layer become more complex due to the increasing
interaction of the immune system with the parenchyma.

In the second regime, i.e., in the interval of approximately 0.5
< σ < 0.8, the systems starts to show interlayer phase locking,
i.e., ϕ1i (t) − ϕ2i (t) ≈ Δi ∈ [0, 2π) for all times t. We observe that
beyond the threshold of σc, the parenchyma may also
desynchronize depending on the age parameter β. The average
desynchronization s1 in the parenchyma and hence the potential
for organ failure increases with increasing age parameter. For
constant σ there always exists a threshold of the age parameter
above which the parenchyma is dynamically able to
desynchronize. With increasing σ the threshold shifts to larger
values of β.

In the third regime of the interlayer coupling strength (σ >
0.8), the threshold of β above which the parenchyma may
desynchronize does not shift further to larger values, but
remains approximately fixed. Hence, we observe a clear
separation in terms of the age parameter between parameter
regions with healthy and regions with pathological dynamics.

In order to support our conclusions drawn from the frequency
desynchronization measure sμ, we also plot the ratio f μ of
simulations yielding frequency clusters divided by the total
number of simulations NE for an ensemble of NE = 50
random initial conditions in the bottom panels of Figure 4.
We observe that indeed a high value of sμ correlates with a
higher probability of finding a frequency cluster. Therefore, both
measures can be used interchangeably.

In Figure 5, we plot representative asymptotic states for
different values of σ and β. They correspond to parameter
values marked by letters A, B, C, D, E in Figure 4. The left
and right columns show snapshots of the cytokine activity
matrices κ1ij (parenchymal layer) and κ2ij (immune layer),
respectively. The second column shows the mean phase
velocities (average frequencies) 〈 _ϕμj〉 of the oscillators. The
third column shows snapshots of the instantaneous phases ϕμj ,
and the fourth column depicts space-time plots of the phases
ϕμj(t) visualizing the oscillations. We observe that depending on
the choice of parameters different dynamical states emerge. In

FIGURE 4 | Map of regimes: ensemble average sμ of the standard deviation of the spatially averaged mean phase velocities (A,B) and the frequency cluster ratio
(C,D) in the parameter plane of age parameter β and interlayer coupling strength σ for the parenchymal (A,C) and immune layer (B,D), respectively. Bright colors
correspond to the formation of frequency clusters. Simulation parameters: N = 200, α11 = α22 = −0.28π, α12 = α21 = 0, a1ij � 1, ϵ1 = 0.03, ϵ2 = 0.3, ω1 = ω2 = 0, C = 40.
Ensemble size is NE = 50. The simulation time is 2000 time units, the averaging time window 1000.
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Figure 5A an in-phase synchronized state is presented showing
that the system is capable of evolving into a healthy state after an
initial perturbation of the immune layer. All mean phase
velocities in the parenchyma and in the immune layer
(collective frequencies) are the same (second column), and the
oscillators in each layer are in phase (third column). The space-
time plot shows spatially homogeneous periodic oscillations. The
adaptive coupling weights both in the parenchymal and the
immune layer are homogeneous and all weights are equal to
unity (left and right columns). Another completely healthy state
is shown in Figure 5C’ where instead of an in-phase
synchronized state a splay state is formed in both layers (third
column), i.e., the order parameter Rμ

2 � 0 for both layers, but the
frequencies are still the same (second column). The space-time
plot (fourth column) shows traveling waves, rather than spatially
homogeneous oscillations as in panel A. In (Sawicki et al., 2022),
we have speculated that this type of synchronized states can be
interpreted as a vulnerable state emerging in coexistence with
pathological states. Indeed, Figure 5C shows a pathological
frequency cluster state for the same parameters but different
initial conditions. Here both the parenchyma and the immune
layer exhibit a two-frequency cluster state, where a smaller cluster
with lower frequency splits off from the large cluster (marked by a
small red circle in the second column). The small clusters can also

be clearly seen in the snapshots of the phases (third column), in
the perturbations of the space-time pattern (fourth column), and
in the lighter red color in the cytokine matrices (left and right
columns). Figures 5D,E show states that can still be regarded as
healthy from the perspective that the parenchymal nodes are in
synchrony, while the immune layer remains activated after the
initial perturbation and exhibits small clusters of deviating
frequencies. This shows up in the mean phase velocity profiles
(second column), in the snapshots of the phases (third column),
in the space-time plot (fourth column) and in the cytokine matrix
of the immune layer (right column). These states demonstrate a
high degree of parenchymal resilience to the persistent activation
of the immune layer. A pathological state is also presented in
Figure 5B. Here, the parenchymal layer shows desynchronization
and a frequency cluster (small red circle), as well, which may be
considered as the starting point of an organ failure.

The splay states with Rμ
2 � 0 for both layers (panel C’)

represent a special class of healthy states. In particular, due to
their structure, the oscillators in this state effectively decouple and
are potentially more vulnerable to external perturbations.
Moreover, as also shown in (Sawicki et al., 2022), these states
may coexist with frequency clusters. In order to quantify this
observation, we plot the probability of finding a splay state in
dependence on σ and β in Figure 6. By comparing Figures 4A,B

FIGURE 5 | Details of dynamics for healthy parenchymal states without clusters (A,C’,D,E) and a pathological parenchymal state with frequency clusters (B,C) for
different values of β chosen as in Figure 4. The states shown represent a healthy state in (A) (β = 0.5 π, σ = 1), a pathological state in (B) (β = 0.58 π, σ = 1) and (C) (β =
0.7 π, σ = 1), where a red circle marks the small pathological cluster, a healthy but vulnerable state in (C’) (β = 0.7 π, σ = 1) and two resilient states in (D) (β = 0.5 π, σ = 0.2)
and (E) (β = 0.65 π, σ = 0.45). The left and right columns show snapshots of cytokine activity matrices κ1ij (parenchymal layer) and κ2ij (immune layer), respectively
(color coded). Second column: mean phase velocities (average frequencies) 〈 _ϕμj 〉 of the oscillators. Third column: snapshots of phases ϕμj . The parenchymal nodes are
labeled j = 1, . . . , 200, and the immune nodes are labeled j = 201, . . . , 400. Within each layer μ the nodes are sorted first by 〈 _ϕ1j 〉, then by ϕ1j , respectively. Fourth column:
space-time plot of phases ϕμj (t) (color coded). All parameters are chosen as in Figure 4.
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with Figure 6, we see that the regions for the existence of splay
states have large overlap with the region of pathological cluster
states of the paranchyma (yellow hatched area). It should,
however, be noted that for intermediate values of the
interlayer coupling strength and the age parameter there exists
a large region in parameter space for which frequency clusters are
very likely, whereas almost no splay states can be found.

Figure 7A presents a cut through the parameter plane of
Figure 4C at coupling strength σ = 1. It shows that the probability
of a frequency cluster, i.e., a pathological sepsis state, sharply rises
with age parameter β above approximately β > 0.5π. This curve
compares favorably with empirical data of patients which gives
the number of cases of sepsis per 100 000 inhabitants in Germany
as a function of age, presented in Figure 7B.

In this section, we have numerically analyzed the
dependence of sepsis on the interlayer coupling strength
and the age parameter after an initial perturbation of the
immune system. We have identified three regimes with
qualitatively different dynamics. First, below a critical
coupling strength, the healthy state is preserved for all

values of the age parameter. Second, above the critical
coupling strength the probability of sepsis sharply rises with
increasing age parameter β above a threshold of β, and the
threshold itself increases with increasing coupling strength. In
the third regime this threshold saturates at a fixed value of β.
This means that in a certain intermediate coupling range
stronger coupling to the immune layer can preserve the
healthy state even at larger age parameter, but eventually
the age threshold cannot be shifted further, and the
pathological state cannot be avoided. It also implies that an
interlayer coupling weight slightly above a critical value could
be potentially threatening for patients with a wide range of age
parameters, in particular also “younger” patients, i.e., with
smaller values of β. This threat, however, shifts to higher values
of β as the coupling strength between the layers is increased.
Remarkably, our simulations show that, depending upon the
initial conditions, healthy states coexist with pathological
states for the same parameter values, indicating that the
outcome of sepsis after an initial perturbation of the
immune system cannot be straightforwardly predicted.

FIGURE 6 | Probability of finding a splay state (splay ratio), see Figure 5, fromNE = 50 random initial conditions, plotted in the parameter plane of interlayer coupling
strength σ and the age parameter β for the parenchymal (A) and the immune layer (B). The yellow hatched area shows schematically the regime of pathological cluster
states in the parenchyma. Data taken from simulation shown in Figure 4.

FIGURE 7 |Qualitative comparison of model prediction with empirical data. (A) Frequency cluster ratio for σ = 1 vs. age parameter β, for the parameters in Figure 4,
where all data points were averaged over a sliding window of 4 neighboring data points. (B) Empirical data taken from (Fleischmann et al., 2016) showing the
hospitalization incidence of sepsis per 100 000 inhabitants in Germany by age group for the years from 2007 to 2013.
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4.2 The Interlayer Phase Lag as a Critical
Parameter for Modeling Sepsis
In this section, we analyze the dependence of sepsis on the
interlayer phase lag parameter α. In particular, we investigate
the robustness of our results from the previous subsection with
respect to this parameter. Phase lags have been used to account
for interaction delays (Madadi Asl et al., 2018; Sawicki, 2019) and
are known to be critical for the emergence of complex dynamics
(Omel’chenko et al., 2010; Omelchenko et al., 2013; Omel’chenko,
2018; Omel’chenko and Knobloch, 2019; Gerster et al., 2020;
Schöll, 2020; Schöll, 2021). Motivated by the results presented in
the previous subsection for the case α = 0, we choose an interlayer
coupling strength σ for which sepsis may occur. Therefore, we set
σ = 1 throughout this subsection.

In Figure 8, we show the ensemble average sμ as a measure the
average frequency desynchronization for both layers (top left and
top right, respectively). In the bottom panels we plot the
corresponding ratio f μ of simulations yielding frequency
clusters divided by the total number of simulations NE for an
ensemble of NE = 50 random initial conditions. The behavior of
the parenchyma (μ = 1, left panel) and the immune layer (μ = 2,
right panel) is practically the same. From the figure, we see that
for small values of α, the threshold in the age parameter for the
occurrence of sepsis is only slightly changed. It should be noted
that with increasing but small interlayer layer phase lag the β
threshold does not change much, but the transition from the
healthy state to the pathological state becomes sharper, i.e., the
frequency cluster ratio increases more sharply. A dramatic change

of the behavior occurs slightly below α = π/4, which is also the
value of the phase lag where in single-layer networks complex
partial synchronization patterns of chimera-type are found
(Omel’chenko et al., 2010; Omelchenko et al., 2013). For
larger values of α > π/4, we observe that the dependence upon
β flips, and the desynchronized (activated) state occurs with some
probability for lower β, while for higher β the healthy
synchronized state is observed. At approximately α ≈ 0.42π
another flip occurs, and with increasing β there is once more
a pronounced transition from the synchronized state to a
desynchronized frequency cluster state at a distinct threshold
of β, which decreases with further increasing α. This alternating
behavior is due to the periodic nature of the coupling function
sin(ϕ1i − ϕ2i + α). It indicates that the regime which corresponds
to physiological conditions and to our interpretation of β as age
parameter seems to be confined to α < π/4, but within this interval
the observed behavior is robust. Supplementary Figure S1 of the
Supplemental Material depicts the map of regimes for a larger
range of α ∈ [0, 2π]. This clearly shows the structure of the
tongues of two-cluster states (bright colors), which obeys a π-
periodic pattern in α.

Figure 9A shows details of the dynamics for an exemplary
parameter set α = 0.2 π, β = 0.58 π, in a plot similar to Figure 5.
Comparing it with Figure 5B where α = 0, but the other
parameters are the same, we see that our model is robust with
respect to the parameter α = 0.

4.3 The Immune Activation as a Critical
Parameter for Modeling Sepsis
This section is devoted to study the impact of the initial
perturbation in the immune system corresponding to cytokine
activation. For this, we vary the cluster size C of the initial
condition of the adaptive coupling weight matrix presented in
Figure 3. Here, we choose the two other parameters as σ = 1 and
α = 0.

We see in Figure 10 that independently of the initial cluster
size a transition from the healthy synchronized state to the
pathological desynchronized state in the parenchyma may be
observed, and surprizingly the threshold βc is insensitive to the
size C of the initial perturbation in a wide range from only a few
cells to half the immune system (C/N = 0.5). The behavior of the
parenchyma (μ = 1, left panel) and the immune layer (μ = 2, right
panel) is very similar.

Panels B, C of Figure 9 show details of the dynamics for C/N =
0.1 (C = 20) and C/N = 0.4 (C = 80), respectively, in a plot similar
to Figure 5. Comparing it with Figure 5B where C = 40, but the
other parameters are the same, we see that the asymptotic state
does not depend upon the size of the initial perturbation. This
finding seems to be in line with the medical observation that there
is no direct relation between the cause and form of an
inflammatory response and the frequency of occurrence of sepsis.

4.4 Analytic Approximations
The adaptive network model Eqs 1, 2 can also be written in the
form of two integral equations with an exponential kernel for the
phases in the two layers ϕ1i and ϕ2i by using a Green’s function

FIGURE 8 | Map of regimes: ensemble average sμ of the standard
deviation of the spatially averaged mean phase velocities (A,B) and the
frequency cluster ratio (C,D) in the parameter plane of age parameter β and
interlayer interaction phase lag α for the parenchymal (A,C) and immune
layer (B,D), respectively. Bright colors correspond to the formation of
frequency clusters. Ensemble size is NE = 50. Simulation parameters: σ = 1, α
≡ α12 = α21; all other parameters as in Figure 4.
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technique to eliminate the differential equations for the adaptive
coupling weights κμij. The solution of the general inhomogeneous
differential equation

_κij � −ϵ κij + sin ϕi − ϕj − β( )( ) (6)
is given by the integral

κij t( ) � −ϵ∫∞

0
dse−ϵs sin ϕi t − s( ) − ϕj t − s( ) − β( )( ) (7)

Hence the adaptive two-layer phase oscillator model in the co-
rotating frame (ω1 = ω2 = 0) with α11 = α22 = α0 and α12 = α21 = 0
is reduced to:

_ϕ
1

i � − 1
N

∑N
j�1

a1ij − ϵ1 ∫∞

0
dse−ϵ

1s sin ϕ1
i t − s( ) − ϕ1

j t − s( ) − β( )( )
sin ϕ1

i − ϕ1
j + α0( ) − σ sin ϕ1

i − ϕ2
i( ),

(8)
_ϕ
2

i �
1
N

∑N
j�1

ϵ2 ∫∞

0
dse−ϵ

2s sin ϕ1
i t − s( ) − ϕ1

j t − s( ) − β( )( )
sin ϕ2

i − ϕ2
j + α0( ) − σ sin ϕ2

i − ϕ1
i( ),

(9)

The adaptation function sin(ϕμi − ϕμj − β) shown in Figure 2
now enters as a distributed time delayed feedback which
contains the whole history. For the completely synchronized
(healthy) state ϕμi � ϕμj � ϕμ this term can be integrated out,
using ϵ∫∞

0
dse−ϵs � 1 and 1

N∑N
j�1 � 1, and setting a1ij � 1 (for N −

1 ≈ N):

_ϕ
1 � − 1 + sin β( )sin α0 − σ sin ϕ1 − ϕ2( ), (10)
_ϕ
2 � −sin β sin α0 − σ sin ϕ2 − ϕ1( ), (11)

The condition for frequency synchronization 〈 _ϕ1〉 � 〈 _ϕ2〉
yields a condition for the phase lag between the two layers 1
and 2

sin ϕ1 − ϕ2( ) � −sin α
0

2σ
(12)

which agrees with the numerical simulations in Figure 5A (ϕ1 −
ϕ2 = 0.126π). It follows from Eq. (12) that σ > | sin α0|

2 is a condition

FIGURE 9 | Details of dynamics for different values of α and C. (A) α = 0.2 π, (B) C/N = 0.1, (C) C/N = 0.4. The left and right columns show snapshots of cytokine
activity matrices κ1ij (parenchymal layer) and κ2ij (immune layer), respectively (color coded). Second column: mean phase velocities (average frequencies) 〈 _ϕμj 〉 of the
oscillators. Third column: snapshots of phases ϕμj . The parenchymal nodes are labeled j = 1, . . . , 200, and the immune nodes are labeled j = 201, . . . , 400. Within each
layer μ the nodes are sorted first by 〈 _ϕ1j 〉, then by ϕ1j , respectively. Fourth column: space-time plot of phases ϕμj (t) (color coded). A red circle marks the small
pathological cluster in the parenchyma. Simulation parameters: σ = 1, β = 0.58 π; all other parameters are as in Figure 4.

FIGURE 10 | Map of regimes: ensemble average sμ of the standard
deviation of the spatially averaged mean phase velocities (A,B) and the
frequency cluster ratio (C,D) in the parameter plane of age parameter β and
the initial immune layer perturbation expressed by the cluster sizeC/N for
the parenchymal (A,C) and immune layer (B,D), respectively. Bright colors
correspond to the formation of frequency clusters. Ensemble size is NE = 50.
Simulation parameters: σ = 1, α ≡ α12 = α21 = 0; all other parameters as in
Figure 4.
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for the existence of the fully in-phase synchronized state in both
layers, e.g., σ > 0.385 for α0 = −0.28π.

For cluster states in either the immune layer, or in both layers,
the situation is more complicated. If a large synchronized cluster
with 〈 _ϕ1i 〉 � ωL coexists with a smaller cluster of different
frequency 〈 _ϕ1j〉 � ωL − Δω and desynchronized phases θj, Eqs
10, 11 must be supplemented for the large cluster (i ∈ L) and the
small cluster (j ∈ S) by correction terms. These are complicated
temporally oscillating functions, and condition (12) is modified
for frequency synchronization of the large cluster at frequency ωL

and for the small cluster at ωL − Δω. By temporal averaging over
trigonometric functions, one may obtain rough approximations.
Assuming slow adaptation ϵ1 and ϵ2, and inserting the phases
ϕ1i � ωLt for i ∈ L and ϕ1j � (ωL − Δω)t + θj for j ∈ S, for non-
synchronous solutions i, j the fast oscillating terms in the integrals
average out to zero. Thus more detailed expressions for the
regime of existence of frequency cluster states as a function of
σ and β may be derived.

5 CONCLUSION

Within the framework of network physiology, we have proposed
a functional model of coupled dynamical systems which is able to
describe healthy states as well as pathological states related to
sepsis. Sepsis is a life threatening pathological state that can
potentially lead to organ dysfunction and death. By using a
multilayer dynamical network approach, our model describes
the collective dynamics of the parenchyma and the stroma (innate
immune system) as well as their interaction.

Extending previous work on a unified description of tumor
disease and sepsis (Sawicki et al., 2022), we have modeled the
coevolutionary adaptive dynamics of parenchymal cells, immune
cells, and cytokines. By means of the simple paradigmatic model
of phase oscillators in a two-layer system, we have analyzed the
emergence of organ threatening interactions between the
dysregulated immune system and the parenchyma. We have
demonstrated that the complex cellular cooperation between
the parenchymal layer and the immune layer results either in
a healthy physiological (frequency synchronized) or in a
pathological (desynchronized or multifrequency cluster) state
in the parenchyma. Thus we have explained sepsis by the
dysregulation of the healthy homeostatic state and have
provided insight into the complex stabilizing and destabilizing
interaction of parenchyma and immune system. The coupled
dynamics of parenchymal cells (metabolism) and nonspecific
immune cells (response of the innate immune system) is
represented by phase oscillators in a duplex layer. The
cytokine-mediated indirect communication pathways of the
different cell types involved in both layers are modeled by
adaptive coupling weights between nodes representing
immune cells (with fast adaptation timescale) and
parenchymal cells (slow adaptation timescale), and between
pairs of parenchymal and immune cells in the duplex network
(fixed bidirectional coupling).

In a pathophysiological context, the different scenarios
obtained in our model from an initial activation of the

immune system, e.g. by inflammation, can be interpreted as
inflammation without organ failure (the parenchyma stays in-
phase synchronized, Figure 5A), organ failure (the parenchyma
forms a two-frequency cluster state, Figures 5B,C), systemic
spreading into other organ systems (large-scale
desynchronization, large frequency clusters), healing or
parenchymal resilience to the persistent activation of the
immune layer (synchronization of the parenchyma, although
the immune layer forms a two-frequency cluster state, Figures
5D,E), or relapse from a vulnerable healthy state (splay-
synchronized state, Figure 5C’). As critical interaction
parameters we have identified the adaptation phase lag β
which determines the adaptation law and is a physiological
sum parameter (called age parameter), the interlayer coupling
strength σ, the interlayer coupling phase lag α, and the size C of
the initial perturbation of the activated immune layer cytokine
coupling matrix which describes the immune system’s initial
activation caused by inflammation. An adaptation phase lag β
of the order of π/2 corresponds to a cosine-like adaptation
function which assumes its maximum for the healthy
(synchronized) state, while a larger phase lag β is related to
delays in adaptability (Figure 2). Thus β ≈ π/2 can be interpreted
in a physiological context as fast adaptability which is typical of
young age and good physical conditions, and favors the healthy
state, while larger β is not optimal for maintaining the healthy
state. Regarding the size of the initial perturbation C, it should be
noted that we use special initial conditions (random initial
conditions of the phases in the parenchyma, the immune
layer, the weighted coupling matrix of the parenchyma, and a
cluster state in the coupling matrix of the immune layer, see
Figure 3) which do not correspond to the healthy state (in-phase
synchronization of parenchyma and immune layer). Rather, our
motivation is to map out the whole dynamic state space which is
characterized by multistability between the healthy state and
pathological states, and the probability of observing
pathological states in an ensemble of simulations depends
upon these initial conditions. Of course, by choosing the
healthy fully phase-synchronized state as initial condition, one
could increase the number of observed healthy states.

In extensive simulations, we have analyzed the dynamics of the
sepsis model in dependence on these critical parameters, and have
found that particularly the age parameter β and the interlayer
interaction strength σ are important model parameters for
describing the emergence of pathological states. The crucial
role of the age parameter has been already described in
(Sawicki et al., 2022) for the emergence of tumor disease. In
this study, we have shown that depending on the age parameter
and the interlayer coupling strength different dynamical regimes
with clear pathophysiological meaning emerge. We have mapped
out parameter regimes where an initial inflammation 1) can be
regulated and the systems enters a completely healthy state
(healing), 2) is persistent, i.e., can not be regulated by the
immune system, but the parenchyma stays healthy (chronic
inflammation), 3) leads to a dysregulation of the immune and
the parenchyma and hence a pathological state (eventually organ
failure). Moreover, we have compared the probability for the
emergence of pathological states depending on the age parameter
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obtained from the simulation of our model with empirical data
for the hospitalization incidence of sepsis in Germany. This
comparison shows a striking similarity that needs to be
investigated in further studies, however, providing first
evidence for the strength of our functional modeling approach.

This study lines up with other works in the emerging field of
network physiology (Ivanov, 2021). Network physiology is a rather
young interdisciplinary research area bridging between
physiological modeling approaches from the micro to the
macro scale. In the theory and application of dynamical
systems, the network perspective has revolutionized (Newman,
2003) the field over the last 20 years, as it also allows for
describing interaction structures on various spatial scales.
Bringing together network science, dynamical system theory
and physiological modeling, network physiology is a promising
framework for getting insight into systemic diseases such as
sepsis. Our approach provides a first step towards a functional
dynamic modeling of sepsis. The basic limitation of our model is
the approximation of the metabolic dynamics of the cells by
simple one-dimensional phase oscillators, and of the cell
interaction in the parenchyma by a fixed structural component
and an adaptive component (cytokines) describing the
information exchange between the cells. Further, the cellular
interaction within the immune system is described only by
adaptive information exchange, and the interaction between
the immune system and the organs is described by a fixed
coupling strength, and no differentiation between specific
organs or different immune cells is made. An extension of our
results guided by a systemic viewpoint, however, will pave the way
for a deeper understanding of how the systemic spreading into
other organ systems in case of sepsis occurs or how a relapse
could be predicted. For this, one needs to further investigate

which factors are crucial for a systemic spreading of disease, learn
how different organ systems are interrelated, and how the
complementary perspectives from physiology, network science,
and dynamical systems can be further developed in an
interdisciplinary context.
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