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We analyze the influence ofmusic in a network of FitzHugh-Nagumooscillators

with empirical structural connectivity measured in healthy human subjects. We

report an increase of coherence between the global dynamics in our network

and the input signal induced by a specific music song. We show that the level of

coherence depends crucially on the frequency band. We compare our results

with experimental data, which also describe global neural synchronization

between different brain regions in the gamma-band range in a time-

dependent manner correlated with musical large-scale form, showing

increased synchronization just before transitions between different parts in a

musical piece (musical high-level events). The results also suggest a separation

in musical form-related brain synchronization between high brain frequencies,

associated with neocortical activity, and low frequencies in the range of dance

movements, associated with interactivity between cortical and subcortical

regions.
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1 Introduction

Dealing with the dynamics of neural networks, one repeatedly encounters the

phenomenon of synchronization. In the brain, a high degree of synchronization is

related to (slow-wave) sleep (Steriade et al., 1993; Rattenborg et al., 2000) or

transitions from wakefulness to sleep (Schwartz and Roth, 2008; Moroni et al., 2012).

Often, only a part of the brain is synchronized. This phenomenon of so-called partial

synchronization Schöll (2021) has recently become a reference point for the explanation

of unihemispheric sleep (Rattenborg et al., 2000, 2016; Mascetti, 2016; Ramlow et al.,

2019) and the first-night effect (Tamaki et al., 2016), which describes troubled sleep in a

novel environment. Furthermore, synchronized dynamics plays an integral role in the

dynamics of epileptic seizures (Gerster et al., 2020), where the synchronization of a part of

the brain causes dangerous consequences for the persons concerned. By contrast,

synchronization is also used to explain brain processes serving the development of

syntax and its perception (Koelsch et al., 2013; Large et al., 2015; Bader, 2020). Generally,
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synchronization theory is of great importance for the analysis

and understanding of musical acoustics and music psychology

(Bader, 2013; Sawicki et al., 2018a; Hou et al., 2020; Shainline,

2020).

Although the neurophysiological processes involved in

listening to music are still being researched, it is believed that

some degree of synchrony can be observed in listening to music

and building expectations. Event-related potentials, measured by

electroencephalography (EEG) of participants while listening to

music, show synchronized dynamics between different brain

regions (Hartmann and Bader, 2014, 2020). These studies

indicate that the synchronization dynamics represents musical

large-scale form perception. The coupling of oscillatory neural

signals within the usual frequency bands has been thought to be a

mechanism that is related to a broad range of perceptual,

sensorimotor, and cognitive processes, such as Gestalt

perception and binding (Gray and Singer, 1989; Tallon et al.,

1995; Keil et al., 1999; Rodriguez et al., 1999; Tallon-Baudry and

Bertrand, 1999; Engel et al., 2001; Engel and Singer, 2001), timing

and expectation (Buhusi and Meck, 2005, 2009), attention

(Womelsdorf and Fries, 2007; Fries, 2009; Nikolić et al.,

2013), consciousness (Baars, 2006; Dehaene et al., 2011; Engel

and Fries, 2016; Owen and Guta, 2019), or motor functions

(Thaut et al., 2015) as well as in music perception (Bhattacharya

et al., 2001; Zanto et al., 2005; Bonetti et al., 2021).

According to (Engel and Fries, 2016), oscillatory brain

activity is usually clustered into several frequency bands: delta

(0.5–3.5 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz)

and gamma (> 30 Hz). Since the gamma-band is the ‘youngest’

frequency band which has become of interest (from about the late

1990s), the ranges and definitions vary from source to source.

Here, we refer to the classification of (Freeman and Quian

Quiroga, 2013), who speak of a low gamma range for

frequencies above 30 Hz up to 60 Hz, and high gamma for

frequencies above 60 Hz up to about 120 Hz. For everything

above 120 Hz, we use the term ‘fast oscillations’ as employed by

Buzsáki (2006). The gamma-band frequency range is of

particular interest in the context of large-scale synchronization

since it is thought to be a mechanism that integrates information

from different parts of the cortex. In more detail, for specific

frequency bands the increase and decrease of synchronization are

following the large-scale form of the listened music in a coherent

way. Moreover, it has been observed that areas of the whole brain

are involved in neural dynamics during perception (Bader, 2020).

The musical form as the hierarchically highest level of

musical structure and its perception is related to some of the

mentioned processes above (Lerdahl and Jackendoff, 1990;

Hartmann and Bader, 2020). Perceptually, notes, bars, and

phrases are grouped and integrated into a high-level part of

the form by the Gestalt laws (Leman, 1997; Deutsch, 2013;

Neuhaus, 2013; Deliége and Melen, 2014). The contrast of the

form’s parts, such as the concatenation of verse and chorus in a

song, the sonata form of classical music, or the continuous night-

long tension build-up and decay in Techno, House or Electronic

Dance Music, characterize the musical form and the learned

knowledge about the underlying structures leads to the build-up

of expectation and their fulfillment as well as to modulated

attention. On an emotional level, this can be expressed in the

terms of tension and relaxation (Koelsch, 2014; Lehne and

Koelsch, 2015). Also, the transition from “potential energy”

(expectations) into “kinetic energy” (dancing) as proposed by

(Kurth, 1931) can be related to the processing of musical form in

the sense of entrainment of neurons in the motor cortex by

neurons from the auditory cortex (Thaut et al., 2015).

The characteristic of contrasting parts can be revealed not

only by music analysis using pen and paper but also by different

computational methods by the music information retrieval

discipline, like the amplitude of a piece of music that

corresponds to the subjective perception of loudness. Also

other properties of the stimulus, such as the spectral centroid

that corresponds to the perceived brightness of a sound, or the

fractal correlation dimension (Grassberger and Procaccia,

1983a,b) corresponding to the perceived density and thereby

representing the complexity of a piece of music, are drivers of the

musical form (Bader, 2013; Hartmann and Bader, 2020; Bader,

2021; Bader et al., 2021; Linke et al., 2021).

Recently, the general influence of sound on a dynamical

system with complex network connectivities (derived from

empirical Diffusion Tensor Imaging (DTI) measurements) has

been investigated (Sawicki and Schöll, 2021). It has been shown

that an external sound source, which is connected to the auditory

cortex of the human brain, induces partial synchronization

patterns. Nevertheless, this study has neglected the complexity

of music and its distinct effects in different frequency bands

within the brain oscillations. There are a variety of recognized

modeling approaches with respect to neural systems in general

(Kacprzyk and Pedrycz, 2015; Bassett and Sporns, 2017; Bassett

et al., 2018; Petkoski et al., 2018; Petkoski and Jirsa, 2019) and

related to music in particular (Friston and Friston, 2013). In this

paper, we model the spiking dynamics of the neurons by the

paradigmatic FitzHugh-Nagumo model, and investigate possible

coherence between the dynamics of the brain network and an

external music source, which is connected to the auditory cortex

of the human brain. Moreover, we present experimental data

which we successfully reproduce numerically with the help of our

network model, which combines simple node dynamics with

complex network connectivities derived from empirical

measurements.

An intriguing synchronization phenomenon in multilayer

networks is relay synchronization between layers which are not

directly connected, and interact via an intermediate (relay) layer

(Leyva et al., 2018). Multilayer networks can give a general

framework to describe and model real life examples of various

systems, e.g., the two hemispheres of the brain or two cortical

regions connected by the hippocampus (Gollo et al., 2011). Relay

synchronization, a regime where pairs of nodes synchronize
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despite their large distances on the network graph, has been

shown to depend on the network symmetries (Bergner et al.,

2012; Nicosia et al., 2013; Gambuzza et al., 2013; Zhang et al.,

2017a,b). Recently the notion of relay synchronization has been

extended from completely synchronized states to partial

synchronization patterns. It has been shown that the

multilayer structure of a network allows for (partial)

synchronization in the outer layers via the relay layer (Sawicki

et al., 2018b,c; Sawicki, 2019; Winkler et al., 2019; Drauschke

et al., 2020; Sawicki et al., 2021).

Going towards more realistic models, time-delay plays an

important role in the modeling of the dynamics of complex

networks. In brain networks, the communication speed is

affected by the distance between regions and therefore a

stimulus applied to one region needs time to reach a different

region. In such delayed system, it is possible to predict if the

effects of stimulation remain focal or spread globally (Muldoon

et al., 2016). More generally, time delays due to propagation over

the white-matter tracts have been shown to organize the brain

network synchronization dynamics for different types of

oscillatory nodes (Petkoski and Jirsa, 2019). Within the scope

of this paper, we focus on the requirements for a simple model to

exhibit partial synchronization patterns, which have been

experimentally observed (Hartmann and Bader, 2014, 2020).

Therefore, we defer the consideration of time delays for now.

This article is organized as follows. In Section 2, we discuss

the transformation of music to a neural input signal using a

detailed cochlea model. In Section 3, we introduce the neural

network model based upon empirical connectivities with neural

input to the auditory cortex generated by music. In Section 4, we

introduce some methods to characterize the neural output.

Section 5 presents the results of the computer simulations and

discusses the dynamical scenarios. Section 6 presents a

comparison with experiments on human subjects, and Section

7 finally concludes.

2 From sound to neural spikes

The transformation of sound into neural spikes is the subject

of much current research (Tritsch et al., 2010; Mizrahi et al.,

2014; Bader, 2015, 2017, 2018; Guo et al., 2021). Music, speech, or

any sound enters through the outer and middle ear as sound

pressure, then acting on the oval window of the cochlea. The

movement of the oval window is then transferred to a pressure in

the lymph liquid of the cochlea surrounding the basilar

membrane, which again acts on the basilar membrane,

causing traveling waves there. Due to spatial differences in

stiffness and damping on the membrane, sinusoidal waves

with a single frequency show an increase in amplitude up to a

point with maximum amplitude, the position of the so-called

best-frequency, with a fast decay afterwards. Therefore, different

positions on the basilar membrane represent different

frequencies, making the cochlea a Fourier analyzer. The

stereocilia on the basilar membrane at the position of

respective best-frequency are then transferring the mechanical

energy into neural spikes. The frequency distribution on the

basilar membrane is logarithmic. Movements of neighboring

frequencies lead to interactions, causing roughness perception

up to a frequency band of a musical major third. These bands are

called critical bands, and the basilar membrane consists of

24 such bands. The spikes leaving the respective bands are fed

into the auditory pathway, consisting of several neural nuclei,

where the nucleus cochlearis or the trapezoid body are the first

two. The interaction between these neural nuclei is manifold with

several feedback loops and binaural connections (Schofield,

2011) ending at the auditory cortex on both hemispheres. Still

up to the A1 region of the auditory cortex, the critical bands are

maintained, where neural connections of higher nuclei are

connected to bands on the basilar membrane, which is called

tonotopy.

Many auditory features are present, extracted, or perceived

already in this pathway, like sound localization, pitch, or timbre

(Lyon and Shamma, 1996), although research has not concluded

on further processing in the cortex (Bader, 2021). Music

perception of larger temporal content, like song or sonata

form, are not part of processing in the auditory pathway up

to the cortex, as far as we know. Still the feedback loops within the

pathway are both directions, up and down, afferent and efferent,

so e.g. there is one connection down from the cortex to the

cochlea with only one nucleus in between, tuning the basilar

membrane tension through efferent nerves, according to cortex

activity (Schofield, 2011).

Up to now, nomodel of the whole auditory pathway exists on

a detailed neural level. The model used in this paper therefore

concentrates on main findings, i.e., the transition from sound to

neural spikes, the tonotopy of neural connections up to the

cortex, as well as partial synchronization of phases in the

cochlea, which are also present as coincidence detection in the

auditory pathway. A Finite-Difference Time Domain (FDTD)

physical model of the cochlea is used (Bader, 2015). The basilar

membrane is about 3.5 cm long and only between 0.1–0.12 cm

wide, so it is more a rod than a membrane. Therefore, the present

model assumes a differential equation of a membrane like

K x( )
μ x( )

z2u

zx2
− d x( ) zu

zt
� z2u

zt2
+ f t( ), (1)

with basilar membrane displacement u along a one-dimensional

axis x, basilar membrane stiffness K(x) = 2 × 109e−3.4x dyn/cm3

changing along x, and linear mass density μ(x) = m/A(x) with

mass m over cross section A again changing along the basilar

membrane and A(x) = 0.1 cm × (0.1 cm + 0.02 cm × x/l) with

basilar membrane length l = 3.5 cm taking into account the slight

widening of the basilar membrane over its length. The boundary

conditions of the basilar membrane are homogeneous Dirichlet

boundary conditions which do not allow for displacements on

Frontiers in Network Physiology frontiersin.org03

Sawicki et al. 10.3389/fnetp.2022.910920

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.910920


the boundaries, but any derivative is allowed in accordance with

the physiological conditions. Comparison between a membrane

and a rod model shows no considerable differences, therefore a

rod model is used. Here d is damping, and f(t) is the driving force

of the lymph fluid which drives the basilar membrane.

To calculate the spikes omitted by the cochlea, the recording

of the musical piece used is fed into the cochlea model. Here the

amplitudes of the digital musical sound file are taken as sound

pressures acting on the oval window of the cochlea and therefore

immediately on the peri- and endolymph around the basilar

membrane. As the speed of sound in the lymph (~ 1,500 m/s) is

much larger than the speed of waves on the basilar membrane

which is between ~ 100 m/s at the oval window and down to ~

10 m/s at the helicotrema, an instantaneous action of the pressure

at the oval window on the basilar membrane is reasonable and

known as long-wave approximation (de Boer, 1991). This holds

for frequencies up to ~ 4 kHz, where pitch perception stops and

humans only hear a very high sound. This approximation is used

in the model. It leads to the force f(t) in Eq. 1 which represents

the amplitudes of the digital musical sound file acting

instantaneously on all points of the basilar membrane at each

time point respectively. It is interesting to see that the traveling

wave on the basilar membrane is therefore not caused by an

external input slowly traveling through the cochlea but by the

intrinsic solution of the inhomogeneous differential equation of

the basilar membrane driven by a periodic force over its whole

length instantaneously.

Depending on the brain region, neurological measurements

reveal different time scales (Spitmaan et al., 2020). In our work

we choose 50 ms as a time integration step as this is consistent

with a characteristic time scale in music as well as in visual

perception. In music 50 ms correspond to the second integration

time, below which two events cannot be distinguished one from

another. This leads to a threshold of 20 Hz, above which musical

pitches are perceived and below which adjacent events are heard

as rhythms. In vision, 18–24 frames per second lead to a

continuous visual perception, again corresponding to about

50 ms time intervals. Therefore, in terms of hearing and

seeing, the brain seems to update perceptional input on a

time-scale of 50 ms (Bader, 2013).

The transition between mechanical displacement and

electrical spike is performed using two conditions according

to literature (Hubbard and Mountain, 1996). A neural spike at

one point X on the basilar membrane at time τ is excited if two

conditions hold.

u X, τ( )> u X − 1, τ( ), u X + 1, τ( ) (2a)
u X, τ( )> u X, τ − 1( ), u X, τ + 1( ). (2b)

Condition (2a) means a maximum shearing of two nervous fibers

as a necessary condition to an opening of the ion channels at the

fibers. This only happens with a positive slope, as only then the

stereocilia are driven away from each other.With a negative slope

the cilia are getting closer and therefore no stress appears at the

tip links between them. This corresponds to the rectification

process in gammatone filter banks. Condition (2b) is a temporal

maximum positive peak of the basilar membrane displacement. It

is the temporal equivalent to the spatial condition of a maximum

acceleration, where the tip link between the cell and its

neighboring cells is most active.

To calculate the spikes omitted by the cochlea, the recording

of the musical piece used is fed into the cochlea model. Therefore,

the original piece, available as a digital recording of 44.1 kHz

sample rate (CD-Quality) is upsampled to 192 kHz to meet

Finite-Difference Time Domain (FDTD) stability criteria. The

cochlea model is then run with a time-discretization step of Δt =
1/192,000 s. Each time when a neural spike appears, the time

point, strength, and critical band of the spike is stored. Therefore,

after processing, a time series I(t) of all spikes leaving the cochlea

is obtained.

Figure 1A displays an example of an artificially generated so-

called tone complex with f0 = 475 Hz and ten partial tones

(harmonics) with amplitudes 1/m where m = 1, 2, 3, . . . , 10.

The respective spike output of the basilar membrane model is

shown in Figure 1B. Each time when the sound wave has a

maximum amplitude, a pressure pulse is traveling over the basilar

membrane, which emits electrical spikes at respective best-

frequency positions on the membrane in accordance with the

frequencies in the activating sound. As traveling waves on the

membrane start at the basal end, next to the oval window, where

high frequencies have their best-frequency location, and travel

down the membrane towards the upper end, the helicotrema,

where low frequencies are located, low frequencies show a time-

delay with respect to higher frequencies. If the spikes of all critical

bands are summed up for a certain point in time, a time series I(t)

of all neural spikes leaving the cochlea can be generated, as

exemplarily shown in Figure 1C. The simplification that the

output of the cochlea model is summed up at one time point is

motivated by the results of (Joris et al., 1994): In an experiment

with cats, the authors could show that the scattered output of the

cochlea is synchronized in the trapezoid body.

3 Neural network model

In this section, we introduce an empirical structural brain

network as shown in Figure 2A where every region of interest is

modeled by a single FitzHugh-Nagumo (FHN) oscillator. The

weighted adjacency matrix A = {Akj} of size 90 × 90, with node

indices k, j ∈ N = {1, 2, . . . , 90} was obtained from averaged

diffusion-weighted magnetic resonance imaging data measured

in 20 healthy human subjects. For details of the measurement

procedure including acquisition parameters, see (Melicher et al.,

2015), for previous utilization of the structural networks to

analyze chimera states see (Chouzouris et al., 2018; Ramlow

et al., 2019; Gerster et al., 2020; Schöll, 2021). The data were

analyzed using probabilistic tractography as implemented in the

Frontiers in Network Physiology frontiersin.org04

Sawicki et al. 10.3389/fnetp.2022.910920

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.910920


FMRIB Software Library, where FMRIB stands for Functional

Magnetic Resonance Imaging of the Brain (www.fmrib.ox.ac.uk/

fsl/). The anatomic network of the cortex and subcortex is

measured using Diffusion Tensor Imaging (DTI) and

subsequently divided into 90 predefined regions according to

the Automated Anatomical Labeling (AAL) Atlas (Tzourio-

Mazoyer et al., 2002), see Table 1. Each node of the network

corresponds to a brain region. Note that in contrast to the

original AAL indexing, where sequential indices correspond to

homologous brain regions, the indices in Figure 2A are

rearranged such that k ∈ NL = {1, 2, . . . , 45} corresponds to

left and k ∈ NR = {46, . . . , 90} to the right hemisphere. Thereby

the hemispheric structure of the brain, i.e., stronger intra-

hemispheric coupling compared to inter-hemispheric

coupling, is highlighted (Figure 2A).

The structural connectivity matrices serve as a realistic input

for modeling, rather than as exact information concerning the

existence and strength of each connection in the human brain.

The pipeline for constructing such connectivity information

using diffusion tractography is known to face a range of

challenges (Schilling et al., 2019). While some estimates of the

strength and direction of structural connections from

measurements of brain activity can in principle be attempted,

the relation of these can vary dramatically with (experimentally

unknown) parameters of the local dynamics and coupling

function (Hlinka and Coombes, 2012).

The auditory cortex is the part of the temporal lobe that

processes auditory information in humans. It is a part of the

auditory system, performing basic and higher functions in

hearing and is located bilaterally, roughly at the upper sides of

the temporal lobes, i.e., corresponding to the AAL indexing k =

41, 86 (temporal sup L/R). The auditory cortex takes part in the

spectrotemporal analysis of the input passed on from the ear.

Figure 2B displays the time-series of impulses which are supplied

to the brain by means of the auditory cortex. These neural

impulses were obtained by the method of Bader described in

Section 2 (Bader, 2015, 2017, 2018). Here, in contrast to Figure 1,

a real piece of music was used, namely the hip hop music song

One Mic, composed by the American rapper Nas and released in

2002. During the transition from acoustic mechanical to

electrical excitation within the cochlea, synchronization

appears to improve perception of pitch, speech, or

localization. The sampling rate of these impulses obtained by

Bader’s method is fs = 192 kHz.

Each node corresponding to a brain region is modeled by the

FitzHugh-Nagumo (FHN) model with external stimulus, a

paradigmatic model for neural spiking (FitzHugh, 1961;

Nagumo et al., 1962; Bassett et al., 2018). Note that while the

FitzHugh-Nagumomodel is a simplified model of a single neuron,

it is also often used as a generic model for excitable media on a

coarse-grained level (Chernihovskyi et al., 2005; Chernihovskyi

and Lehnertz, 2007). Thus the dynamics of the network reads:

FIGURE 1
Example of transformation of a sound wave into a spike pattern of the cochlea model. (A) Time series of an artificially generated tone complex
y(t) versus time t in ms with f0 = 475 Hz and ten partial tones (harmonics) with amplitudes 1/mwherem= 1, 2, 3, . . . , 10. (B) Spikes (black dots) leaving
the cochlea as calculated from themodel (Bader, 2015), where the vertical axis represents the cochlea position with best-frequency f in Hz indicated,
i.e., categorized into 24 so-called critical bands. (C) Time series I(t) of the sum of all spike weights leaving the cochlea at a certain time t. Note
that the first 5 ms are transients.
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ϵ _uk � uk − u3
k

3
− vk

+σ ∑
j∈NH

Akj Buu uj − uk( ) + Buv vj − vk( )[ ]
+ς ∑

j∉NH

Akj Buu uj − uk( ) + Buv vj − vk( )[ ],
+CkI t( )

(3a)

_vk � uk + a
+σ ∑

j∈NH

Akj Bvu uj − uk( ) + Bvv vj − vk( )[ ]
+ς ∑

j∉NH

Akj Bvu uj − uk( ) + Bvv vj − vk( )[ ], (3b)

With k ∈NH whereNH denotes either the set of nodes k belonging

to the left (NL) or the right (NR) hemisphere. Parameter ϵ = 0.05

describes the timescale separation between the fast activator

variable (neuron membrane potential) u and the slow

inhibitor (recovery variable) v (FitzHugh, 1961). Depending

on the threshold parameter a, the FHN model may exhibit

excitable behavior (|a|> 1) or self-sustained oscillations

(|a|< 1). We use the FHN model in the oscillatory regime

and thus fix the threshold parameter at a = 0.5 sufficiently far

from the Hopf bifurcation point. The coupling within the

hemispheres is given by the coupling strength σ while the

coupling between the hemispheres is given by the inter-

hemispheric coupling strength ς. As we are looking for partial

synchronization patterns we fix σ = 0.7 and ς = 0.15 similar to

numerical studies of synchronization phenomena during

unihemispheric sleep (Ramlow et al., 2019) where partial

synchronization patterns have been observed. The interaction

scheme between nodes is characterized by a rotational coupling

matrix:

B � Buu Buv

Bvu Bvv
( ) � cosϕ sin ϕ

−sinϕ cosϕ
( ), (4)

with coupling phase ϕ � π
2 − 0.1, causing primarily an activator-

inhibitor cross-coupling. This particular scheme was shown to be

crucial for the occurrence of partial synchronization patterns in

ring topologies (Omelchenko et al., 2013) as it reduces the

stability of the completely synchronized state. Also in the

FIGURE 2
(A) Model for the hemispheric brain structure: Weighted adjacency matrix Akj of the averaged empirical structural brain network derived from
twenty healthy human subjects by averaging over the coupling between two brain regions k and j. The brain regions k, j are taken from the Automated
Anatomic Labeling Atlas (Tzourio-Mazoyer et al., 2002), but re-labeled such that k = 1, . . . , 45 and k = 46, . . . , 90 correspond to the left and right
hemisphere, respectively. After (Gerster et al., 2020). (B) Time-series of the neural input signal I(t) obtained from the music song One Mic
transformed by amethod developed by Bader (Bader, 2020). The song has a length of about 270 s andwas released in 2002 by American rapperNas.
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modeling of epileptic-seizure-related synchronization

phenomena (Gerster et al., 2020), where a part of the brain

synchronizes, it turned out that such a cross-coupling is

important. The subtle interplay of excitatory and inhibitory

interaction is typical of the critical state at the edge of

different dynamical regimes in which the brain operates

(Massobrio et al., 2015; Shi et al., 2022), and gives rise to

partial synchronization patterns which are not found otherwise.

The external stimulus I(t) describes the impulses evoked by

the music piece One Mic by Nas and is applied to the brain areas

k = 41, 86 associated with the auditory cortex, i.e., Ck = 1 if k = 41

or 86 and zero otherwise. Since I(t) is a time series which is

calculated from a real piece of music, see Section 2, it has a

physical dimension in seconds. On the other hand, the FitzHugh-

Nagumo model has no explicit time scale. Its intrinsic angular

frequency is dimensionless and given by ωk = ωFHN = 2πfFHN ≈
2.51 (corresponding to dimensionless frequency fFHN ≈ 0.4). In

order to compare our simulations with real data and include the

time signal I(t) correctly in our dimensionless model, we must

transform the dimensionless time units of the FHN oscillator

model to real time units by comparing the FHN oscillation period

of a single FHN oscillator T ≈ 2.5 to the characteristic frequencies

nb in Hz of an empirical time series. Depending upon the

frequency band nb (in Hz) chosen, the simulation time is

converted to real time by 1 s = 2.5nb simulation time units, or

the simulated frequency (in Hz) is

fb � nb/fFHN. (5)

In this way, the parameter nb effectively removes the time scale

from the input, but on the other hand, it can also be seen as

creating a link between our dimensionless model and the input

signal I(t).

4 Synchrony measures

We explore the dynamical behavior by calculating the mean

phase velocity ωk = 2πMk/ΔT for each node k, where ΔT denotes

the time interval during which Mk complete rotations are

realized. Throughout the paper, we denote the length of the

input signal I(t) as ΔT. For the numerical integration an adaptive

Runge–Kutta integrationmethod has been applied (python scipy:

solve_ivp, RK45). For all simulations we use initial conditions

randomly distributed on the circle u2k + v2k � 4 and a transient

time of ttrans = 10,000 before the input signal I(t) is supplied to the

system. In case of an uncoupled system (σ = ς = 0), the mean

phase velocity (or natural frequency) of each node is ωk = ωFHN =

2πfFHN ≈ 2.51.

First, we introduce the spatially averaged mean phase

velocity:

TABLE 1 Cortical and subcortical regions, according to the Automated
Anatomical Labeling Atlas (AAL). Note that the numbering of the
brain regions is different from the original numbering (Tzourio-
Mazoyer et al., 2002).

Label L/R Region Lobe

1/46 Precentral Central region

2/47 Frontal Sup Frontal lobe

3/48 Frontal Sup Orb Frontal lobe

4/49 Frontal Mid Frontal lobe

5/50 Frontal Mid Orb Frontal lobe

6/51 Frontal Inf Oper Frontal lobe

7/52 Frontal Inf Tri Frontal lobe

8/53 Frontal Inf Orb Frontal lobe

9/54 Rolandic Oper Central Region

10/55 Supp Motor Area Frontal lobe

11/56 Olfactory Frontal lobe

12/57 Frontal Sup Medial Frontal lobe

13/58 Frontal Med Orb Frontal lobe

14/59 Rectus Frontal lobe

15/60 Insula Insula

16/61 Cingulum Ant Limbic lobe

17/62 Cingulum Mid Limbic lobe

18/63 Cingulum Post Limbic lobe

19/64 Hippocampus Limbic lobe

20/65 ParaHippocampal Limbic lobe

21/66 Amygdala Sub cort. gray nuc

22/67 Calcarine Occipital lobe

23/68 Cuneus Occipital lobe

24/69 Lingual Occipital lobe

25/70 Occipital Sup Occipital lobe

26/71 Occipital Mid Occipital lobe

27/72 Occipital Inf Occipital lobe

28/73 Fusiform Occipital lobe

29/74 Postcentral Central region

30/75 Parietal Sup Parietal lobe

31/76 Parietal Inf Parietal lobe

32/77 Supramarginal Parietal lobe

33/78 Angular Parietal lobe

34/79 Precuneus Parietal lobe

35/80 Paracentral Lobule Frontal lobe

36/81 Caudate Sub cort. gray nuc

37/82 Putamen Sub cort. gray nuc

38/83 Pallidum Sub cort. gray nuc

39/84 Thalamus Sub cort. gray nuc

40/85 Heschl Temporal lobe

41/86 Temporal Sup Temporal lobe

42/87 Temporal Pole Sup Limbic lobe

43/88 Temporal Mid Temporal lobe

44/89 Temporal Pole Mid Limbic lobe

45/90 Temporal Inf Temporal lobe
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�ω � 1
90

∑N
k�1

ωk. (6)

Thus �ω corresponds to the mean phase velocity averaged over the

left and right hemisphere.

Second, we take advantage of an abstract dynamical phase θk
that can be obtained from the standard geometric phase ~ϕk(t) �
arctan(vk/uk) by a transformation which yields constant phase

velocity _θk. For an uncoupled FHN oscillator the function t(~ϕk)
is calculated numerically, assigning a value of time 0< t(~ϕk)<T

for every value of the geometric phase, where T is the oscillation

period. The dynamical phase is then defined as θk � 2πt(~ϕk)/T,
which yields _θk � const. Thereby identical, uncoupled oscillators

have a constant phase relation with respect to the dynamical

phase. By means of the dynamical phase θk we can calculate the

Kuramoto order parameter

R t( ) � 1
90

∑N
k�1

exp iθk t( )[ ]
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣, (7)

where the fluctuations of the order parameter R caused by the

FHN model’s slow-fast time scales are suppressed and a change

in R indeed reflects a change in the degree of synchronization.

The Kuramoto order parameter may vary between 0 and 1, where

R = 1 corresponds to complete phase synchronization, and small

values characterize spatially desynchronized states.

Third, we introduce a new measure which specifies the

coherence between the Kuramoto order parameter and the

input signal by using the time average of the Kuramoto order

parameter weighted with the input signal

γ � 1
ΔT ∫ΔT

0

R t( )I t( ) dt (8)

to quantify the overlap of coherent episodes (R large) with large

input signals, averaged over time. The coherence γ is maximum if

the synchronization is large whenever the signal is large. It is

small if the overall synchronization is low, or if the modulation of

the synchronization in time is not in phase with the modulation

of the input signal amplitude. For γ = 0 the Kuramoto order

parameter and the input signal do not overlap at any time point.

An increased value of γ ∈ [0, 1] means increased overlap between

the Kuramoto order parameter and the input signal. The

motivation for introducing the measure γ lies in the fact that

in the human brain the increase and decrease of synchronization

follows the large-scale form of the listened music in a coherent

way (Hartmann and Bader, 2014, 2020).

Fourth, wemake use of the Pearson correlation coefficient r, a

linear cross-correlation, for simplicity taken without time delays.

This is widely used as a non-directed measure of the strength of

the correlation between two variables or sequences {x1, x2, . . . ,

xn} and {y1, y2, . . . , yn} (Glantz, 2002; Bastos and Schoffelen,

2015; Guevara Erra et al., 2017):

r � rx,y �
1
n∑n

i�1 xi − �x( ) yi − �y( )������������
1
n∑n

i�1 xi − �x( )2
√ ������������

1
n∑n

i�1 yi − �y( )2√ , (9)

where �x, �y denotes the mean of x, y, respectively. In recent

decades, various methods for measuring synchronization have

been introduced (Blinowska, 2011; Bastos and Schoffelen, 2015).

The advantage of the Pearson correlation coefficient r is that it

allows for easy and efficient calculation of the linear correlations

between two variables or time series, and the results are very

similar to those obtained by other common methods such as the

phase-locking value (Lachaux et al., 1999). For a comparison of

the different synchronization measures see (Jalili et al., 2014).

The input signal I(t) is obtained from the original music song

OneMic by the cochleamodel described in Section 2 (see Figure 1).

The song has a length of about 4.5 min and the sampling rate of the

obtained input signal is given by fs = 192 kHz. Sampling is the

reduction of a continuous-time signal to a discrete-time signal, e.g.,

the conversion of a sound wave (a continuous signal) to a sequence

of samples (a discrete-time signal). The sampling rate fs is then the

average number of samples obtained in one second. According to

the Nyquist criterion, the frequency information of I(t) is then

band-limited to fb < 1
2fs.

5 Frequency bands and coherence

Next, we investigate dynamical scenarios emerging from an

external stimulus in the auditory cortices of both hemispheres (k =

FIGURE 3
Coherence between network dynamics and external stimulus:
coherence measure γ in dependence on the characteristic music
frequency nb (in Hz). The labeling on the upper x-axis denotes the
corresponding frequency fb = nb/fFHN in the brain, where fFHN ≈
0.4 is the dimensionless frequency of the FHNmodel, and the purple
shaded region indicates the gamma-band (fb ≈ 30–120 Hz). The
vertical bars indicate the standard deviation of the coherencemeasure
for an ensemble of 200 simulations. The dashed line is obtained by a
Savitzky–Golay filter. Other parameters are given by σ = 0.7, ς = 0.15,
ϵ = 0.05, a = 0.5, and ϕ � π

2 − 0.1.
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41, 86). In order to compare our simulations with the empirical

analysis of the influence of music upon the brain (Hartmann and

Bader, 2014, Hartmann and Bader, 2020, see also Section 6), wemay

choose different frequency bands nb, and hence a different scaling of

the time in the external stimulus. This can be visualized by plotting

the coherence measure γ in dependence on the characteristic

frequency nb (in Hz), see Figure 3. We find a strong non-

monotonic behavior of γ(nb) and it turns out that by taking the

frequency band nb of the external stimulus as a control parameter,

one can change the level of coherence between the system dynamics

and the external stimulus. Although the standard deviation of the

coherence measure is relatively large for an ensemble size of

200 simulations (indicated by the vertical bars), we find a

pronounced maximum of the coherence γ for nb = 12–48 Hz

corresponding to the gamma-band of brain waves (fb ≈
30–120 Hz) shown in Figure 3 by purple shading. This means

that for that frequency nb the level of synchronization follows the

external signal most closely. It is in agreement with what has been

observed in empirical brain analysis of the perception of music

(Hartmann and Bader, 2014, 2020).

Figures 4A–C depicts the details of the change of the time series

of the Kuramoto order parameter R(t) with increasing values of the

frequency band nb of the external stimulus I(t), which is shown in

Figure 4D. It represents a part of the neural input signal I(t)

constructed from the music song One Mic and shown in

Figure 2B. We take a closer look at the temporal evolution of R

and themean phase velocitiesωk in the system for different values of

nb chosen from three different regimes in Figure 3: With increasing

value of nb in panels (A)-(C), the time scale of the simulated neural

output in Hz changes from lower to higher frequencies fb which is

also seen in the temporal fluctuations of R(t). Furthermore we

observe on the one hand an increasing amplitude of the temporal

fluctuations of R. On the other hand, the temporal average of the

Kuramoto order parameter R decreases with increasing nb, marked

by a horizontal grey dotted line in the left column: While for a small

value of nb = 5 Hz in Figure 4A the Kuramoto order parameter R

assumes rather large values, and small valuesR< 0.2 are not reached,

for high values of nb = 90 Hz in Figure 4C rather small values of R

are measured. This trend can be seen by means of the temporal

average of the Kuramoto order parameter R. For nb = 30 Hz in

Figure 4B, the temporal average of R takes a value ≈ 0.5 and the

time evolution shows regular oscillations between low (R < 0.2) and

high values (R> 0.8). This aspect will be further discussed in the next

section, since it can also be observed in experiments.

As shown in Figure 3, in the case of nb = 30 Hz the coherence γ

is maximum. Even though a higher value of the temporal average of

R(t), as observed in Figure 4A for nb = 5, might imply a higher value

of γ according to Eq. (8), Figure 4B shows that it is more important

that R(t) and I(t) show a similar temporal modulation, as in Figure

4B for nb = 30. Despite the averaging over 250 simulations over the

whole simulation time in Figure 3, the time segment in Figure 4B

shows such a similarity in themodulation:We can see simultaneous

drops of R(t) < 0.1 and I(t) < 0.1 for example at t ≈ 138, 140, 150,

whereas the values in between are higher, even if they fluctuate.

FIGURE 4
Dynamical scenarios: network dynamics for low and high values of coherence γ. Kuramoto order parameter R versus time in s (left column) and
dimensionless mean phase velocity profile ωk = 2πfk versus k (right column) for increasing values of the frequency nb of the external stimulus I(t) (A)
nb = 5 Hz (B) nb = 30 Hz and (C) nb = 90 Hz. In panel (D) the corresponding external stimulus I(t) is plotted, which is a blowup of a part of Figure 2B.
The vertical dashed line in the right column separates the left and right brain hemisphere; the red dots mark the nodes of the auditory regions
(k = 41, 86). The horizontal grey dotted line indicates the temporal average of the Kuramoto order parameter R in the left column, and the spatial
average of the mean-field frequency �ω in the right column. Other parameters are as in Figure 3.
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In the right column of Figure 4 the dimensionless mean

phase velocities ωk of all nodes are plotted, the horizontal grey

dotted line indicates the spatial average, i.e., the collective mean-

field frequency �ω, which does not change for different nb since it

is determined by the intrinsic collective dynamics. In contrast,

the node dynamics of the auditory regions (k = 41, 86), indicated

by red dots, depends on nb since it receives the external input

signal which has a higher frequency in dimensionless units if the

time is scaled in larger units 1/nb. For nb = 5 Hz in Figure 4A, the

mean phase velocity of the auditory cortex is higher compared to

the spatial average of the collective mean-field frequency �ω. For

nb = 30 Hz in Figure 4B, the mean phase velocity of the auditory

cortex approaches �ω having a bigger impact on the dynamics of

the whole system than in Figure 4A for nb = 5 Hz.

Remarkable is the fact of a dynamical asymmetry shown by

the mean phase velocities in Figure 4C: While the nodes of the

right hemisphere exhibit equal mean phase velocity, i.e., they are

frequency synchronized, the left hemisphere remains

desynchronized and exhibits on average faster dynamics. This

may indicate that regardless of the input I(t) the system can

exhibit partial synchronization. Such behavior is similar to the

dynamics of unihemispheric sleep studied in (Ramlow et al.,

2019), where no external input has been applied to the dynamical

system. In such states one hemisphere is synchronized, whereas

the other hemisphere is partially desynchronized.

6 Comparison with experiments

Based on the correlations between the processes associated with

the perception of musical form and neural synchronization, we

expect the dynamics of neural synchronization to correspond to

the amplitude dynamics of the stimulus. Again, the musical

amplitude corresponds to perceived loudness, and is calculated as

integration of energy over time intervals. Then synchronization

between different brain regions is high when the amplitude of the

musical piece is high, and synchronization is low when the amplitude

of the piece is low.We expect such brain synchronization to be strong

due to the prominence of the gamma-band in perception of musical

parameters.

In an experiment, we have recorded the

electroencephalogram (EEG) from human scalps to examine

the perception of music large-scale form (see Figure 5)1.

25 musically skilled subjects listened to the song One Mic

from the artist Nas three times each. The song was released in

2001 on his Album Stillmatic on Columbia Records. The

electroencephalogram (EEG) signals were recorded with a

sample rate of 500 Hz from 32 electrodes, positioned

following the 10–20 method of placement (Jasper, 1958). In

this experiment, we are focused on the temporal dynamics of

synchronization related to the time span of the musical form and

therefore do not take advantage of methods for the inverse

modeling of EEG data (Schoffelen and Gross, 2009; Palva and

Palva, 2012).

After artifact correction, recorded data for each channel

has been averaged over subjects and trials to obtain a grand

average of 75 trials for each channel to increase the signal

to noise ratio and enhance event-related potentials. This type

FIGURE 5
Recorded and averaged electroencephalogram (EEG) data: top and middle plot show recorded EEG time series after pre-processing for one
electrode (Fp1) from two different participants. The bottom plot shows the time series of the same electrode averaged over 25 subjects and three trials.

1 We have taken into account the usual guidelines regarding ethical
procedure (informed consent). The subjects were mainly found and
recruited through the Institute of Systematic Musicology Hamburg and
had instrumental lessons on at least one instrument (mean duration
10.0 years, standard deviation 4.6 years) or corresponding experience
as DJ. They participated in accordance with local ethics committee
guidelines.
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of averaging reveals evoked potentials (in contrast to induced

potentials) and is related to the presented stimulus in a classical

event-related potential manner (Tallon-Baudry et al., 1996;

Tallon-Baudry and Bertrand, 1999; Zanto et al., 2005). We

are aware that our choice for evoked potentials pushes

subjective, individual brain activity that is not stimulus-

locked into the background. Indeed, it was found that this

subjective, individual brain activity, often referred to as ‘noise’,

contains valuable information that is lost when averaging

over many subjects (Tallon-Baudry and Bertrand, 1999). On

the other side, recent studies on this issue have shown strong

overlap between subjects’ brain activity (Hasson et al., 2004;

Dmochowski et al., 2012; Abrams et al., 2013; Kaneshiro et al.,

2021). Therefore, we choose to take advantage of the improvement

in the signal-to-noise ratio over the disadvantage of the individual

portion of the perception. Individual perception might be subject

to future studies. Also note that the choice of using a correlation

analysis between single electrodes is not including redundant

synchrony due to overlap of electrical fields between electrodes,

since the positions of the electrodes do not differ over measurement

time. Therefore, the differences in correlation strength between

different electrodes cannot be explained by spurious synchrony

(Holsheimer and Feenstra, 1977; Kayser and Tenke, 2006;

Bhavsar et al., 2018). For a more detailed description of the

experimental procedure, technical details and pre-processing, see

(Hartmann and Bader, 2020).

In Figure 6, all channels have been decomposed into nine

independent frequency bands that correspond approximately

to the frequency bands mentioned above by using a

continuous wavelet transformation with a Mexican Hat

wavelet (Freeman and Quian Quiroga, 2013). In contrast to

a bandpass filter with a subsequent Hilbert transform, using a

Mexican hat wavelet for filtering is fast and efficient since one can

decompose the recorded EEG data into the desired frequency

bands in one step by defining the number of octaves. The

continuous wavelet transform of a uniformly sampled sequence

{x1, x2, . . . xn} = {x (t0), x (t0 +Δt), . . ., x (t0 + (n − 1)Δt)} is given by

w u, s( ) � 1�
s

√ ∑n
k�1

xk ψ
k − u( )Δt

s
( ), (10)

where s ∈ R corresponds to the frequency of the EEG band and

u = 1, . . . , n labels the wavelet coefficients with the number n of

analyzed sample points defining the time window of observation.

As wavelet function ψ a Mexican Hat wavelet is used, given by

ψ x( ) � −2��
π4

√ ���
3σ

√ x2

σ2
− 1( )exp − x2

2σ2
( ), (11)

where σ is the width of the wavelet. The EEG bands used align very

well with a musical scale, where each higher band doubles the

frequency of its respective lower band, corresponding to a musical

octave. Please note that this relation might only be at chance, still it

FIGURE 6
Nine frequency bands (FB) after wavelet transformation: Result of the continuous wavelet transform for the first 2 seconds of the averaged time
series in Figure 5. From top to bottom frequency bands correspond to FB 1: 125 − 250 Hz, FB 2: 62.5 − 125 Hz, FB 3: 31.25 − 62.5 Hz, FB 4: 15.63 −

31.25 Hz, FB 5: 7.81 − 15.63 Hz, FB 6: 3.91 − 7.81 Hz, FB 7: 1.95 − 3.91 Hz, FB 8: 0.98 − 1.95 Hz, FB 9: 0.49–0.98 Hz.
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may also relate to the fact that all human senses relate physics to

perception in a logarithmic way (Schneider, 2018). It is therefore

convenient to scale s in the wavelet transform in the same

mathematical way as an equal-tempered musical scale like soct = α

2oct−1, where oct∈ {1, 2, . . . , 9} is the octave number related to the nine

frequency bands shown in Figure 6 and α is the smallest wavelet scale.

For each electrode pair of these nine data sets filtered in this way,

the synchronization is calculated by means of the Pearson

correlation coefficient r (see Eq. 9) in the next step. Thus, we

can analyze the synchronization dynamics as a function of the

frequency bands. Since we aim to reveal synchronization dynamics

on the level of musical form, we calculate the correlation within

successive 1-s time windows for each possible pair of electrodes of

eachwavelet-filtered dataset, which results in 32*31/2*9 = 4,464 time

series of correlation coefficients representing the synchronization

dynamics between electrode-pairs with a resolution of 1 s, and each

of these time series has a length of 270 s corresponding to the

stimulus length (see Figure 7).

In order to relate this huge number of time series of correlation

coefficients to the amplitude dynamics of the stimulus, we first

average the amplitude of the stimulus and the correlation

coefficients calculated for the 496 electrode pairs and nine

frequency bands within successive 4-s windows to avoid minor

amplitude fluctuations and obtain a scaling corresponding to

about two musical bars that fits to changes related to the

musical form (Figure 7). In the second step, we correlate all

4,464 time series of correlation coefficients with the amplitude

dynamics of the stimulus. In the third step, we select the 25 time

series of correlation coefficients per frequency band that correlate

most strongly with the amplitude dynamics of the stimulus, shown

in Figure 8. Now, we average these 25 time series of correlation

coefficients per frequency band, which results in a single time

series of 270 s length for each frequency band, respectively. These

averaged time series of correlation coefficients, representing the

synchronization dynamics for each frequency band, are correlated

over the whole recorded time with the amplitude dynamics of the

FIGURE 7
Example of the synchronization dynamics between two electrodes. Dashed black line: Time series of the Pearson correlation coefficient r
calculated for successive 1-s time windows (n = 500 in Eq. 9 between averaged EEG recordings of electrode Fp1 (lower plot in Figure 5) and
electrode T7. Blue line: Pearson correlation coefficient averaged over four consecutive 1-s time windows of the dashed black line.

FIGURE 8
Comparison of whole brain synchronization dynamics and representation of the musical form of the stimulus. The black line shows the
amplitude dynamics of the stimulus as a representation of the musical form, averaged over each of four consecutive seconds. The blue line shows
the average of the 25 correlation time series between two electrodes from each frequency band that correlates most strongly with the amplitude
dynamics of the stimulus.
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stimulus (see Figure 9A). It can be shown that the low and the high

gamma-band (frequency bands 2–3) correlate strongly with the

stimulus as expected, but also the slow oscillations (frequency

bands 7–9) correlate very well (see discussion below). By this, we

can reveal how good the synchronization dynamics in each

frequency band corresponds to the amplitude dynamics of the

stimulus on the level of musical form. In the next step, we average

these time series representing the synchronization dynamics for

each frequency band and correlate the resulting time series,

representing the synchronization dynamics of the whole brain,

with the amplitude dynamics of the stimulus as well. These two

time series correlate with a Pearson coefficient of r = 0.76.

Therefore, we can conclude that the higher the amplitude of

the stimulus, the higher the synchronization between the most

correlated time series of the different frequency bands. According

to (Cohen, 1992), this is a strong effect.

As shown in Figure 8, the increased synchrony is not constant

during music listening, but rather synchronization dynamics

follows the sound amplitude. Note that the correlation between

sound amplitude (perceived loudness) or other parameters

like brightness or fractal correlation dimension (see inset of

Figure 9A) and brain synchronization is not trivial. First, brain

synchronization appears at frequencies much lower than most

musical frequencies. Secondly, synchronization appears with

multiple perceptual parameters. Thirdly, increasing, e.g., the

sound amplitude might lead to an increase of the network

amplitude, but here it leads to an enhanced synchronization,

pointing to a highly nonlinear process in the network, caused

by the activity of the brain when perceiving sound.

It is interesting to note that the correlation with the stimulus

is highest when the time series from all frequency bands are averaged.

The correlation coefficient of the averages of the 25 most correlated

time-series as a function of the individual frequency bands is shown in

Figure 9A. It shows two regimes of high correlation, separated by a

frequency band (FB 5) with low correlation. Here, the central nervous

system in the spinal cord and its relation to the locomotor system are

expected to be responsible for the dynamics in the frequency bands

6–9 due to their frequency range close to walking and dancing (van

Noorden and Moelants, 1999). Note that the electroencephalogram

(EEG) recordings are performed on the skull, and therefore represent

the brain dynamics of the neocortex which is interacting with the

brain stem. Therefore, the high correlations between synchronization

and musical form in frequency bands 6–9 can be interpreted as

caused by the interaction of the neocortex with subcortical brain

regions. Likewise, the high correlations in frequency bands 2–3 are

interpreted as activity of the neocortex solely, as expected. The results

therefore also suggest a separation of musical form-related

synchronization between cortical (frequency bands 2–3) and

subcortical (frequency bands 6–9) regions.

The high correlations observed in frequency bands 2–3 for the

sound amplitude (see Figure 9A) as well as for the fractal correlation

dimension (see inset of Figure 9A) correspond to a frequency range

of 31.25–125 Hz (gamma-band). On the other hand in Figure 3, the

strongest coherence between the Kuramoto order parameter

(measure for global neural synchronization) and the external

input can be found for nb = 10–40 Hz. Taking into account that

the natural frequency of each node is fFHN≈ 0.4, we can calculate the

corresponding frequency band fb = nb/fFHN. As shown by the upper

x-axis in Figure 3, the strongest coherence in our model can be

observed for a frequency band of fb = 40–100 Hz, which agrees with

the gamma-band in the brain. For comparison with the experiment,

we show the corresponding numerically simulated results in

Figure 9B, where the respective frequency bands are averaged

from Figure 3. Both experimental and numerical results show a

FIGURE 9
Comparison between experimental and numerical results (A) Experimentally recorded correlation r of the individual averages of the amplitude
dynamics for each frequency band most strongly correlated with the stimulus as a function of frequency band (FB) FB 1: 125 − 250 Hz, FB 2: 62.5 −

125 Hz, FB 3: 31.25 − 62.5 Hz, FB 4: 15.63 − 31.25 Hz, FB 5: 7.81 − 15.63 Hz, FB 6: 3.91 − 7.81 Hz, FB 7: 1.95 − 3.91 Hz, FB 8: 0.98 − 1.95 Hz, FB 9:
0.49–0.98 Hz. The inset depicts the Pearson correlation coefficient r as a function of frequency bandwhere instead of the amplitude the fractal
dimension (Grassberger and Procaccia, 1983a,b) has been used for the calculation of r. (B) Numerically simulated coherence γ between network
dynamics and external stimulus, where the corresponding frequency bands are averaged from Figure 3. As in Figure 3, the purple shaded regions in
both panels indicate the gamma-band (fb ≈ 30–120 Hz), respectively.
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pronounced maximum of correlation between stimulus and brain

dynamics for the gamma-band (frequency bands 2–3) in Figure 9.

Note that the second maximum in the experimental data (panel A),

which is due to the interaction of the neocortex with subcortical

brain regions as discussed above, is absent in the simulated data

(panel B) since the computer simulation is only performed for the

neocortex, using a cochlea input, but neglecting brain stem activity.

7 Conclusion

We have investigated the influence of music in a simulated

network of FitzHugh-Nagumo oscillators with empirical structural

connectivity obtained from healthy human subjects, and have

compared it to measured electroencephalogram (EEG) data. We

report an increase of coherence between the global dynamics and

the input signal induced by a specific music song. We have shown

that the level of coherence depends on the frequency band. We

have compared our results with experimental data, which describe

global neural synchronization between different brain regions in

the gamma-band range and its increase just before transitions

between different parts of the musical form (musical high-level

events). Such synchronization increases before musical large-scale

form boundaries, and decreases afterwards, therefore represents

musical large-scale form perception.

The transformation of sound into neural spikes takes place in the

cochlea, a part of the human ear which is directly connected to the

auditory cortex. By means of the basilar membrane, the brain is able

to perceive different frequencies organized in so-called critical bands.

We have applied a cochlea model to transform a specific music song

into an input signal representing neural spikes evoked by the music

song. This input signal has then been supplied to a simulated network

of neural oscillators with empirical structural connectivity. By the

transformation of the dimensionless time units of the oscillatormodel

to real time units, we have investigated dynamical scenarios in

dependence on the introduced frequency band parameter. To

quantify moreover the overlap between input signal and network

dynamics, we have introduced a coherencemeasure. It has turned out

that this coherence measure depends sensitively on the frequency

band and has its maximum in the gamma-band. Therefore,

depending on the frequency band, coherence can be induced

between the dynamics of the system and its input signal.

These results are in accordance with our own and previous

experiments (Hartmann and Bader, 2014, 2020) where music

has also been found to induce a certain degree of synchrony in

the human brain. We have shown that listening to music can

have a remarkable influence on the brain dynamics, in

particular, a periodic alternation between synchronization

and desynchronization which is strongly related to the

music perceived. We have experimentally analyzed in detail

the influence of real music on the neural activity with respect to

the common frequency bands in the brain. By means of the

Pearson correlation coefficient of the sound amplitude as well

as the fractal correlation dimension, we have found the

gamma-band to be important for musical form perception.

Just as in the computer simulation, we have found a

pronounced maximum for this frequency range. Moreover

as in simulation, the increased gamma-band synchrony is

not constant during music listening in our experiment, but

rather synchronization dynamics follows the musical large-

scale form represented by a perceptual related characteristic of

the stimulus, i.e., the amplitude and fractal correlation

dimension. Even though we chose a specific piece of music

in this study, we expect future work to show that these results

can be generalized.

Furthermore, the results suggest a separation in musical form-

related brain synchronization between high brain frequencies,

associated with neocortical activity, and low frequencies in the

range of dance movements, associated with interactivity between

cortical and subcortical regions. Besides, an alternation between

synchronization and desynchronization reflects the variability of

the system; this can be seen as a critical state between a fully

synchronized and a desynchronized state. It is known that the

brain is operating in a critical state at the edge of different

dynamical regimes (Massobrio et al., 2015; Shi et al., 2022),

exhibiting hysteresis and avalanche phenomena as seen in

critical phenomena and phase transitions (Ribeiro et al., 2010;

Steyn-Ross and Steyn-Ross, 2010; Kim et al., 2018).

By choosing appropriate parameters and measures, we have

reported an intriguing dynamical behavior in dependence on the

frequency bands, and have observed the induced increase of

coherence both in numerical and experimental setups. To sum

up, music supplied to the brain allows for a high coherence and

correlation between musical input and brain dynamics especially

in the gamma-band. This insight may be used to fathom the

general modalities of the influence of music on the human brain.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Ethics statement

Ethical review and approval was not required for the study on

human participants in accordance with the local legislation and

institutional requirements. The patients/participants provided

their written informed consent to participate in this study.

Author contributions

JS did the numerical simulations and the theoretical

analysis, LH has performed the experiments. RB and ES

Frontiers in Network Physiology frontiersin.org14

Sawicki et al. 10.3389/fnetp.2022.910920

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.910920


supervised the study. All authors designed the study

and contributed to the preparation of the manuscript.

All the authors have read and approved the final manuscript.

Funding

This work was supported by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation,

project No. 429685422) and the Open Access Publication Fund

of TU Berlin.

Acknowledgments

We are grateful to Antonín Škoch and Jaroslav Hlinka for

preparing the example structural connectivity matrices.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The handling editor KL declared a past collaboration with the

authors JS and ES.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abrams, D., Ryali, S., Chen, T., Chordia, P., Khouzam, A., Levitin, D., et al. (2013).
Inter-subject synchronization of brain responses during natural music listening.
Eur. J. Neurosci. 34, 1458–1469. doi:10.1111/ejn.12173

Baars, B. J. (2006). Global workspace theory of consciousness: Toward a cognitive
neuroscience of human experience. Prog. Brain Res. 150, 45–53. doi:10.1016/s0079-
6123(05)50004-9

Bader, R. (2018). Cochlear spike synchronization and neuron coincidence
detection model. Chaos 28, 023105. doi:10.1063/1.5011450

Bader, R. (2021). How music works. Cham: Springer. doi:10.1007/978-3-030-
67155-6

Bader, R. (2020). Neural coincidence detection strategies during perception of
multi-pitch musical tones. http//arXiv.org/abs/2001.06212v1.

Bader, R. (2013). Nonlinearities and synchronization in musical acoustics and
music psychology. Berlin: Springer.

Bader, R. (2015). Phase synchronization in the cochlea at transition from
mechanical waves to electrical spikes. Chaos 25, 103124. doi:10.1063/1.4932513

Bader, R. (2017). Pitch and timbre discrimination at wave-to-spike transition in
the cochlea. http://ArXiv.org/abs/1711.05596.

Bader, R., Zielke, A., and Franke, J. (2021). Timbre-based machine learning of
clustering Chinese and Western Hip Hop music. doi:10.31235/osf.io/8ef7g

Bassett, D. S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20,
353. EP. Review Article. doi:10.1038/nn.4502

Bassett, D. S., Zurn, P., and Gold, J. I. (2018). On the nature and use of models in
network neuroscience. Nat. Rev. Neurosci. 19, 566–578. doi:10.1038/s41583-018-
0038-8

Bastos, A. M., and Schoffelen, J. M. (2015). A tutorial review of functional
connectivity analysis methods and their interpretational pitfalls. Front. Syst.
Neurosci. 9, 175. doi:10.3389/fnsys.2015.00175

Bergner, A., Frasca, M., Sciuto, G., Buscarino, A., Ngamga, E. J., Fortuna, L., et al.
(2012). Remote synchronization in star networks. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 85, 026208. doi:10.1103/physreve.85.026208

Bhattacharya, J., Petsche, H., and Pereda, E. (2001). Long-range synchrony in the
gamma band: Role in music perception. J. Neurosci. 21, 6329–6337. doi:10.1523/
jneurosci.21-16-06329.2001

Bhavsar, R., Sun, Y., Helian, N., Davey, N., Mayor, D., and Steffert, T. (2018). The
correlation between eeg signals as measured in different positions on scalp varying
with distance. Procedia Comput. Sci. 123, 92–97. doi:10.1016/j.procs.2018.01.015

Blinowska, K. J. (2011). Review of the methods of determination of directed
connectivity from multichannel data.Med. Biol. Eng. Comput. 49, 521–529. doi:10.
1007/s11517-011-0739-x

Bonetti, L., Brattico, E., Carlomagno, F., Donati, G., Cabral, J., Haumann, N.
T., et al. (2021). Rapid encoding of musical tones discovered in whole-brain

connectivity. Neuroimage 245, 118735. doi:10.1016/j.neuroimage.2021.
118735

Buhusi, C., and Meck, W. (2009). Relativity theory and time perception: Single or
multiple clocks? PloS one 4, e6268. doi:10.1371/journal.pone.0006268

Buhusi, C., and Meck, W. (2005). What makes us tick? Functional and neural
mechanisms of interval timing. Nat. Rev. Neurosci. 6, 755–765. doi:10.1038/
nrn1764

Buzsáki, G. (2006). Rhythms of the brain. Oxford, United Kingdom: Oxford
University Press.

Chernihovskyi, A., and Lehnertz, K. (2007). Measuring synchronization with
nonlinear excitable media. Int. J. Bifurc. Chaos 17, 3425–3429. doi:10.1142/
s0218127407019159

Chernihovskyi, A., Mormann, F., Müller, M., Elger, C. E., Baier, G., Lehnertz, K.,
et al. (2005). EEG analysis with nonlinear excitable media. J. Clin. Neurophysiol. 22,
314–329. doi:10.1097/01.wnp.0000179968.14838.e7

Chouzouris, T., Omelchenko, I., Zakharova, A., Hlinka, J., Jiruska, P., Schöll, E.,
et al. (2018). Chimera states in brain networks: Empirical neural vs. modular fractal
connectivity. Chaos 28, 045112. doi:10.1063/1.5009812

Cohen, J. (1992). A power primer. Psychol. Bull. 112, 155–159. doi:10.1037//0033-
2909.112.1.155

Curran Associates, Inc (2018). “8th annual international conference on
biologically inspired cognitive architectures, BICA 2017,” in Procedia Computer
Science Volume 123, Moscow, Russia, August 1-6, 2017.

de Boer, E. (1991). Auditory physics. physical principles in hearing theory. iii.
Phys. Rep. 203, 125–231. doi:10.1016/0370-1573(91)90068-w

Dehaene, S., Changeux, J. P., and Naccache, L. (2011). “The global neuronal
workspace model of conscious access: From neuronal architectures to clinical
applications,” in Characterizing consciousness: From cognition to the clinic?
Editors S. Dehaene and Y. Christen (Berlin, Heidelberg: Springer-Verlag Berlin
Heidelberg), 55–84. Research and Perspectives in Neurosciences. doi:10.1007/978-
3-642-18015-6_4

Deliége, I., and Melen, M. (2014). “Cue abstraction in the representation musical
form,” in Perception and cognition of music. Editors I. Deliége and J. Sloboda (Hove:
Psychology Press), 387–412.

Deutsch, D. (2013). The psychology of music. Academic Press series in cognition
and perception. 3rd ed. edn. Oxford: Academic.

Dmochowski, J. P., Sajda, P., Dias, J., and Parra, L. C. (2012). Correlated
components of ongoing eeg point to emotionally laden attention - a possible
marker of engagement? Front. Hum. Neurosci. 6, 112. doi:10.3389/fnhum.2012.
00112

Drauschke, F., Sawicki, J., Berner, R., Omelchenko, I., and Schöll, E. (2020). Effect
of topology upon relay synchronization in triplex neuronal networks. Chaos 30,
051104. doi:10.1063/5.0008341

Frontiers in Network Physiology frontiersin.org15

Sawicki et al. 10.3389/fnetp.2022.910920

https://doi.org/10.1111/ejn.12173
https://doi.org/10.1016/s0079-6123(05)50004-9
https://doi.org/10.1016/s0079-6123(05)50004-9
https://doi.org/10.1063/1.5011450
https://doi.org/10.1007/978-3-030-67155-6
https://doi.org/10.1007/978-3-030-67155-6
http://http//arXiv.org/abs/2001.06212v1
https://doi.org/10.1063/1.4932513
http://ArXiv.org/abs/1711.05596
https://doi.org/10.31235/osf.io/8ef7g
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/s41583-018-0038-8
https://doi.org/10.1038/s41583-018-0038-8
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.1103/physreve.85.026208
https://doi.org/10.1523/jneurosci.21-16-06329.2001
https://doi.org/10.1523/jneurosci.21-16-06329.2001
https://doi.org/10.1016/j.procs.2018.01.015
https://doi.org/10.1007/s11517-011-0739-x
https://doi.org/10.1007/s11517-011-0739-x
https://doi.org/10.1016/j.neuroimage.2021.118735
https://doi.org/10.1016/j.neuroimage.2021.118735
https://doi.org/10.1371/journal.pone.0006268
https://doi.org/10.1038/nrn1764
https://doi.org/10.1038/nrn1764
https://doi.org/10.1142/s0218127407019159
https://doi.org/10.1142/s0218127407019159
https://doi.org/10.1097/01.wnp.0000179968.14838.e7
https://doi.org/10.1063/1.5009812
https://doi.org/10.1037//0033-2909.112.1.155
https://doi.org/10.1037//0033-2909.112.1.155
https://doi.org/10.1016/0370-1573(91)90068-w
https://doi.org/10.1007/978-3-642-18015-6_4
https://doi.org/10.1007/978-3-642-18015-6_4
https://doi.org/10.3389/fnhum.2012.00112
https://doi.org/10.3389/fnhum.2012.00112
https://doi.org/10.1063/5.0008341
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.910920


Engel, A. K., and Fries, P. (2016). Chap. 3-Neuronal oscillations, coherence,
and consciousnessin The neurology of conciousness (Second Edition)
(Cambridge, Massachusetts: Academic Press), 49–60. doi:10.1016/b978-0-
12-800948-2.00003-0

Engel, A. K., Fries, P., and Singer, W. (2001). Dynamic predictions: Oscillations
and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716. doi:10.
1038/35094565

Engel, A. K., and Singer, W. (2001). Temporal binding and the neural correlates of
sensory awareness. Trends Cogn. Sci. 5, 16–25. doi:10.1016/s1364-6613(00)01568-0

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of
nerve membrane. Biophys. J. 1, 445–466. doi:10.1016/s0006-3495(61)86902-6

Freeman, W. J., and Quian Quiroga, R. (2013). Imaging brain function with EEG:
Advanced temporal and spatial analysis of electroencephalographic signals. New
York: Springer.

Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental
process in cortical computation. Annu. Rev. Neurosci. 32, 209–224. doi:10.1146/
annurev.neuro.051508.135603

Friston, K. J., and Friston, D. A. (2013). A free energy formulation of music
generation and perception: Helmholtz revisited. Heidelberg: Springer International
Publishing, 43–69. doi:10.1007/978-3-319-00107-4_2

Gambuzza, L. V., Cardillo, A., Fiasconaro, A., Fortuna, L., Gómez-Gardeñes, J.,
Frasca, M., et al. (2013). Analysis of remote synchronization in complex networks.
Chaos 23, 043103. doi:10.1063/1.4824312

Gerster, M., Berner, R., Sawicki, J., Zakharova, A., Skoch, A., Hlinka, J., et al.
(2020). FitzHugh-Nagumo oscillators on complex networks mimic epileptic-
seizure-related synchronization phenomena. Chaos 30, 123130. doi:10.1063/5.
0021420

Glantz, S. A. (2002). Primer of biostatistics. 5 edn. New York: McGraw-Hill.

Gollo, L. L., Mirasso, C. R., Atienza, M., Crespo-Garcia, M., and Cantero, J. L.
(2011). Theta band zero-lag long-range cortical synchronization via
hippocampal dynamical relaying. PLoS ONE 6, e17756. doi:10.1371/journal.
pone.0017756

Grassberger, P., and Procaccia, I. (1983a). Characterization of strange attractors.
Phys. Rev. Lett. 50, 346–349. doi:10.1103/physrevlett.50.346

Grassberger, P., and Procaccia, I. (1983b). Measuring the strangeness of strange
attractors. Phys. D. Nonlinear Phenom. 9, 189–208. doi:10.1016/0167-2789(83)
90298-1

Gray, C. M., and Singer, W. (1989). Stimulus-specific neuronal oscillations in
orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. U. S. A. 86,
1698–1702. doi:10.1073/pnas.86.5.1698

Guevara Erra, R., Perez Velazquez, J. L., and Rosenblum, M. (2017). Neural
synchronization from the perspective of non-linear dynamics. Front. Comput.
Neurosci. 11, 98. doi:10.3389/fncom.2017.00098

Guo, X. X., Xiang, S. Y., Qu, Y., Han, Y. N., Wen, A. J., Hao, Y., et al. (2021).
Enhanced prediction performance of a neuromorphic reservoir computing system
using a semiconductor nanolaser with double phase conjugate feedbacks. J. Light.
Technol. 39, 129–135. doi:10.1109/jlt.2020.3023451

Hartmann, L., and Bader, R. (2020). Neural synchronization of music large-scale
form. http://arXiv.org/abs/2005.06938v1.

Hartmann, L., and Bader, R. (2014). Neuronal synchronization of musical large
scale form: An eeg-study. Proc. Meet. Acoust. 168th Meet. Acoust. Soc. Am. 22, 1.

Hasson, U., Nir, Y., Fuhrmann, G., and Malach, R. (2004). Intersubject
synchronization of cortical activity during natural vision. Science 303,
1634–1640. doi:10.1126/science.1089506

Hlinka, J., and Coombes, S. (2012). Using computational models to relate
structural and functional brain connectivity. Eur. J. Neurosci. 36, 2137–2145.
doi:10.1111/j.1460-9568.2012.08081.x

Holsheimer, J., and Feenstra, B. W. A. (1977). Volume conduction and eeg
measurements within the brain: A quantitative approach to the influence of
electrical spread on the linear relationship of activity measured at different
locations. Electroencephalogr. Clin. Neurophysiol. 43, 52–58. doi:10.1016/0013-
4694(77)90194-8

Hou, Y. S., Xia, G. Q., Jayaprasath, E., Yue, D. Z., and Wu, Z. M. (2020). Parallel
information processing using a reservoir computing system based on mutually
coupled semiconductor lasers. Appl. Phys. B 126, 40. doi:10.1007/s00340-019-
7351-4

Hubbard, A. E., and Mountain, D. C. (1996). “Analysis and synthesis of cochlear
mechanical function using models,” in Auditory computation. Editors
H. L. Hawkins, T. A. McMullen, A. N. Popper, and R. R. Fay (New York:
Springer), 62–120. chap. 3. doi:10.1007/978-1-4612-4070-9_3

Jalili, M., Barzegaran, E., and Knyazeva, M. G. (2014). Synchronization of eeg:
Bivariate and multivariate measures. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 212.
doi:10.1109/tnsre.2013.2289899

Jasper, H. H. (1958). The ten-twenty electrode system of the international
federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375.

Joris, P. X., Carney, L. H., Smith, P. H., and Yin, T. C. T. (1994). Enhancement of
neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones
at the characteristic frequency. J. Neurophysiol. 71, 1022–1036. doi:10.1152/jn.1994.
71.3.1022

Kacprzyk, J., and Pedrycz, W. (2015). “Springer handbook of computational
intelligence,” in Springer handbooks (Heidelberg, Germany: Springer Berlin
Heidelberg).

Kaneshiro, B., Nguyen, D. T., Norcia, A. M., Dmochowski, J. P., and Berger, J.
(2021). Inter-subject eeg correlation reflects time-varying engagement with natural
music. Preprint. doi:10.1101/2021.04.14.439913

Kayser, J., and Tenke, C. E. (2006). Principal components analysis of laplacian
waveforms as a generic method for identifying erp generator patterns: I.
Evaluation with auditory oddball tasks. Clin. Neurophysiol. 117, 348–368. doi:10.
1016/j.clinph.2005.08.034

Keil, A., Müller, M. M., Ray, W. J., Gruber, T., and Elbert, T. (1999). Human
gamma band activity and perception of a gestalt. J. Neurosci. 19, 7152–7161. doi:10.
1523/jneurosci.19-16-07152.1999

Kim, H., Moon, J.-Y., Mashour, G. A., and Lee, U. (2018). Mechanisms of
hysteresis in human brain networks during transitions of consciousness and
unconsciousness: Theoretical principles and empirical evidence. PLoS
Comput. Biol. 14, e1006424. doi:10.1371/journal.pcbi.1006424

Koelsch, S. (2014). Brain correlates of music-evoked emotions.Nat. Rev. Neurosci.
15, 170–180. doi:10.1038/nrn3666

Koelsch, S., Rohrmeier, M., Torrecuso, R., and Jentschke, S. (2013). Processing of
hierarchical syntactic structure in music. Proc. Natl. Acad. Sci. U. S. A. 110,
15443–15448. doi:10.1073/pnas.1300272110

Kurth, E. (1931). Musikpsychologie. Berlin: Hesse.

Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. (1999). Measuring
phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208. doi:10.1002/(sici)
1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
Large, E. W., Herrera, J. A., and Velasco, M. J. (2015). Neural networks for beat

perception in musical rhythm. Front. Syst. Neurosci. 9, 159. doi:10.3389/fnsys.2015.
00159

Lehne, M., and Koelsch, S. (2015). Toward a general psychological model of
tension and suspense. Front. Psychol. 6, 79. doi:10.3389/fpsyg.2015.00079

Leman, M. (1997). “Music, gestalt, and computing,” in Studies in cognitive and
systematic musicology (Berlin, Heidelberg: Springer Berlin Heidelberg). vol. 1317 of
SpringerLink Bücher. doi:10.1007/bfb0034102

Lerdahl, F., and Jackendoff, R. (1990). A generative theory of tonal music. print
edn. Cambridge, Mass: MIT Press, 4.

Leyva, I., Sendiña-Nadal, I., Sevilla-Escoboza, R., Vera-Avila, V. P., Chholak, P.,
Boccaletti, S., et al. (2018). Relay synchronization in multiplex networks. Sci. Rep. 8,
8629. doi:10.1038/s41598-018-26945-w

Linke, S., Bader, R., and Mores, R. (2021). Modeling synchronization in human
musical rhythms using impulse pattern formulation (ipf).

Lyon, R., and Shamma, S. (1996). “Auditory representations of timbre and pitch,” in
Auditory computation. Editors H. L. Hawkins, T. A. McMullen, A. N. Popper, and
R. R. Fay (New York: Springer), 221–270. chap. 6. doi:10.1007/978-1-4612-4070-9_6

Mascetti, G. G. (2016). Unihemispheric sleep and asymmetrical sleep: Behavioral,
neurophysiological, and functional perspectives. Nat. Sci. Sleep. 8, 221–238. doi:10.
2147/NSS.S71970

Massobrio, P., de Arcangelis, L., Pasquale, V., Jensen, H. J., and Plenz, D. (2015).
Criticality as a signature of healthy neural systems. Front. Syst. Neurosci. 9, 22.
doi:10.3389/fnsys.2015.00022

Melicher, T., Horacek, J., Hlinka, J., Spaniel, F., Tintera, J., Ibrahim, I., et al.
(2015). White matter changes in first episode psychosis and their relation to the size
of sample studied: A DTI study. Schizophr. Res. 162, 22–28. doi:10.1016/j.schres.
2015.01.029

Mizrahi, A., Shalev, A., and Nelken, I. (2014). Single neuron and population
coding of natural sounds in auditory cortex. Curr. Opin. Neurobiol. 24, 103–110.
doi:10.1016/j.conb.2013.09.007

Moroni, F., Nobili, L., De Carli, F., Massimini, M., Francione, S., Marzano,
C., et al. (2012). Slow eeg rhythms and inter-hemispheric
synchronization across sleep and wakefulness in the human

Frontiers in Network Physiology frontiersin.org16

Sawicki et al. 10.3389/fnetp.2022.910920

https://doi.org/10.1016/b978-0-12-800948-2.00003-0
https://doi.org/10.1016/b978-0-12-800948-2.00003-0
https://doi.org/10.1038/35094565
https://doi.org/10.1038/35094565
https://doi.org/10.1016/s1364-6613(00)01568-0
https://doi.org/10.1016/s0006-3495(61)86902-6
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1007/978-3-319-00107-4_2
https://doi.org/10.1063/1.4824312
https://doi.org/10.1063/5.0021420
https://doi.org/10.1063/5.0021420
https://doi.org/10.1371/journal.pone.0017756
https://doi.org/10.1371/journal.pone.0017756
https://doi.org/10.1103/physrevlett.50.346
https://doi.org/10.1016/0167-2789(83)90298-1
https://doi.org/10.1016/0167-2789(83)90298-1
https://doi.org/10.1073/pnas.86.5.1698
https://doi.org/10.3389/fncom.2017.00098
https://doi.org/10.1109/jlt.2020.3023451
http://arXiv.org/abs/2005.06938v1
https://doi.org/10.1126/science.1089506
https://doi.org/10.1111/j.1460-9568.2012.08081.x
https://doi.org/10.1016/0013-4694(77)90194-8
https://doi.org/10.1016/0013-4694(77)90194-8
https://doi.org/10.1007/s00340-019-7351-4
https://doi.org/10.1007/s00340-019-7351-4
https://doi.org/10.1007/978-1-4612-4070-9_3
https://doi.org/10.1109/tnsre.2013.2289899
https://doi.org/10.1152/jn.1994.71.3.1022
https://doi.org/10.1152/jn.1994.71.3.1022
https://doi.org/10.1101/2021.04.14.439913
https://doi.org/10.1016/j.clinph.2005.08.034
https://doi.org/10.1016/j.clinph.2005.08.034
https://doi.org/10.1523/jneurosci.19-16-07152.1999
https://doi.org/10.1523/jneurosci.19-16-07152.1999
https://doi.org/10.1371/journal.pcbi.1006424
https://doi.org/10.1038/nrn3666
https://doi.org/10.1073/pnas.1300272110
https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
https://doi.org/10.3389/fnsys.2015.00159
https://doi.org/10.3389/fnsys.2015.00159
https://doi.org/10.3389/fpsyg.2015.00079
https://doi.org/10.1007/bfb0034102
https://doi.org/10.1038/s41598-018-26945-w
https://doi.org/10.1007/978-1-4612-4070-9_6
https://doi.org/10.2147/NSS.S71970
https://doi.org/10.2147/NSS.S71970
https://doi.org/10.3389/fnsys.2015.00022
https://doi.org/10.1016/j.schres.2015.01.029
https://doi.org/10.1016/j.schres.2015.01.029
https://doi.org/10.1016/j.conb.2013.09.007
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.910920


hippocampus. Neuroimage 60, 497–504. doi:10.1016/j.neuroimage.2011.
11.093

Muldoon, S. F., Pasqualetti, F., Gu, S., Cieslak, M., Grafton, S. T., Vettel, J. M., et al.
(2016). Stimulation-based control of dynamic brain networks. PLoS Comput. Biol.
12, e1005076. doi:10.1371/journal.pcbi.1005076

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission
line simulating nerve axon. Proc. IRE 50, 2061–2070. doi:10.1109/jrproc.1962.
288235

Neuhaus, C. (2013). Processing musical form: Behavioural and neurocognitive
approaches. Music. Sci. 17, 109–127. doi:10.1177/1029864912468998

Nicosia, V., Valencia, M., Chavez, M., Díaz-Guilera, A., and Latora, V. (2013).
Remote synchronization reveals network symmetries and functional modules. Phys.
Rev. Lett. 110, 174102. doi:10.1103/physrevlett.110.174102

Nikolić, D., Fries, P., and Singer, W. (2013). Gamma oscillations: Precise temporal
coordination without a metronome. Trends Cogn. Sci. 17, 54–55. doi:10.1016/j.tics.
2012.12.003

Omelchenko, I., Omel’chenko, O. E., Hövel, P., and Schöll, E. (2013). When
nonlocal coupling between oscillators becomes stronger: Patched synchrony or
multichimera states. Phys. Rev. Lett. 110, 224101. doi:10.1103/physrevlett.110.
224101

Owen, M., and Guta, M. P. (2019). Physically sufficient neural mechanisms of
consciousness. Front. Syst. Neurosci. 13, 24. doi:10.3389/fnsys.2019.00024

Palva, J. M., and Palva, S. (2012). Infra-slow fluctuations in electrophysiological
recordings, blood-oxygenation-level-dependent signals, and psychophysical time
series. Neuroimage 62, 2201–2211. doi:10.1016/j.neuroimage.2012.02.060

Petkoski, S., and Jirsa, V. K. (2019). Transmission time delays organize the brain
network synchronization. Philos. Trans. A Math. Phys. Eng. Sci. 377, 20180132.
doi:10.1098/rsta.2018.0132

Petkoski, S., Palva, J. M., and Jirsa, V. K. (2018). Phase-lags in large scale brain
synchronization: Methodological considerations and in-silico analysis. PLoS
Comput. Biol. 14, e1006160. doi:10.1371/journal.pcbi.1006160

Ramlow, L., Sawicki, J., Zakharova, A., Hlinka, J., Claussen, J. C., Schöll, E., et al.
(2019). Partial synchronization in empirical brain networks as a model for
unihemispheric sleep. EPL 126, 50007. doi:10.1209/0295-5075/126/50007

Rattenborg, N. C., Amlaner, C. J., and Lima, S. L. (2000). Behavioral,
neurophysiological and evolutionary perspectives on unihemispheric sleep.
Neurosci. Biobehav. Rev. 24, 817–842. doi:10.1016/s0149-7634(00)00039-7

Rattenborg, N. C., Voirin, B., Cruz, S. M., Tisdale, R., Dell’Omo, G., Lipp, H. P.,
et al. (2016). Evidence that birds sleep in mid-flight.Nat. Commun. 7, 12468. doi:10.
1038/ncomms12468

Ribeiro, T. L., Copelli, M., Caixeta, F., Belchior, H., Chialvo, D. R., Nicolelis, M. A.,
et al. (2010). Spike avalanches exhibit universal dynamics across the sleep-wake
cycle. PloS One 5, e14129. doi:10.1371/journal.pone.0014129

Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., Varela, F. J.,
et al. (1999). Perception’s shadow: Long-distance synchronization of human brain
activity. Nature 397, 430–433. doi:10.1038/17120

Sawicki, J., Abel, M., and Schöll, E. (2018a). Synchronization of organ pipes. Eur.
Phys. J. B 91, 24. doi:10.1140/epjb/e2017-80485-8

Sawicki, J. (2019). Delay controlled partial synchronization in complex networks.
Heidelberg: Springer. Springer Theses. doi:10.1007/978-3-030-34076-6_5

Sawicki, J., Koulen, J. M., and Schöll, E. (2021). Synchronization scenarios in three-
layer networks with a hub. Chaos 31, 073131. doi:10.1063/5.0055835

Sawicki, J., Omelchenko, I., Zakharova, A., and Schöll, E. (2018b). Delay controls
chimera relay synchronization in multiplex networks. Phys. Rev. E 98, 062224.
doi:10.1103/physreve.98.062224

Sawicki, J., Omelchenko, I., Zakharova, A., and Schöll, E. (2018c).
Synchronization scenarios of chimeras in multiplex networks. Eur. Phys. J. Spec.
Top. 227, 1161–1171. doi:10.1140/epjst/e2018-800039-y

Sawicki, J., and Schöll, E. (2021). Influence of sound on empirical brain networks.
Front. Appl. Math. Stat. 7, 662221. doi:10.3389/fams.2021.662221

Schilling, K. G., Daducci, A., Maier-Hein, K., Poupon, C., Houde, J.-C., Nath, V.,
et al. (2019). Challenges in diffusion mri tractography–lessons learned from
international benchmark competitions. Magn. Reson. Imaging 57, 194–209.
doi:10.1016/j.mri.2018.11.014

Schneider, A. (2018). “Fundamentals,” in Springer handbook of systematic
musicology. Editor R. Bader (Berlin and Heidelberg: Springer), 559–603. doi:10.
1007/978-3-662-55004-5_30

Schoffelen, J. M., and Gross, J. (2009). Source connectivity analysis with meg and
eeg. Hum. Brain Mapp. 30, 1857. 1865. doi:10.1002/hbm.20745

Schofield, B. R. (2011). Auditory and vestibular efferents. New York: Springer.
doi:10.1007/978-1-4419-7070-1

Schöll, E. (2021). Partial synchronization patterns in brain networks. Europhys.
Lett. 136, 18001. doi:10.1209/0295-5075/ac3b97

Schwartz, J. R. L., and Roth, T. (2008). Neurophysiology of sleep and wakefulness:
Basic science and clinical implications. Curr. Neuropharmacol. 6, 367–378. doi:10.
2174/157015908787386050

Shainline, J. M. (2020). Fluxonic processing of photonic synapse events. IEEE
J. Sel. Top. Quantum Electron. 26, 1–15. doi:10.1109/jstqe.2019.2927473

Shi, J., Kirihara, K., Tada, M., Fujioka, M., Usui, K., Koshiyama, D., et al. (2022).
Criticality in the healthy brain. Front. Netw. Physiol. 1, 755685. doi:10.3389/fnetp.
2021.755685

Spitmaan, H., andSeo, M., Lee, D., and Soltani, A. (2020). Multiple timescales of
neural dynamics and integration of task-relevant signals across cortex. Proc. Natl.
Acad. Sci. U. S. A. 117, 22522–22531. doi:10.1073/pnas.2005993117

Steriade, M., McCormick, D. A., and Sejnowski, T. J. (1993). Thalamocortical
oscillations in the sleeping and aroused brain. Science 262, 679–685. doi:10.1126/
science.8235588

Steyn-Ross, A., and Steyn-Ross, M. (2010). Modeling phase transitions in the
brain, 509. Berlin: Springer. doi:10.1007/978-1-4419-0796-7

Tallon, C., Bertrand, O., Bouchet, P., and Pernier, J. (1995). Gamma-range activity
evoked by coherent visual stimuli in humans. Eur. J. Neurosci. 7, 1285–1291. doi:10.
1111/j.1460-9568.1995.tb01118.x

Tallon-Baudry, C., Bertrand, O., Delpuech, C., and Pernier, J. (1996). Stimulus
specificity of phase-locked and non-phase-locked 40 hz visual responses in human.
J. Neurosci. 16, 4240–4249. doi:10.1523/JNEUROSCI.16-13-04240.1996

Tallon-Baudry, C., and Bertrand, O. (1999). Oscillatory gamma activity in
humans and its role in object representation. Trends Cogn. Sci. 3, 151–162.
doi:10.1016/s1364-6613(99)01299-1

Tamaki, M., Bang, J. W., Watanabe, T., and Sasaki, Y. (2016). Night watch in one
brain hemisphere during sleep associated with the first-night effect in humans.
Curr. Biol. 26, 1190–1194. doi:10.1016/j.cub.2016.02.063

Thaut, M. H., McIntosh, G. C., and Hoemberg, V. (2015). Neurobiological
foundations of neurologic music therapy: Rhythmic entrainment and the motor
system. Front. Psychol. 5, 1185. doi:10.3389/fpsyg.2014.01185

Tritsch, N. X., Rodríguez-Contreras, A., Crins, T. T., Wang, H. C., Borst, J. G.,
Bergles, D. E., et al. (2010). Calcium action potentials in hair cells pattern auditory
neuron activity before hearing onset. Nat. Neurosci. 13, 1050–1052. doi:10.1038/nn.
2604

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15, 273–289. doi:10.1006/nimg.2001.0978

van Noorden, L., andMoelants, D. (1999). Resonance in the perception of musical
pulse. J. New Music Res. 28, 43–66. doi:10.1076/jnmr.28.1.43.3122

Winkler, M., Sawicki, J., Omelchenko, I., Zakharova, A., Anishchenko, V., Schöll,
E., et al. (2019). Relay synchronization in multiplex networks of discrete maps. EPL
126, 50004. doi:10.1209/0295-5075/126/50004

Womelsdorf, T., and Fries, P. (2007). The role of neuronal synchronization in
selective attention.Curr. Opin. Neurobiol. 17, 154–160. doi:10.1016/j.conb.2007.02.002

Zanto, T., Large, E. W., Fuchs, A., and Kelso, J. A. S. (2005). Gamma-band
responses to perturbed auditory sequences: Evidence for synchronization of
perceptual processes. Music Percept. 22, 531–547. doi:10.1525/mp.2005.22.3.531

Zhang, L., Motter, A. E., and Nishikawa, T. (2017a). Incoherence-mediated
remote synchronization. Phys. Rev. Lett. 118, 174102. doi:10.1103/physrevlett.
118.174102

Zhang, Y., Nishikawa, T., and Motter, A. E. (2017b). Asymmetry-induced
synchronization in oscillator networks. Phys. Rev. E 95, 062215. doi:10.1103/
physreve.95.062215

Frontiers in Network Physiology frontiersin.org17

Sawicki et al. 10.3389/fnetp.2022.910920

https://doi.org/10.1016/j.neuroimage.2011.11.093
https://doi.org/10.1016/j.neuroimage.2011.11.093
https://doi.org/10.1371/journal.pcbi.1005076
https://doi.org/10.1109/jrproc.1962.288235
https://doi.org/10.1109/jrproc.1962.288235
https://doi.org/10.1177/1029864912468998
https://doi.org/10.1103/physrevlett.110.174102
https://doi.org/10.1016/j.tics.2012.12.003
https://doi.org/10.1016/j.tics.2012.12.003
https://doi.org/10.1103/physrevlett.110.224101
https://doi.org/10.1103/physrevlett.110.224101
https://doi.org/10.3389/fnsys.2019.00024
https://doi.org/10.1016/j.neuroimage.2012.02.060
https://doi.org/10.1098/rsta.2018.0132
https://doi.org/10.1371/journal.pcbi.1006160
https://doi.org/10.1209/0295-5075/126/50007
https://doi.org/10.1016/s0149-7634(00)00039-7
https://doi.org/10.1038/ncomms12468
https://doi.org/10.1038/ncomms12468
https://doi.org/10.1371/journal.pone.0014129
https://doi.org/10.1038/17120
https://doi.org/10.1140/epjb/e2017-80485-8
https://doi.org/10.1007/978-3-030-34076-6_5
https://doi.org/10.1063/5.0055835
https://doi.org/10.1103/physreve.98.062224
https://doi.org/10.1140/epjst/e2018-800039-y
https://doi.org/10.3389/fams.2021.662221
https://doi.org/10.1016/j.mri.2018.11.014
https://doi.org/10.1007/978-3-662-55004-5_30
https://doi.org/10.1007/978-3-662-55004-5_30
https://doi.org/10.1002/hbm.20745
https://doi.org/10.1007/978-1-4419-7070-1
https://doi.org/10.1209/0295-5075/ac3b97
https://doi.org/10.2174/157015908787386050
https://doi.org/10.2174/157015908787386050
https://doi.org/10.1109/jstqe.2019.2927473
https://doi.org/10.3389/fnetp.2021.755685
https://doi.org/10.3389/fnetp.2021.755685
https://doi.org/10.1073/pnas.2005993117
https://doi.org/10.1126/science.8235588
https://doi.org/10.1126/science.8235588
https://doi.org/10.1007/978-1-4419-0796-7
https://doi.org/10.1111/j.1460-9568.1995.tb01118.x
https://doi.org/10.1111/j.1460-9568.1995.tb01118.x
https://doi.org/10.1523/JNEUROSCI.16-13-04240.1996
https://doi.org/10.1016/s1364-6613(99)01299-1
https://doi.org/10.1016/j.cub.2016.02.063
https://doi.org/10.3389/fpsyg.2014.01185
https://doi.org/10.1038/nn.2604
https://doi.org/10.1038/nn.2604
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1076/jnmr.28.1.43.3122
https://doi.org/10.1209/0295-5075/126/50004
https://doi.org/10.1016/j.conb.2007.02.002
https://doi.org/10.1525/mp.2005.22.3.531
https://doi.org/10.1103/physrevlett.118.174102
https://doi.org/10.1103/physrevlett.118.174102
https://doi.org/10.1103/physreve.95.062215
https://doi.org/10.1103/physreve.95.062215
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.910920

	Modelling the perception of music in brain network dynamics
	1 Introduction
	2 From sound to neural spikes
	3 Neural network model
	4 Synchrony measures
	5 Frequency bands and coherence
	6 Comparison with experiments
	7 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


