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Sleep slow oscillations (SOs, 0.5–1.5 Hz) are thought to organize activity across

cortical and subcortical structures, leading to selective synaptic changes that

mediate consolidation of recent memories. Currently, the specific mechanism

that allows for this selectively coherent activation across brain regions is not

understood. Our previous research has shown that SOs can be classified on the

scalp as Global, Local or Frontal, where Global SOs are found inmost electrodes

within a short time delay and gate long-range information flow during NREM

sleep. The functional significance of space-time profiles of SOs hinges on

testing if these differential SOs scalp profiles are mirrored by differential depth

structure of SOs in the brain. In this study, we built an analytical framework to

allow for the characterization of SO depth profiles in space-time across cortical

and sub-cortical regions. To test if the two SO types could be differentiated in

their cortical-subcortical activity, we trained 30 machine learning classification

algorithms to distinguish Global and non-Global SOs within each individual, and

repeated this analysis for light (Stage 2, S2) and deep (slow wave sleep, SWS)

NREM stages separately. Multiple algorithms reached high performance across

all participants, in particular algorithms based on k-nearest neighbors

classification principles. Univariate feature ranking and selection showed that

the most differentiating features for Global vs. non-Global SOs appeared

around the trough of the SO, and in regions including cortex, thalamus,

caudate nucleus, and brainstem. Results also indicated that differentiation

during S2 required an extended network of current from cortical-subcortical

regions, including all regions found in SWS and other basal ganglia regions, and

amygdala and hippocampus, suggesting a potential functional differentiation in

the role of Global SOs in S2 vs. SWS. We interpret our results as supporting the

potential functional difference of Global and non-Global SOs in sleep dynamics.
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Introduction

Slow oscillations (SO, 0.5–1.5 Hz) are characteristic

graphoelements of non-random eye movement sleep (NREM)

associated with health, restorative properties of sleep and brain

homeostasis (Tononi and Cirelli, 2006; Lee et al., 2015; Fultz

et al., 2019). Occasionally, faster oscillatory rhythms (thalamo-

cortical spindles and hippocampal ripples) emerge locked at

specific SO phases. Properties of SOs like density and

amplitude, and their coordination with faster sleep rhythms,

have been connected to the improvement in memory

performance that can occur across an epoch of sleep (Maquet,

2001; Marshall et al., 2006; Walker and Stickgold, 2006;

Diekelmann and Born, 2010; Molle and Born, 2011; Ngo

et al., 2013; Rasch and Born, 2013; Dudai et al., 2015;

Ladenbauer et al., 2016; Ong et al., 2016; Papalambros et al.,

2017; Mikutta et al., 2019).

When detecting these events in a sleep EEG, each SO can be

found to occur in many (almost all) electrode locations at very

short delays, or at only some locations. Thus, there is a spatial

component to the presentation of SOs on the electrode manifold.

SOs on an EEG are also known to present interesting time

relations with other sleep brain rhythms. The nesting of faster

rhythms within SOs is a measure based on reciprocal timing of

the phase of the SO and the amplitude of fast rhythms, thus, it

underscores the importance of understanding the timing of SOs

paired to their spatial organization. Our research focuses on

describing the organization of SOs as seen on the EEG electrode

manifold, and studying the potential functional implications of

patterns of differentiation of SOs in distinct space-time profiles.

In a recent analysis, we have shown that SOs establish

windows of opportunity at phases preceding and following the

SO trough during which information flow between distal

electrodes (placed far away from each other) peaks (Niknazar

et al., 2022). These phases of enhanced information flow captured

times in the SO shape that indicated transition into a Down State

(where the underlying network of pyramidal cells shows

widespread hyperpolarization) and emergence to an Up State

(organized sparse firing in the pyramidal cells initiated by a

cascade of events in the network (Timofeev et al., 2000; Bazhenov

et al., 2002)). The property of SOs to mediate specific times in

which information flow among distant regions is enhanced

suggest that SOs are particularly relevant to information

processing during sleep, as NREM sleep has been identified as

a state of overall loss of functional connectivity compared to wake

or REM sleep. This again supports a relevance for the timing and

spatial profiles of SO events as they create windows of

opportunity for information flow.

In recent work (Malerba et al., 2019), we have introduced a

data-driven methodology that captures the organization of SOs

on the electrode manifold in space-time patterns. Our results

showed that SOs can be classified on the scalp as Global, Local or

Frontal, based on co-detection across multiple electrodes at short

delay. Specifically, when SOs emerge as Global, they are detected

in almost all electrodes at a short delay; Frontal SOs are detected

at the frontal electrodes only in a small delay; while Local SOs are

detected at only few electrodes, and with no particular specificity

of location. Further analysis showed that Global SOs had larger

amplitudes than other SO types, and showed enhanced

coordination with sleep spindles. In a follow-up study

(Niknazar et al., 2022), we reported that Global SOs support

information flow at long ranges, with effective connectivity

estimates that were strongly related to improvement in

memory consolidation across sleep. Non-Global SO types did

not show these properties nor relations with memory. Taken

together, our research suggests that there is a potential functional

relevance to the differentiation of Global SOs and non-Global SO

types.

Since research on the functional role of SOs emphasizes their

role in coordinating timing of activity across cortical and

subcortical regions, in this work we were interested in

studying the potential differentiation of SO types in cortical-

subcortical regions, beyond their emergence on the scalp. In the

current study, we compared the depth structure of Global and

non-Global SOs (i.e., Local or Frontal) on the scalp in a dataset of

natural full-night sleep. We chose to leverage this dataset of sleep

EEG recordings of healthy young adults acquired with a 64-

channels cap (details in methods) to detect SO events and analyze

their space-time profiles, both on the scalp and in their cortical-

subcortical estimates. In this analysis, we focused on assessing

whether the cortical-subcortical presentation of Global and non-

Global SOs differentiated within and across individuals, and

identified which features of the depth profiles were most

relevant to differentiating Global and non-Global SO activity

before, after or around the trough.

First, we detected SOs and classified them according to their

space-time profile presentation on the electrode manifold,

applying the approach from (Malerba et al., 2019). The result

replicated our previous findings that SOs present as Global, Local

or Frontal in the scalp, and that the relative proportion of SO of

Global SOs is different in light (stage 2, S2) vs. deep (slow wave

sleep, SWS) NREM sleep. Then, we used source localization to

construct a dataset of current source density (CSD) profiles for

each SO, estimated with available software resources [Brainstorm

(Tadel et al., 2011) combined with sLORETA (Pascual-Marqui,

2002)]. We embedded each depth profile in a matrix

representation that averages the current found in each brain

region and three main time intervals (before, during and after an

SO trough). Using each SO as a point in a finite dimensional

space, we labeled each point as Global or non-Global, according

to their profiles on the scalp. To investigate the differentiation of

Global/non-Global SO depth profiles within and across

individuals, we analyzed this dataset with multiple machine

learning (ML) algorithms, and identified the best performing

classifiers. We used feature selection approaches to determine the

elements of the SO depth profiles expected to be most relevant to
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Global/non-Global differentiation, and assessed the performance

of generalized classifiers that were trained only on the most

selective features in comparison to those trained on all features.

Our results demonstrated that multiple algorithms

distinguish Global and non-Global SOs with high accuracy,

both within and across individuals. This suggests that Global

and non-Global SOs are structurally different in their current

source density depth profiles. The most accurate classification

was achieved by multiple algorithms based on k-nearest-

neighbors principles, suggesting that univariate feature

selection could appropriately identify the elements of the

depth profiles most relevant to classification. During both

S2 and SWS, the highest-ranking features according to

univariate selection were in the time epoch around the trough,

rather than preceding or following, and involved currents in

cortex, thalamus, brainstem as well as the caudate nucleus within

the basal ganglia. Currents in the amygdala, hippocampus,

pallidum and striatal regions were relevant to classification for

SOs in S2, but not in SWS. In addition, reducing the space to only

the highest-ranked features did not affect performance in the

high performing classifiers, confirming their relevance in

differentiating Global and non-Global SO dynamics. Overall,

our analysis further supports the structural and functional

difference between Global and non-Global SOs, which is likely

reflective of their differential role in information processing

during NREM sleep.

Materials and methods

The sleep dataset

This work builds on a sleep polysomnography dataset

collected in the Sleep and Cognition Lab laboratory, directed

by Dr. Mednick. The data includes the EEG sleep night of

22 volunteers (9 females) with no history of psychological and

neurological problems. All participants signed informed consent.

This study was approved by the University of California,

Riverside Human Research Review Board. EEG signals were

acquired using a 64-channel cap (EASYCAP GmbH) with Ag/

AgCI electrodes placed according to the international

10–20 System at a sampling rate of 1,000 Hz. Fifty-eight EEG

channels were used for EEG signal recording, and the others were

used for reference, ground, and other biosignals, including

electromyography, electrooculography, and

electrocardiography. EEG signals were re-referenced to the

contralateral mastoid (A1 and A2) and down-sampled to

500 Hz after the recording. Raw data were visually scored in

30-s-long epochs into Wake, Stage 1, Stage 2, SWS, and REM

sleep according to the Rechtschaffen & Kales’ manual

(Rechtschaffen, 1968) using HUME (Saletin, 2015), a custom

MATLAB toolbox. The basic sleep characteristics found in the

dataset are reported in Supplementary Table S1.

Slow oscillations detection and space-
time profiles

SO detection was performed on artifact-free epochs scored as

S2 and SWS. SO detection and space-time profile identification was

conducted in Matlab with custom scripts. To detect the presence and

timing of each SO event in any given electrode, we first applied a

detection algorithm that we used in our previous work (Malerba et al.,

2019) and closely followed the criteria introduced by Massimini et al.

(2004), and was initially introduced in Dang-Vu et al. (2008). The

following description matches the one reported in methods in

(Malerba et al., 2019). In short, the EEG signal was filtered in the

0.1–4 Hz range, and candidate portions of the signal between

subsequent positive-to-negative and negative-to-positive were listed

as possible SOs. These events were only considered SOs if the

following criteria were satisfied: 1) the wave minimum was below

or equal to 80 uV, 2) the range of values between maximum and

minimumvoltage was at least 80 uV, 3) the time between the first and

second zero crossing in the data had to be between 300ms and 1 s,

and 4) the total duration of the candidate event was at most 10 s. The

pool of candidate SO events satisfying the parameters were further

screened to remove potential artifacts, by computing the amplitude at

trough referenced to the average of the signal ±10 s around the

minimum. Events at one electrodewhich showed an amplitude size of

4 SDs above the mean of all events detected at that electrode were

discarded, and a secondary distribution of amplitudes including all

events from all electrodes of a subject was created, and again events

with amplitude above 4 SDs from the mean were discarded.

After SO detection, we performed clustering of SO co-detections

to reveal the space-time patterns of SOs in this dataset. We used the

same procedure as in (Malerba et al., 2019). In short, a co-detection

matrix was built for S2 and one for SWS, where each SO at each

electrode was used to generate a binary array the length of all available

head electrodes, with values of zero/one depending on whether an SO

was found at a ±400ms time delay from the SO trough

(1 corresponding to successful co-detection). The co-detection

binary matrix was then analyzed with k-means clustering using

Hamming distance, with 200 replicates and a maximum iteration

of 10,000 with the option of dropping empty clusters and preserving

the default setting of adaptive initialization with kmeans++

(leveraging the k-means function in Matlab, TheMathworks).

Counts of detected SOs in S2 and SWS per each participant, also

separating Global and non-Global SOs, are reported in

Supplementary Table S2.

Statistical comparisons of Global non-
Global slow oscillations current source
density in regions

For comparisons on data in Figure 3, we only compared within a

given time bin and sleep stage at a time. We use a two-factor, within-

subject repeatedmeasuresANOVA,with factors region by SO type and
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dependent variable the CSD values (a.u.). In post-hoc analysis, we used

Wilcoxon signed-rank test to compare CSD in Global vs. non-Global

SOs at each region. Since we have 17 regions in each group, and we are

not comparing crossing across groups, we have 17 possible pairs to

compare, taking our Bonferroni corrected threshold to 0.05/17 = 2.9e-3.

Pairs that are significantly different are marked with an asterisk.

Slow oscillations current source density
estimation

The channel data for the time of the SO were imported into

Brainstorm (Tadel et al., 2011). We used a default anatomy distributed

with Brainstorm, the MNI ICBM152 package, which has high

compatibility with different features within Brainstorm. We built a

mixed head model with both cortex and sub-cortical substructures on

theMRI images. Regions included: neocortex (labeledCortex infigures),

hippocampus, nucleus accumbens, amygdala, the brainstem, caudate

nucleus, putamen, pallidum, and thalamus. Source estimation was

performed at each time point of interest by fitting current dipoles in

a fixed three-dimensional grid composed of voxels with 15,002 vertices

for neocortex and 5095 vertices for sub-cortical structures (consistent

with Brainstorm settings). In each vertex, we consider a single dipole

with its orientation perpendicular to the cortical vertex. This approach

constructs a total of 20,097 dipoles on 20,097 voxels. We used the

boundary element method (BEM) OpenMEEG (Kybic et al., 2005;

Gramfort et al., 2010) to compute the lead field matrix (forward

modeling). We then used the minimum norm method to estimate a

solution to the linear inverse problem, applied with the identity as noise

covariance matrix (i.e., we did not model the noise component). This

minimized the assumptions we imposed on our estimates, since the

current dataset was limited to scalp EEG data, and hence we only had

information on the noise covariance elements already present in the

EEG data. To obtain a final CSD value in each voxel, we applied

Brainstorm with the option of using standardized low-resolution brain

electromagnetic tomography (sLORETA (Pascual-Marqui, 2002). This

stepminimizes bias in the source estimates and allows for comparison of

CSD profiles across individuals. One advantage of our applied inverse

modeling is that the solutions produced by Brainstorm with sLORETA

are expressed in a combination of the instantaneous EEG data with a

linear kernel (Wendel et al., 2009), which is not dependent on the

specific voltage values in the EEG data, but only on electrode placement.

As a result, we can calculate the CSD estimate at a large number of time

points just by extracting the linear kernel one single time, and then

applying it to the EEG datapoints of interest.

Implementation of machine learning
models

To study the classification accuracy of multiple algorithms,

we leveraged a supervised learning application in Matlab

(TheMathworks, R2021a) called Classification Learner, which

is included in the Statistics and Machine Learning toolbox. This

app integrates all commonly used tools regarding classifications:

exploring data, selecting features, training data, and assessing the

classifiers. The version we used includes 30 classification models,

all used in our analysis. The classifiers (algorithms) are organized

in 8 categories: Decision Trees (DT), Discriminant Analysis

(DA), Logistic Regression classifiers (LR), Naïve Bayes

classifiers (NB), Support Vector machines (SV), Nearest

Neighbor classifiers (KN), Ensemble classifiers (ES), and

Neural Network (NN) classifiers. Of note, ES classifiers

combine multiple classifications methods, which tends to

improve accuracy at the expense of rapidity.

While training time for any classification learner depends

mainly on the complexity and the size of the data and algorithm it

implements, it also depends on hardware (CPU and physical

memory) and software of the machine where it is run. Regardless

of data size, some learners like DT and DA algorithms ran fast. In

our study, all SV learners, some NB classifier (Kernel), Cubic

KNN, and Subspace KNN learners took significant time. As the

size of data increased, some classifiers showed linear increase in

time, others an exponential one. Of note, beyond a given data

size, there is a loss of capacity in the physical memory that leads

to the OS swapping to the virtual memory. This swapping time

can add to the training time, and can result in thrashing when the

data size is too large. To avoid this circumstance, a user

replicating our approach should consider emptying the

physical memory as much as possible before training SWS data.

With our approach, we obtained 30 classifiers for each

22 individual sets of Global and non-Global SOs, resulting in

a total of 660 classifiers in S2 (and the same amount in SWS).

This was possible because enough Global and non-Global SOs

were sourced in each participant (in S2 and SWS, evaluated

separately, see Supplementary Table S2).

To estimate classifier performance, we chose non-exhaustive

approaches due to dataset size. We used cross-validation with 5-

folds (i.e., building 5 groupings of 20% of the data iteratively used

for testing and averaging the resulting accuracy) when testing

classifiers on datasets that were constrained to SOs acquired from

one individual (Figures 4, 5). We used holdout validation with

25% of the data held out when training classifiers on the

comprehensive datasets that combined SOs from all

participants (Figure 7). We were interested in evaluating

performance beyond the training domain. Hence, the output

of testing each trained classifier on the full dataset was organized

in “true positives” (TP, correct classification of Global SOs), “true

negatives” (TN correct classification of non-Global SOs) and

corresponding “false positives/negatives” (FP, FN) when

classification was incorrect for Global and non-Global SOs,

respectively. Due to the not-balanced nature of the labeling in

our dataset (in each individual we found more non-Global than

Global SOs, consistently with (Malerba et al., 2019)) we

considered performance estimators that could account for the

imbalance, and found that the Matthews Correlation Coefficient
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(MCC) is highly informative for binary classification (Chicco

et al., 2021a; Chicco et al., 2021b). We then chose MCC as our

metric for performance across this work, and calculated it from

the binary confusion matrix according to the following formula:

MCC � (TP*TN − FP*FN)/ ���������(TP + FP)√
*(TP + FN)*(TN + FP)*(TN + FN); with the exception that if

the argument of the square root at the denominator is not strictly

positive, MCC defaults to 0. This index ranges from −1 to 1, with

positive values closer to 1 indicating highest performance.

Results

Global and non-Global slow oscillations
dataset: Analytical framework and
preliminary comparisons

This study leverages a dataset that contains full-night sleep

recordings from 22 adult volunteers, with sleep EEG acquired with

64 leads. This dataset was acquired by the Mednick group for a

different purpose and is being re-analyzed in our retrospective

analysis. To identify SOs algorithmically at each channel in

NREM stages S2 and SWS and classify each SO as Global, Local

or Frontal, depending on their space-time profile on the scalp we used

the same methodology as introduced in our previous work (Malerba

et al., 2019). Full details of these procedures are reported in the

methods. Briefly, we used established algorithms to detect each SO

event, and for each event we identifiedwhich electrodes also showed a

detection within a short delay (400ms before or after the SO trough).

The resulting co-detection binary matrix was then clustered with

k-means clustering, with parameters for the algorithms identical to

the ones we used in our previous work. The analysis showed a

replication of our published result in this new dataset, wherewe found

that data-driven analysis of scalp co-detection reveals three SO types:

Global, Local and Frontal, separately in both sleep stages (Figure 1),

and that the proportion of Local SOs are different in S2 and SWS (a

two-factor ANOVA found an effect of sleep stage by SO type

interaction, post-hoc analyses established a difference in the

fraction of Local SOs in S2 vs. SWS, with same comparison for

Global SOs being close but not reaching statistical significance after

Bonferroni correction). Thus, the property of being Global or not

Global (i.e., Local or Frontal) is a characteristic that emerges in a data-

driven way in both sleep stages independently, but does not emerge as

an identical proportion. This differentiation supports our rationale to

analyze the two sleep stages separately at every step of this study.

Since our previous work (Niknazar et al., 2022) has shown a

selective relevance for Global SOs in supporting long-range

communication in specific windows of opportunity around

the SO trough, we were interested in studying the

characteristics of Global SOs that differentiate them from

other SOs and in focusing on time epochs that were relevant

for this Global SOs role in directional information flow (around

the trough, and preceding or following the SO trough). To

compare the space-time profiles of Global SOs and those of

all other SOs, we grouped Frontal and Local SOs in one category,

labeled non-Global SOs. Next, we needed to establish a

framework to analyze how Global and non-Global SOs

differentiate in cortical and sub-cortical regions in epochs

around the SO trough that we showed were important for

information flow. This required estimating a current source

density (CSD) depth profile for each SO that included cortical

and subcortical regions, and using those profiles at specific times

of interests for comparative analysis.

To achieve CSD estimates for each time instant in a given SO,

the EEG data were imported into Brainstorm (Tadel et al., 2011), a

software designed to reconstruct current sources from EEG

recordings (details in Methods). Our estimate included neocortex

(labeled Cortex) and hippocampus, nucleus accumbens, amygdala,

the brainstem, caudate nucleus, putamen, pallidum, and thalamus.

We consider all regions as split into their left and right components,

except the brainstem, resulting in 17 total regions. In Figure 2 we

show one example of the depth profile of a Global SO at three time

points starting from the trough and proceeding toward the peak of

the up state. Note that as the SO transitions from Down to Up state,

current appears to propagate to more regions and shows larger

magnitudes. Applying this approach, we constructed an initial

collection of voxel-by-time CSD values for each SO in our

dataset, composed of 251,395 SOs in S2 (97,428 of them Global

and 153,967 non-Global) and 921,076 SOs in SWS (322,135 of them

Global and 598,941 non-Global), see Supplementary Table S2.

We then used this three-dimensional representation of SO

dynamics in our analysis. Noting the high volume of datapoints

(the SOs), and large complexity of the voxel-by-time

representation of each SO, we chose to study the comparison

between Global and non-Global SOs depth profiles

algorithmically, with machine learning. To reduce complexity

in the spatial component, we grouped voxels allocated to the

same brain region and averaged the CSDs within them. The time

component was organized in three time bins, each 200 ms long,

with one time bin encompassing the (−100, +100) ms interval

around the SO trough (“trough time”), one time bin at

(−300,−100) ms from the trough (the “pre-trough”) and a

corresponding time bin at (100,300) ms from the trough (the

“post-trough”). Hence, CSD values were averaged across each

time bin and across each sub-cortical structures to build matrices

of 17 regions by 3 time bins, which can also be thought of as

points in 51-dimensional space with trivial Euclidian distance

(R51). Examples of the distribution of CSD values in each region

and time epoch for one individual are shown in supporting

Supplementary Figures S1,S2.

To estimate initial systematic differences in the depth profiles

of Global and non-Global SOs, we compared the average Global

and non-Global SOs CSD value across participants in each

region-time component. Figure 3 shows that average CSD

values are relatively higher in Global SOs compared to non-

Global SOs across individuals at all regions and times considered,
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both in S2 and SWS. Statistical comparisons showed that at times

around the trough Global SOs had larger average CSD than non-

Global SOs in all or almost all regions, both in S2 and SWS. In

time epochs before and after the trough, the difference between

average values was less pronounced in most regions, with a slight

prevalence of subcortical differentiation at non-trough epochs in

S2 for hippocampus, pallidum, nucleus accumbens, and the

amygdala (see Supporting information for exact p-values).

Results in Figure 3 suggest that the deep profiles of SOs may

differentiate the scalp classification of Global vs. non-Global,

confirming our intuition that this dataset should support

structural differentiation of Global and non-Global SOs. It

also showed that SOs in SWS and S2 were not differentiating

in their Global and non-Global profiles in a uniform manner,

highlighting specific areas in hippocampal, amygdala, and basal

ganglia regions in SOs that differentiated Global and non-Global

SOs during selectively S2.

Classification of Global and non-Global
slow oscillations within and across
participants

Once our dataset of labeled matrix representation of depth

profiles was prepared, we reasoned that if Global and non-Global

SOs were structurally different, multiple classifiers would be able

to distinguish between them with high performance. In looking

for an analytical framework that introduced the least amount of

bias, we sourced 30 classification algorithms using Classification

Learner in Matlab (TheMathworks, R2021a), as we appreciated

the combination of methods made available in the application,

and that each methodology was articulated at different degrees of

refinement. We trained each classifier on each individual

separately, to study how classifier performance varied across

individuals and across algorithms. The rationale for training

separate classifiers for each individual is driven by our goal to

learn about differences in Global/non-Global SOs in a data-

driven way. A crucial conceptual step in leveraging machine

learning to compare Global and non-Global SOs is to train and

assess the performance of the classifiers in a modality that

preserves the true natural variation in the dataset (i.e., enough

datapoints are sampled from an appropriately constructed

population sample) and minimizes the correlative information

that does not drive datapoint labeling but can nonetheless bias

classifier performance. In our case, this is especially pertinent

when considering that sub-groups of SOs were accrued from the

same individual in the same night, hence introducing the

potential for the classifiers to be biased in their performance

by potential redundancies in the data introduced by sourcing

many SOs from each individual. To establish performance, we

leverage the Matthews Correlation Coefficient (MCC), which is

highly informative for binary classification (Chicco et al., 2021a;

Chicco et al., 2021b) and can account for the imbalance in the

Global and non-Global SOs found within each individual (details

inMethods).We reasoned that if Global and non-Global SOs had

intrinsically different depth profiles as encoded in our 51-

dimensional approach, then multiple classifiers would show

high accuracy across individuals. We also reasoned that if

these differences were nonlinear and subtle, then not all

classifiers would show high accuracy, and hence all sub-

datasets organized by individuals would show a range of

variance in the accuracy achieved by the 30 potential

FIGURE 1
Global and non-Global Slow Oscillations on the scalp. (A) An example of a detected SO in a centrally located EEG channel (C3, on the left
hemisphere). The shaded rangemarks the detected SO. (B) Average of all co-detections found for all SO events that are labeledwithin a given cluster,
mapped on the scalp. Values of 1 indicate that co-detection at that electrode was found in all SO events grouped in that given cluster. Vice-versa, a
near-zero value shows that only very few SOs in that cluster had a co-detection at the evaluated location. Note the replication of results found
in our previous work, where SOs can be labeled as Global, Frontal or Local depending on their co-detection on the scalp. (C) The fraction of SO type
across individuals in this dataset (mean and standard error of themean) in the two sleep stages of interest. Note the decrease in fraction of Global SOs
in SWS compared to S2 sleep, mirrored by an increase in Local SOs in SWS compared to S2. Statistical analysis showed a significant difference in the
fraction of Local SOs in S2 vs. SWS.
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classifiers employed. Furthermore, in principle, it was possible

that some individuals could have Global and non-Global SOs

with highly similar depth profiles, in which case all algorithms

would show poor accuracy when trained on data from those

individuals.

In Figure 4, we show the range of variation in performance

across 30 classification learning algorithms for each individual,

considering the SOs found in S2 and SWS separately. The use of

boxplot for visualization emphasizes the overall high

performance achieved by the classifiers as a group, showing

that medians are above 0.8 for all individuals in S2 and above

0.6 for all individuals in SWS (MCC values range between −1 and

1), but also that performance varies broadly across algorithms.

This shows that predictive high-quality differentiation of Global

and non-Global SOs is achievable in all individuals in our dataset

(except for participant 12, who had no Global SOs detected

during their S2 sleep, see Supplementary Table S2). We interpret

this as suggesting that while there is a robust differentiation of

Global and non-Global SOs in their space-time depth profiles,

this differentiation is non-trivial.

We then hypothesized that some classification algorithms

could achieve high performance in most or all individuals, and to

identify these top performers we plotted the variation in

performance for each algorithm across all individuals. As

shown in Figure 5, in S2, a number of classification

algorithms returned the highest performance for all

participants: fine k-nearest neighbors, weighted k-nearest

neighbors, ensemble subspace of k-nearest neighbors, and two

types of neural networks (medium and wide). Other algorithms

also performed near-perfectly for all participants, including

bagged trees and some neural networks (narrow, bi-layered

and tri-layered). In SWS, the three nearest-neighbor based

algorithms that performed highly in S2 showed again optimal

performance, while many of the neural-network based

algorithms that achieved optimal or close-to-optimal

performance in S2 had a slight decline, showing more

variance in their performance outcome across individuals

(with the wide neural network still performing close to optimal).

The fact that nearest-neighbor-based algorithms had the

largest success in distinguishing Global and non-Global SOs

across all individuals separately suggests that some structural

characteristics of the CSD representation could be strongly

contributing to classification performance, in other words,

that there would be a subset of interpretable features in the

data which were most influential in classification performance.

Thus, we reasoned, feature ranking followed by feature selection

could reveal region-by-time currents in which Global and non-

Global SOs were most different, adding information to what we

learn from direct one-to-one comparisons that we performed in

Figure 3.

Feature selection

We have demonstrated high classification and low inter-

individual variance across multiple classifiers, suggesting strong

support for structural differences between Global and non-

Global SOs. Next, we determined the elements in the depth

profiles that were most differentiated in Global/non-Global SOs,

and thus more likely to be relevant for these classifiers to achieve

accuracy. Of note, we have already shown that some features

(region-by-time values) has statistically different average values

in Global and non-Global SOs across individuals (Figure 3), and

that a stronger differentiation among features was found in the

time bin around the trough of the SO with this initial approach.

Conceptually, however, this approach focuses on the average

CSD value assumed by each feature in the Global vs. non-Global

FIGURE 2
Instantaneous representation of current sources by
Brainstorm. (A) One example of Global SOs EEG butterfly plot (all
channels superimposed). This is the type of data that we insert in
Brainstorm to estimate current sources for each SO. The
three red bars mark three time points (trough, 113 ms after trough
and 215 ms after trough). (B) Example of the graphic
representations returned by Brainstorm with sLORETA for the
same SO as in A at the three time points marked in A with red bars.
Note that, as the up-state emerges, the overall current density
increases and gets more widespread. For one of the plots we have
labeled the sub-cortical regions visualized in this plot, using italics
for regions in the right hemisphere. Abbreviated labels are as
follows: Acc, nucleus accumbens; Ca, caudate neucleus; Put,
putamen; Am, amygdala; Th, thalamus; Hipp, hippocampus.
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category, and hence relies on 44 values (two per individual) to

assess differentiation. The classification algorithms were trained

and tested on the complete set of all SO values, rather than only

their mean, and hence we reason that while having established

average differentiation was a necessary and relevant indicator

that we should find differentiation of values in Global and non-

Global SOs for features, especially those with times around the

trough, the actual degree of value differentiation across

individual features was best understood with direct

quantification on the complete set of all SO values

(i.e., capturing variances and not just means of the values).

To this end, we used univariate feature selection, which in

our case was highly interpretable since features in our dataset

were region-in-time CSD values. Feature selection was obtained

using chi-square and reported using the negative of the

logarithms of its p-value. This produces a metric that

increases with the likelihood that Global SOs and non-Global

SOs assume statistically different values in a given feature, and we

report this metric for each region-by-time feature in SOs found in

S2 or SWS in Figure 6 (and show more details of the same

representations in Supplementary Figures S3–S5). Of note, since

we are interested in considering the SO differentiation both

FIGURE 3
On average, the current density in each region is slightly larger in Global SOs compared to non-Global SOs. Average CSD value in each feature
(region by time bin), comparing Global and non-Global SOs. CSD is reported asmean across all participants, and error barsmark the standard error of
the mean. Labels for each region include its name and its hemispheric placement, L for left and R for right, except for the brainstem, which is not
considered as separated between hemispheres. All considered regions are shown. Values for Global SOs are shown in red/orange, non-Global
SOs are shown in blue (legend on top left side of figure). Plots on the left column refer to SOs found during S2, right column to SWS. Plots in the top
row refer to CSD values in the Pre-trough time bin, middle row refers to the Trough time bin and bottom row to the Post-trough time bin (see labels
on the top right corner of each plot).
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within and across individuals, we chose to conduct two parallel

feature ranking analyses, one separating the analysis in each

individual and one pooling all SOs across individuals (in both

cases keeping S2 and SWS separate, as we had already seen in

Figures 3, 4, 5 that there were slight differences in Global/non-

Global differentiation in the two stages). Feature selection with

chi square, reported with the negative of the logarithm of its

p-values, was computed for each individual. The overall

magnitude of these values depends on the number of points

in each dataset, which can vary considerably across individuals

(examples in supporting Supplementary Figure S3). Thus, to

integrate the information derived from these individual

quantifiers in an average estimator, we normalized each plot

by dividing its y-axis values by the total sum of values in the

whole plot (to force a total area of 1). This results in a scaled

feature ranking value, adjusted for the total number of SO in each

set, which can then be used in calculating the average value for

each feature across individuals. The average feature selection

values that we obtained with this approach are shown, sorted by

ranking, in Figure 6 (panel A for S2, C for SWS, and

Supplementary Figures S4, S5 for more details). The feature

selection values obtained by pooling SOs for all individuals in

one large dataset are also showed in Figure 6 (panels B for S2 and

D for SWS, and Supplementary Figures S4, S5 for more details).

In both representations, we color-coded each feature based on its

time bin, with white bars for the pre-trough epoch, red bars for

the trough epoch, and grey bars for post-trough. As Figure 6

shows, feature selection revealed a strong dominance of currents

at times around the SO trough in differentiating Global and non-

Global SOs, and this was true for both the individual and pooled

data approach, and in both sleep stages.

Our feature selection results contained information about

regions as well as time epochs. Within the highly ranked features

with currents in the time epoch around the trough, we were

interested in establishing which regions held currents that was

ranked most selective. Rather than picking an arbitrary number

of top features, we decided to use the shape of the ranked

histogram to determine the cutoff value. For each y-axis value

of the histogram, starting with the leftmost bar (the highest

ranked) we calculated the gap in feature selection value to the

next bar in the ranked order. This differential would peak

wherever a large drop was separating one feature from the

next (Supplementary Figure S6 shows these gap values for

Figures 6A,B). For SOs in S2, we found that the cutoff

FIGURE 4
Range of performance formultiple classification algorithms when applied to individual participants separately. For each participant, we report in
boxplots the values of performance estimated with MCC and assessed with cross-validation for the 30 machine learning algorithms we tested. The
red linemarks the median, blue rectangles show the quartile span (25%–75%) and dashed lines themaximum andminimum range. Red crosses mark
outliers. Classification of SOs from S2 is reported in the top plot, and SWS in the bottom plot. Participants are listed along the x-axis in no
particular order, but their identifier (ID) is consistent across plots and tables across the manuscript. Note that participant #12 0 Global SOs detected
during S2 sleep, which prevented any classification algorithms for being applicable to this participant in S2. As the full range of values for MCC spans
(−1,1), it is notable that for all participants where individual classification was possible (except #12 in S2) the median performance across classification
algorithms is above 0.6 and in many cases above 0.8.
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emerged after the top 15 features, both in the individual and in

the pooled dataset. We then compared which regions (all the

trough time epochs) were part of this group in each condition

(individual or pooled) and found that the same regions were

highly ranked in both cases (listed in Table 1), with a high

agreement in ranking for top selective features between the

individual and the pooled approach (Supplementary Figure

S6). For SWS, this approach produced a picture that was less

clear-cut, with multiple high peaks in the differential found in the

highly ranked features, although again there was a strong ranking

agreement between the individual and the pooled dataset

analyses (Supplementary Figure S7). We resolved to choose

two different cutoffs for the individual (6 features) and the

pooled (11 features) histogram, and again compared which

regions were found to be most selective between Global and

non-Global SOs (Table 1).

As can be seen in Table 1, all regions that were strongly

differentiating between Global and non-Global SOs in SWS were

also highly ranked in S2. These included the neocortex, the

thalamus, the caudate nucleus, and the brainstem. When

using the less-stringent cutoff of 11 regions for SOs in SWS,

this added currents in the amygdala, nucleus accumbens, and

putamen among the most discriminating. In S2, currents in

almost all regions (for time epochs around the SO trough)

were highly differentiating in Global and non-Global SOs.

Beyond regions found to be discriminating in SWS, current in

the hippocampus and pallidum were also relevant to

differentiation. To evaluate if the features that were highly

ranked by selection had enough information on differentiating

Global and non-Global SO dynamics to support accurate

classification, we compared the performance of classifiers

deployed on datapoints there were represented with the full

51 features or the reduced set of highly ranked features. We

conducted these test in the pooled datasets only, in S2 testing

reduction to the top 15 features (since the same set of 15 features

was selected in the individual and pooled dataset) and in SWS we

tested both reducing to the top 6 and top 11 features, as indicated

in Table 1. We classified Global and non-Global SOs again with

all 30 ML algorithms that we had used in the individual sets, and

compared performance when training and testing used the full

51 features or the top features only. Of note, these are strong

reductions in dimensionality of the space, so we did not

necessarily expect maintenance of excellent or perfect

performance when the dimensionality reduction was applied.

Nonetheless, we hypothesize that the algorithms that performed

really well in individual sets would still perform highly in the

FIGURE 5
Multiple classification algorithms achieve high MCC performance for all individuals. For each machine learning algorithm that we trained and
tested separately in each individual, we report performance (measured with MCC) showing its range across all participants with boxplots. Each
boxplot marks the median performance across participants with a red bar, the 25-to-75 percentile range with a blue box, the maximum and
minimum value with T-shaped edges and outliers with +-shapedmarks. The top plot refers to SOs found in S2 sleep, bottom plot to SWS. Note
how multiple algorithms achieve high performance across all individuals and in both sleep stages, supporting the concept that depth profiles of
Global and non-Global SOs are measurably different within and across individuals.
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pooled dataset, and that the reduction in dimensionality driven

by feature selection would not damage performance in these

algorithms.

The top panel of Figure 7 shows that a number of classification

algorithms reached really high performance (MCC>0.975) in the

pooled S2 dataset using all 51 features (represented with striped

bars). Those included algorithms that performed highly in the

individual datasets (fine, medium, cosine, cubic and weighted

KNN, bagged trees and subspace ensemble of KNN). However,

not all algorithms that showed high performance in the individual

datasets reached comparable performance in the pooled dataset,

with multiple neural-network-based algorithms showing less

performance in the pooled dataset. One SVM (fine Gaussian)

also showed high performance. When reducing features to the

top-ranked 15 ones, the selected features were identical in the

two selections (from individual feature selection or from pooled,

see Table 1). Hence, the top panel of Figure 7 only shows one

comparison bar for each algorithm. One can see that all algorithms

with excellent performance at 51 features still performed very highly

(MCC above 0.96) in the reduced feature environment, with no loss

of performance in fine and weighted KNN and in the subspace

ensemble KNN, with the exception of the fine Gaussian SVM

algorithm, which showed a strong performance loss with

dimensionality reduction.

The bottom panel of Figure 7 shows the performance of

classification algorithms applied to the pooled SWS dataset. Full

51 features results are shown in striped bars, and one can quickly

notice that algorithms that performed highly in S2 also reached

high performance in SWS data, again supporting the idea that

differentiation of Global and non-Global SO is a relevant

phenomenon in both stages, with some structural consistence

across NREM sleep. The reduction to top ranked features in the

SWS case required the algorithms to confine their information to

a much more stringent set of regions (all in the epoch nearby the

SO trough), either 11 or 6 features, depending on whether we

choose to base our feature selection on pooled or individual

FIGURE 6
Feature ranking identifies region-time CSD components with largest differentiation in Global vs. non-Global SOs at times near the SO trough.
(A) Normalized values for feature selection in SOs found during S2, averaged across normalized values found for individual participants separately.
Features are sorted according to resulting rank, for ease of reading. Each feature is identified by its region-time pair, where time range is marked with
color code, with pre-trough times inwhite, about-trough time in red and post-trough time in grey (see legend on top). Error barsmark s. e.m. An
expanded version of this plot with each feature labeled in detail is reported in Supplementary Figure S4. (B) Feature selection for SOs in S2 pooled
across all participants, estimatedwith chi-square (&KHgr;2) and reported as -log of the p-value (i.e., largest values indicatemore differentiation for the
feature in Global vs. non-Global SOs). Values are sorted from highest to lowest, for ease of reading. Color code is analogous to panel A. An expanded
version of this plot with each feature labeled in detail is reported in Supplementary Figure S4. (C) Same as A, but for SOs in SWS. An expanded version
of this plot with each feature labeled in detail is reported in Supplementary Figure S5. (D) Same as in B, but for SOs in SWS. An expanded version of this
plot with each feature labeled in detail is reported in Supplementary Figure S5.

Frontiers in Network Physiology frontiersin.org11

Seok et al. 10.3389/fnetp.2022.947618

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.947618


feature selection outcomes. Once again, the reduction of

dimensionality did not severely affect performance of these

algorithms, except for the fine Gaussian SVM. However, there

was a small loss in performance, progressively larger as the

number of features decreased from 11 to 6, in some of the

KNN-based algorithms. Best performing algorithms in all

reduced features were fine, medium, weighted and subspace

ensemble KNN, and bagged trees.

This dominance in performance of nearest-neighbor-based

algorithms, and their performance stability with respect to feature

selection suggests that the differentiation of S2 Global and non-

Global SOs in their cortical-subcortical estimated currents is most

pronounced for epochs near the trough and can be captured by

consistent dissimilarities in the current density not just in the

neocortex, but also in many subcortical regions. For both SWS

and S2, these regions include the thalamus, the brainstem, and the

caudate nucleus (in the striatum), in S2 ulterior regions include

hippocampus, amygdala and more basal ganglia regions (pallidum,

putamen and nucleus accumbens).

Discussion

We investigated structural differences between Global and

non-Global SOs using machine learning to classify depth profiles

of SOs across cortical and subcortical regions. To this end, we

constructed a methodology that leverages source localization to

encode scalp EEG SOs in a four-dimensional (voxel-by-instant)

framework and extracts SOs as datapoints in a region-by-time

embedding. We then leveraged this framework to analyze

differences in Global and non-Global SO profiles, first with

basic statistics and then with machine-learning based

approaches. We found consistent differences between Global

and non-Global SO depth profiles, within and across individuals

and across multiple classifiers, with the best performing

algorithms relying on k-nearest-neighbors (KNN) principles.

We also found that feature selectivity and basic statistics both

support that Global and non-Global SOs differentiate depth

profiles in SWS and S2. Specifically, differentiating Global and

non-Global SOs during both SWS and S2 leverages currents in

the cortical, thalamic, and caudate network, and also currents in

the brainstem. Furthermore, differentiation in S2 also relies on

currents from the amygdala, hippocampus, and multiple basal

ganglia regions, which are not involved in differentiation of

Global and non-Global SOs in SWS.

There are a number of functional observations that can be

relevant to understand the potential significance of these

networks of activity differential involvement in Global and

non-Global SO. We suggest that our findings have functional

implications on two separate levels: 1) the relevance of currents in

some specific regions (cortex, thalamus, caudate nucleus, and

brainstem) to distinguish Global and non-Global SOs in both

S2 and SWS, and 2) the fact that differentiation in S2 relies on a

larger and more generalized network of cortical-subcortical

activity than in SWS, involving additional regions like

hippocampus, amygdala and many basal ganglia areas.

TABLE 1 Feature selection outcomes.

S2 SWS

Across Individuals Pooled Dataset Across Individuals Pooled Dataset

Accumbens L Tr. Accumbens L Tr. Caudate L Tr. Caudate L Tr.

Accumbens R Tr. Accumbens R Tr. Cortex R Tr. Caudate R Tr.

Amygdala L Tr. Amygdala L Tr. Cortex L Tr. Brainstem Tr.

Amygdala R Tr. Caudate L Tr. Caudate R Tr. Cortex L Tr.

Caudate L Tr. Amygdala R T.r Brainstem Tr. Cortex R Tr.

Hippocampus R Tr. Brainstem Tr. Thalamus R Tr. Thalamus R Tr.

Cortex R Tr. Hippocampus R Tr. Accumbens L Tr.

Brainstem Tr. Caudate R Tr. Accumbens R Tr.

Hippocampus L Tr. Pallidum R T.r Amygdala L Tr.

Caudate R Tr. Cortex R Tr. Amygdala R Tr.

Pallidum R Tr. Hippocampus L Tr. Putamen L Tr.

Cortex L Tr. Pallidum L Tr.

Pallidum L Tr. Putamen L Tr.

Putamen L Tr. Cortex L Tr.

Thalamus R Tr. Thalamus R Tr.

The abbreviation “Tr.” marks a feature in the trough time bin. Features are sorted according to their ranking emerging from feature selection, and each list is confined to features ranked

above the cutoff determined for their feature selection histogram.
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Our results show that the pillars of Global/non-Global SO

differentiation, regardless of sleep stage are cortex, thalamus,

caudate nucleus, and brainstem. The emergence and propagation

of sleep spindles in the EEG relies on cortico-thalamic

bidirectional interaction, and sleep spindles have a preferential

coordination with Global SOs (Malerba et al., 2019), so the

relevance of thalamic and cortical currents could in part be

related to this differentiation in interaction with spindles.

Caudate nucleus activity is connected to associative and

procedural learning, working memory, executive function and

is important to motor function (Driscoll et al., 2022), with the

network connecting currents in the cortex, thalamus and caudate

nucleus relevant to the processing of reward (Schultz, 2016) and

memories guided by the dorsal striatum (which includes the

caudate nucleus) especially processed during SWS (Watts et al.,

2012). Since reward during wake influences what aspects of

learned experiences will gain salience, it can in turn influence

sleep-mediated information processing, possibly reflected in a

differentiation of Global and non-Global SO dynamics in the

same network. Finally, the relevance of brainstem currents to

differentiation of Global and non-Global SO dynamics could be

connected to known autonomic-central events (ACE) found to

coordinate changes in heart rate dynamics with temporary

increases in SO and spindle emergence (Naji et al., 2019;

Chen et al., 2020). The brainstem includes nuclei that are

involved in modulating SWS depth (Anaclet and Fuller, 2017)

and heart rate deceleration (Monge Argilés et al., 2000), and

could be the central hub orchestrating fluctuations in both heart

rate modulation and SO and spindle emergence (Chen et al.,

2020). While at this stage it is not clear if there is a differential

FIGURE 7
Changes in classifier performance when the depth profiles are reduced to the highest-ranking features. Classifier performance (assessed with
MCC)measured with holdout (25%), when training the algorithms with pooled SOs from all participants, SOs from S2 in the top plot, SOs from SWS in
the bottomplot. For each algorithm, compare its performancewhen trained on the dataset encoded by all region-by-time values (51 features, striped
bars) to the performance achieved when trained on the dataset encoded only by the top selective features identified in Figure 6 and Table 1
(15 features in S2, and either 11 or 6 features in SWS, full-color bars).

Frontiers in Network Physiology frontiersin.org13

Seok et al. 10.3389/fnetp.2022.947618

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.947618


involvement of Global and non-Global SOs in ACEs, our data

showing that brainstem currents strongly differentiate between

the two SO types in both NREM sleep stages suggest that this

could be the case.

The other surprising finding from our analysis is that

differentiation of Global and non-Global SO relies on an

extensive network of activity during S2, larger than the

network that emerged for SWS, including activity in the

hippocampus, amygdala and many basal ganglia regions. The

relevance of currents in the cortex, hippocampus, and thalamus

during the SO trough to SO differentiation during S2 is consistent

with the large body of research implicating SOs in the

coordination of episodic memory reactivation in these regions

during sleep (Ji and Wilson, 2007; Mehta, 2007; Chauvette et al.,

2012; Dudai et al., 2015; Latchoumane et al., 2017; Klinzing et al.,

2019), and with our previous study which specifically identified

Global SOs as preferentially connected to this memory network

(Niknazar et al., 2022). In a similar fashion, a role for

coordination of currents in the amygdala with the episodic

memory network in differentiating Global and non-Global

SOs could be reflective of a relative abundance of emotional

memory processing during S2 (Kaestner et al., 2013). As per the

relative involvement of many basal ganglia regions, the caudate

nucleus is selectively less active in SWS compared to S2 sleep

(Kaufmann et al., 2006), a property which could account for

enhanced differentiability of Global/non-Global SO dynamics

during SWS. One can infer that possibly the strong differences

between S2 and SWS in the number and organization of SOs (SO

trains are much more frequent and indeed a hallmark of SWS,

compared to S2) result in a non-uniform depth profile

differentiation of Global and non-Global SOs in these two

sleep stages. This perspective would agree with theories that

support complementary mechanistic roles in memory processing

of S2 and SWS NREM stages (Genzel et al., 2014) and further

underscores the need to carefully choose whether to separate

S2 and SWS SO analysis depending on which question a study

aims to address.

Mechanistically, it is worth emphasizing that we found a

strong differentiation of SO dynamics in Global and non-Global

SOs in many brain regions, and with an emphasis for dynamics at

times near the trough, despite Global and non-Global SO profiles

being identified on a larger time scale (up to 400 ms-long delays).

When discussing the functional role of SOs in restorative and

cognitive functions of sleep, their role as “coordinators” of

activity across brain regions is often invoked, within the

known hypothesis that they coordinate a wide network of

brain regions during memory reactivation, which in turn can

lead to synaptic reorganization and stabilization of hippocampal-

dependent memories. This concept is connected to the known

property of hierarchical nesting, where faster rhythmic

oscillations (spindles and ripples) pick a coordinated timing of

occurrence in relation to the phase to an ongoing slower

oscillation. Our previous research showed that Global SOs

have stronger coordination with spindles compared to other

SO types (Figure 7A in Malerba et al., 2019). The potential

differentiation of Global and non-Global SOs CSDs in specific

brain regions that are important for memory and other cognitive

processes (such as reward, and brain-body interaction), implies

that perhaps not all SOs are coordinating exactly the same

regions every time, but rather that Global SOs could be

serving a selective role in coordinating cortical-subcortical

activity more strongly than non-Global SOs. Our analysis also

shows a dominance of differentiation in times close to the SO

trough as opposed to preceding or following, suggesting that if

the mechanistic role of ‘activity coordinators’ of the SOs is to be

seen in how spindles appear following the SO trough, the specific

factors that allow a Global or a non-Global SO to influence these

events are most likely found at times close to the trough. This

supports the idea of an ‘event cascade’ where the articulation of

SO-spindle coordination in space-time is crucially initiated at the

time of the trough, and the early stages of emergence toward the

Up State influence the overall propagation and activation in the

network to a strong degree. This suggests a picture in which the

dynamics near the SO trough sets the timing-and-location stage

for the network to be ready (a few hundreds of ms later) to

process specific cell activity across many regions selectively. One

can then speculate that faster dynamics (such as spindle activity)

nested within these established coordination patterns could be

the substrate for the more specific synaptic changes.

We have introduced an explicit methodology to leverage depth

profiles built on source localization to identify dynamical differences

in rhythms captured in the scalp EEG. The usefulness of this

approach is built on our ability to interpret (at least to some

degree) the outcome of the classifiers we deployed, which is not

a guaranteed feature since explainability of machine learning and

artificial intelligence is an ongoing open field (Linardatos et al., 2020;

Belle and Papantonis, 2021). Tomaximize interpretability, we built a

framework tailored to our research question, by first encoding our

datapoints in appropriate matrices - so that features could be

explicitly connected to meaningful objects in our analysis - sand

then deploying a collection of classifiers on a person-by-person base,

and define as preferable the outcome of classification algorithms that

could reach consistent high accuracy for all participants when

individually trained. The choice of data encoding methodology is

crucial to the interpretability of our results in terms of activation of

cortical-subcortical regions at times important for SO occurrence

and interaction with other brain rhythms, such as spindles. The

choice of selecting algorithms on inter-individual accuracy allows us

to estimate the differentiability of Global and non-Global depth

profiles while taking into account that during a night of sleep, brain

dynamics is highly more similar within, rather than across,

individuals. This structured methodology can be expanded to

other oscillations that show differential scalp profiles (Malerba

et al., 2020), and represents a novel principled approach to

evaluate within-individual differentiability of sleep oscillations

based on their space-time profiles. This is a crucial step in
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understanding the mechanistic connection between observed

rhythms and their functional roles, as potential changes in

network connectivity or cells properties driven by the presence

and coordination of these rhythms in the brain can only be

experimentally assessed with localized approaches.

In the current study, we did not separate the non-Global SO

category in Frontal and Local SOs, despite our original analysis

showing that these non-Global SOs are different (Malerba et al.,

2019). This is driven by our current goal, which is to identify if

there are specific Global SOs properties in their depth profiles

that make them uniquely relevant to sleep-dependent memory

processing, and can possibly in the future be used to distinguish

Global SOs from non-Global ones in real time. However, all steps

of our approach can be applied to any finite number of SO types,

and hence follow up studies can expand on our current

perspective to include classifications across the three SO types.

Our current study has some technical limitations. As is known,

inverse problems are intrinsically ill-posed insofar as the number of

inputs (EEG value at channel locations) is much fewer than the

number of outputs (CSD values at all voxels). Our analysis also limits

us to passive estimates based on conductivity and electric fields,

lacking the “active” component of how cell activity (spiking, synaptic

currents, nonlinear membrane currents) contributes to emergence

of Global and non-Global SOs in the brain. In ideal circumstances,

one would be able to record with the time resolution of EEG from

multiple cortical and subcortical regions during natural

sleep. Currently, non-invasive methods that allow depth

recording of brain dynamics have much poorer time resolution

than EEG, and because we are interested in oscillatory dynamics in

relation to function, a high time resolution is crucial. This led us to

the choice of estimating depth dynamics from EEG data rather than

try and acquire it with other methods. However, future studies that

combine EEG and in-depth recording of sleep dynamics could

further test our estimates of strong differences in depth profiles of

Global and non-Global SOs. Because of the spatially limited nature

of depth recording in the human brain, one could only compare

estimate predictions to actual recordings within such spatial bounds.

However, eventual discrepancies between depth data and EEG-drive

predictions could be leveraged to improve estimate models, by

extrapolating potential generalizability to other, anatomically

similar, regions.

We relied on a well-established standard head model (the

MNI package) as a simplification of the real complexity of a study

of sleep brain dynamics in a population given our data

acquisition did not include MRI. Future studies that include

MRI acquisition for computational estimates would improve and

further test the validity of our conclusions. Of note, due to the

semi-stationary nature of the biological properties assessed with

MRI, a study of this type would be successful as long as the time

delay between MRI and sleep polysomnography acquisition was

limited to a few months. We also chose to model a relatively

limited number of subcortical structures and consider all

neocortical regions as one (separated only in left and right). A

more refined differentiation of cortical regions and a more

extensive assessment of subcortical regions could expand the

range of functional interpretations of our analysis outcome,

possibly to frontal or lateralized sleep-dependent information

processing, as sleep oscillations are known to organize in space

coherently with awake encoding behavior (Huber et al., 2004;

Piantoni et al., 2015; Bernardi et al., 2019). This expansion could

of course be numerically achieved in follow up studies utilizing

MRI acquisition, as this would allow for personalized choices on

the CSD reconstruction for each individual. Such framework

could extend the relevance of our approach to populations that

have sleep impairments that may be related to SO dynamics (e.g.,

Hypersomniacs (Plante et al., 2012)).
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