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Obstructive sleep apnea (OSA) is one of the most common sleep disorders

and affects nearly a billion people worldwide. Furthermore, it is estimated

that many patients with OSA are underdiagnosed, which contributes to the

development of comorbidities, such as cardiac autonomic imbalance,

leading to high cardiac risk. Heart rate variability (HRV) is a non-invasive,

widely used approach to evaluating neural control of the heart. This study

evaluates the relationship between HRV indices and the presence and

severity of OSA. We hypothesize that HRV, especially the nonlinear

methods, can serve as an easy-to-collect marker for OSA early risk

stratification. Polysomnography (PSG) exams of 157 patients were

classified into four groups: OSA-free (N = 26), OSA-mild (N = 39), OSA-

moderate (N = 37), and OSA-severe (N = 55). The electrocardiogram was

extracted from the PSG recordings, and a 15-min beat-by-beat series of RR

intervals were generated every hour during the first 6 h of sleep. Linear and

nonlinear HRV approaches were employed to calculate 32 indices of HRV.

Specifically, time- and frequency-domain, symbolic analysis, entropy

measures, heart rate fragmentation, acceleration and deceleration

capacities, asymmetry measures, and fractal analysis. Results with indices

of sympathovagal balance provided support to reinforce previous

knowledge that patients with OSA have sympathetic overactivity.

Nonlinear indices showed that HRV dynamics of patients with OSA

display a loss of physiologic complexity that could contribute to their

higher risk of development of cardiovascular disease. Moreover, many

HRV indices were found to be linked with clinical scores of PSG.

Therefore, a complete set of HRV indices, especially the ones obtained

by the nonlinear approaches, can bring valuable information about the

presence and severity of OSA, suggesting that HRV can be helpful for in a

quick diagnosis of OSA, and supporting early interventions that could

potentially reduce the development of comorbidities.
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Introduction

Obstructive sleep apnea (OSA) is a common respiratory

sleep disorder characterized by partial or total airway

obstruction episodes, impairing the efficient gas exchange

during sleep (Dempsey et al., 2010). It has a high

prevalence, affecting almost one billion people worldwide,

at least in its mild form of severity (Benjafield et al., 2019). It is

well recognized that OSA deteriorates daytime life, increases

the incidence of work and traffic accidents (Sassani et al.,

2004; Monahan and Redline, 2011), and also leads to the

development of comorbidities such as cardiovascular diseases,

increasing the risk of life-threatening events (Dempsey et al.,

2010).

The hypoxic/hypercapnic episodes suffered by patients with

OSA elicit responses, such as sympathetic activation, aiming to

re-establish the expected blood oxygen levels. Chronically,

recurrent episodes of chemoreceptors activation due to

hypoxic events can trigger sustained cardiac dysautonomia,

with sympathetic predominance, that can contribute to the

development of cardiovascular diseases and increase the risk

of cardiac events in patients with OSA (Somers et al., 1995;

Somers et al., 2008).

Furthermore, polysomnography (PSG), the gold

standard test for the identification and classification of

OSA, is a complex and expensive procedure, leading

patients to wait months to years before receiving an

adequate diagnosis (Tobaldini et al., 2013). It is estimated

that about 70% of individuals affected by OSA remain

untreated (Sassani et al., 2004; Monahan and Redline,

2011) and are therefore susceptible to the development of

severe comorbidities.

The analysis of heart rate variability (HRV) is a valuable

probe to investigate the neural control of the heart and is

associated with cardiac risk in several diseases, including OSA

(Tobaldini et al., 2013; Sequeira et al., 2019; Dissanayake et al.,

2021). HRV represents a myriad of indices that describe the

dynamics of cardiac intervals on a beat-by-beat basis, usually

derived from the electrocardiogram (ECG). Indices of HRV can

be obtained using linear or nonlinear approaches (Shaffer and

Ginsberg, 2017). The linear approaches are divided into the time

and frequency domains. Indices in the time domain provide

statistical and geometrical metrics of the cardiac interval. On the

other hand, frequency-domain methods, in which spectral

analysis is the principal representative, analyze oscillatory,

frequency-dependent components of cardiac intervals. In

contrast, nonlinear methods of HRV analysis can provide

diverse information on cardiac dynamics, which is highly

relevant to characterizing the complexity of living organisms

(Shaffer and Ginsberg, 2017). Nowadays, more and more

nonlinear indices are being proposed, revealing information

that linear approaches cannot provide.

Changes in HRV are observed in various diseases, including

OSA, since it is well demonstrated that OSA markedly affects the

autonomic function, especially in its more severe forms

(Tobaldini et al., 2013; Sequeira et al., 2019; Dissanayake

et al., 2021). Nevertheless, despite several studies evaluating

HRV in patients with OSA, they only assessed a reduced

number of HRV indices, mainly focused on linear approaches

(Sequeira et al., 2019).

The present study aims to analyze and correlate a variety of

HRV indices, calculated with both linear and nonlinear

approaches, in patients with different degrees of severity of

OSA (mild, moderate, or severe) evaluated by PSG. We

hypothesize that the more recent nonlinear methods for

assessing HRV, included in this study, provide important

markers for stratifying OSA severity.

Methods

Patients

PSG exams were performed at the University Hospital of

Ribeirão Preto Medical School of the University of São Paulo

(HC-FMRP/USP) between 2015 and 2021. The data collection

and the analysis protocols were carried out in accordance with

The Code of Ethics of the World Medical Association

(Declaration of Helsinki) and authorized by the Research

Ethics Committee of HC-FMRP/USP (Protocol #

42058720.6.000.5440/4.550.2327).

Patients older than 18 years old, with a minimum sleep

recording period of 5 h and 15 min in the PSG, and with RR

series containing no more than 2.5% of artifacts identified (see

next section) were included in the study. Out of 301 exams

collected, 144 were not used due to problems with the recording

files, such as insufficient collected time, corrupted files, poor

signal quality, and/or arrhythmias (96 recordings); exams from

patients under 18 years old (2 recordings); and exams with

missing data in the report (46 recordings). The final sample

was composed by 157 recordings.

Data processing

The PSG exam records variables such as

electroencephalogram (EEG), electrooculogram (EOG),

electromyogram (EMG), electrocardiogram (ECG), thoracic

and abdominal movements by piezo-electric straps, pulse

oximetry, nasal pressure transducer system and nasal and
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mouth thermocouple airflow sensor to monitor the airflow,

microphone to detect snores, sensor to determine body

position, and a video camera to monitor the patient during

sleep. So, ECG recordings from the PSG exams (sampling

rate: 512 Hz) were obtained and, after visual inspection,

segments of 15 min from each hour were extracted for each

patient from the first 6 h of recording. The segment selection was

based on a visual assessment on the quality of the ECG, avoiding

the presence of artifacts as much as possible. Time series of

successive RR intervals were generated (ECG Module for

LabChart, AD Instruments, Dunedin, New Zealand) for each

15-min segment and corrected for remaining artifacts and/or

ectopic beats. Artifacts were identified as follows: first, a moving

median window of sizeW was applied to the RR series, creating a

median line. Next, a lower and upper tolerance were defined as

themedian line shifted down and up, respectively, by a factor of T

(tolerance). This tolerance corresponds to a percentage of the

average median line. The optimal values of W and T were

manually chosen for each series, varying in the range W = [5,

70] and T = [0.01, 0.80]. Finally, all RR values below the lower

or above upper tolerance were replaced using linear

interpolation. When the number of corrections exceeded

2.5% of the total number of beats, the patient was excluded

from the study (10 RR series were excluded from the study for

this reason).

HRV analysis

Corrected RR series were used to calculate HRV indices using

the computer software PyBios (Silva et al., 2020). Linear indices

were calculated in time and frequency domains. In the time-

domain, we calculated the standard deviation of RR values

(SDNN) and root mean square of successive RR differences

(RMSSD). For frequency-domain analysis, RR series were

resampled at 3 Hz by cubic spline interpolation and divided

into segments of 512 values overlapped by 50%. Following, after

the application of a Hanning window, the segments had their

spectra calculated by the periodogram (Fourier transform) and

were integrated into bands of low- (LF: 0.04–0.15 Hz) and high-

frequency (HF: 0.15–0.4 Hz). The power of the spectra in the LF

band was assessed in normalized units (LFnu), while HF power

was evaluated in absolute units (HFabs). The LF/HF ratio (both

in absolute units) was also calculated (Montano et al., 1994; Silva

et al., 2017).

Several nonlinear indices of HRV were also calculated. The

evaluation of fractal behavior (self-similarity) of RR intervals

series was performed by the detrending fluctuation analysis

(DFA) in the scaling range 5 < n < 15 (α1), where n is the

number of RR intervals considered (Peng et al., 1995). Entropy

measures assess the irregularity (unpredictability) of RR

patterns. Here, we calculated the following entropies: sample

entropy (SampEn; sequence length m = 2; tolerance r = 0.15),

fuzzy entropy (FuzzyEn; sequence length m = 2; tolerance r =

0.15; fuzzy exponent n = 2), distribution entropy (DistEn;

sequence length m = 3; number of bins M = 512), dispersion

entropy (DispEn; sequence length m = 3; number of classes

nc = 6), permutation entropy (PermEn; sequence length m = 3;

noise added to deal with equal values), attention entropy

(AttEn), and phase entropy (PhaseEn; number of sectors

k = 16). The details of the calculation of these approaches

are described elsewhere (Richman and Moorman, 2000; Chen

et al., 2007; Li et al., 2015; Rostaghi and Azami, 2016; Ribeiro

et al., 2021). The acceleration-deceleration capacity (AC/DC)

was also calculated. It considers the average magnitude of

increases and decreases in heart rate regarding their

adjacent values (Bauer et al., 2006). Besides, three

asymmetry indices were used to evaluate whether the

changes in RR intervals are similar when the series is time-

reversed: Porta’s, Guzik’s, and Ehlers’ indices (Guzik et al.,

2006; Porta et al., 2008). For Porta’s and Guzik’s indices,

symmetric RR series are characterized by values near 50,

representing the balance between positive and negative

variations within the series. In contrast, Ehler’s index is

based on the skewness of RR differences, and values near

zero represent symmetric (time-reversible) series. In

addition, two symbolic dynamics analyses were calculated.

The method proposed by Porta and co-workers was

calculated as described elsewhere (Porta et al., 2007a).

Briefly, this method divides the overall range (max-min) of

RR values into six equally distributed bins and symbolizes the

values according to the level it belongs. Following, it does

compute the percentage of patterns assigned as 0V (zero

variation), 1V (one variation), 2LV (two like variations),

and 2UV (two unlike variations), where sequences of three

consecutive symbols represent the patterns. Another symbolic

dynamics method calculated was the binary symbolic

dynamics, as described by Cysarz et al. (2015). Differently

from Porta’s approach, the binary method considers as

patterns the sequences of accelerations and decelerations of

heart rate. Only patterns of type 0, 1, and 2V (two variations)

are possible in this case, creating the Bin-0V, Bin-1V, and Bin-

2V indices, respectively. For both approaches of symbolic

analysis, 0V represents the percentage of patterns with the

slowest oscillations, while 2UV (or 2V) represents the

percentage of patterns with the fastest oscillations. Finally,

we also evaluated some heart rate fragmentation (HRF)

indices. HRF was proposed by Costa et al. (2017a); Costa

et al. (2017b) and is intended to quantify ultra-fast (erratic)

variations in heart rate. Here, we used the symbolic dynamics

approach of HRF, although it is essentially different from the

two previously described symbolic dynamics approach. In

HRF, sequences of four consecutive RR differences are

classified as words containing zero (W0), one (W1), two

(W2), or three (W3) inflection points. The general

percentage of inflection points (PIP) was also calculated.
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Classification of OSA

The PSG report, provided by a qualified physician, was used

as the source of indices of interest to determine the presence and

severity of OSA, which were: apnea/hypopnea index (AHI),

arousal index (AI), percentage of the total sleep time that the

patient achieved oxygen saturation below 90% (T90), and oxygen

saturation nadir during sleep (SatMin). The AHI represents the

number of apneic/hypopnea events divided by the total hours of

sleep. An apnea event is defined as a reduction >90% of the

airflow, lasting at least 10 s (associated with a respiratory effort),

and the hypopnea event is characterized by a reduction >30% of

the airflow in a period >10 s, associated with an oxygen

desaturation >3% during this period or with arousal (Iber

et al., 2007). AHI is the most used reference to diagnose OSA

and establish its severity class. Here, we defined four groups of

patients according to their AHI: if below 5, the patient is

considered normal (OSA-free); when it is between 5 and 15,

15 and 30, and higher than 30, OSA is diagnosed and classified as

mild, moderate or severe, respectively (Sleep-related breathing

disorders in adults, 1999). The AI represents the number of

arousals divided by total sleep time. Arousal is characterized by

an abrupt shift (a return to alpha or theta waves) seen in the

electroencephalogram (EEG) that lasts at least 3 s, with at least

10 s of stable sleep preceding the change, and additionally, an

alteration in electromyogram (EMG) during REM sleep (Martin

et al., 1997; Iber et al., 2007; Taylor et al., 2016).

Statistical analysis

The Shapiro-Wilk test was used to check the normality of

each variable. Since most variables showed a non-normal

distribution, the results are shown as median (first and third

quartiles), and the Kruskal-Wallis test was applied to compare

groups. When differences were observed, the post-hoc test of

Dunn was applied. For the gender differences between groups,

the chi-square test was applied. Finally, the Spearman’s

correlation coefficient was used to evaluate the correlation

strength between HRV and PSG indices. In all cases, statistical

significance was considered when p ≤ 0.05.

Results

Figure 1 shows series of RR intervals from one patient of each

group evaluated. The number of patients in each group studied

ranged from 24 to 57. Normal subjects (OSA-free) formed the

smaller group, while the larger one encompasses patients with

severe OSA. AI, T90, and SatMin were not different in the mild

form of OSA compared to normal subjects. Nevertheless, except

for the SatMin, all PSG indices were higher in patients with

moderate and severe OSA forms than normal individuals

(Table 1).

Table 2 presents the mean RR interval and HRV indices

calculated in all groups of patients evaluated. Surprisingly, no

differences were found in either mean RR interval or HRV

indices calculated in the time domain among the healthy

individuals and patients with OSA under any class of severity.

On the other hand, the spectral analysis showed results

compatible with the cardiac autonomic imbalance, with

sympathetic predominance, in patients with moderate and

severe forms of OSA (increase in LFnu and decrease in HFabs

in moderate OSA as compared to normal subjects, and a

monotonic increase in LF/HF with OSA severity). Similarly,

the symbolic dynamics revealed an increase in the occurrence

FIGURE 1
Representative time series of RR intervals (15 min) from a
normal subject (A) and patients with OSA in its mild (B) moderate
(C), and severe form (D).
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of 0V and a decrease in 2LV in patients with moderate and severe

forms of OSA, as compared to normal controls. For the binary

symbolic dynamics method, 1V was lower in all classes of OSA

when compared with normal subjects.

Regarding the entropy measures, SampEn, FuzzyEn, and

DispEn showed a reduction in patients with moderate or

severe forms of OSA, while AttEn increased in severe patients

compared to normal individuals. DistEn, PermEn, PhaseEn were

not significantly different among groups. The DFA short-term

scaling exponent was found higher in patients with moderate and

severe OSA as compared to healthy individuals. The AC/DC

method showed that only the acceleration capacity is reduced in a

moderate form of OSA. HRF showed that the occurrence of

W0 patterns is increased in the severe OSA as compared to mild

OSA and normal subjects. The rate of occurrence of W1 patterns

is decreased in mild and moderate OSA compared to the normal

group. Moreover, similar to the LF/HF ratio, 0V from symbolic

analysis, DFA-α1, AttEn, the W0 index of HRF showed a linear

increase as the severity of OSA rises. None of the three

asymmetry indices are different among all groups.

Figure 2 shows scatter plots and regression lines of HRV

indices that showed high correlation with PSG-derived scores.

Table 3 shows Spearman’s correlation coefficient among indices

of HRV and indices of OSA, the latter obtained from the reports

of PSG exams. The mean RR interval, the HRV measured in the

time domain, and all the asymmetry indices showed no

significant correlation with PSG-derived indices of OSA. The

power of RR spectra at LF band, calculated by spectral analysis,

showed a significant positive correlation with both AHI and AI.

AHI and AI were found to be positively correlated with the

occurrence of 0V, and negatively correlated with 2LV and 2UV

from the symbolic analysis. The percentage of 2LV patterns was

also negatively correlated with T90. A similar result was observed

for the binary symbolic dynamics, i.e., Bin-0V was positively

correlated with AHI and AI, while Bin-1V index was negatively

correlated with them. On the other hand, Bin-2V showed a

positive correlation with T90 and a negative correlation with the

SatMin. Bin-1V was negatively correlated with T90. The

acceleration and deceleration capacities were positively and

negatively associated with T90, respectively. From HRF

indices, the PIP showed a positive correlation with T90, while

W0 was found positively correlated with AHI and AI. W1 and

W2 indices showed a negative correlation with T90 and AI,

respectively. Finally, the W3 showed a positive correlation with

AHI and T90. From the set of entropy methods, SampEn,

FuzzyEn, and DispEn were correlated to all the four PSG-

derived OSA indices. The same occurred for DFA-α1 and LF/

HF ratio. In all situations, the correlation direction was the same

for AHI, AI, and T90, but the opposite for SatMin. Of note, DFA-

α1, FuzzyEn, DispEn, and W0 were the HRV indices that

displayed the strongest correlations with AHI (0.30), while

AttEn showed the highest overall correlation coefficient

obtained with AI (0.40).

Discussion

The present study evaluated the relationship between HRV

indices, calculated by several approaches, and four important

PSG-derived clinical scores of OSA. Studies using ECG-based

methods as a screening tool for patients with OSA have been

described before (Guilleminault et al., 1984). However, to the best

of our knowledge, this is the first study to evaluate the

relationship of OSA, from its mild to severe forms, with a

large set of HRV indices, especially those calculated from

nonlinear approaches.

HRV analysis between normal and OSA
individuals

The HRV indices calculated in the time domain were

extensively demonstrated to be associated with cardiac risk in

several situations (Heart rate variability, 1996). To our surprise,

those indices, as well as the mean RR interval, were found to be

similar among normal subjects and patients with OSA, even

under its more severe form. Nevertheless, conflicting findings of

time-domain indices, especially for SDNN, have been reported in

TABLE 1 PSG indices in normal subjects and patients with OSA under three severity classes.

Normal (n = 24) Mild (n = 39) Moderate (n = 37) Severe (n = 57)

Males 5 (20.8%) 19 (48.7%) 17 (45.9%) 26 (45.6%)

Age 36 (28–54) 50 (39–63) 58 (47–66)* 55 (40–63)*

BMI 27.6 (25.2–31.8) 31.4 (27.7–33.71) 30.0 (27.4–3 7.3) 34.5 (29.0–38.6)*

AHI 2.8 (1.1–3.5) 10 (8–13)* 23 (19–26)*# 56 (39–79)*#$

AI 21 (12–32) 31 (17–38) 35 (24–56)* 60 (43–80)*#$

T90 0.05 (0–0.47) 0.8 (0.1–8.1) 2.2 (0.3–10)* 12 (4–39)*#$

SatMin 88 (84–91) 86 (81–89) 84 (77–87)* 75 (65–82)*#$

BMI, body mass index; AHI, apnea/hypopnea index; AI, arousal index; T90, percentage of total sleep time of oxygen saturation below 90%; SatMin, oxygen saturation nadir (%) during

sleep; Values are presented as Median (first quartile, third quartile); *p < 0.05 versus normal; #p < 0.05 versus mild; $p < 0.05 versus moderate.
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patients with OSA, drawing attention to the necessity for more

robust HRV approaches to characterize these patients (Roche

et al., 1999; Porta et al., 2007b; Cysarz et al., 2013; Kim et al., 2015;

Aeschbacher et al., 2016; Nastałek et al., 2019; Spellenberg et al.,

2020).

Our findings from spectral analysis and symbolic dynamics

strongly suggest a cardiac autonomic imbalance, with

sympathetic predominance, in patients with OSA. It is well

accepted that high values of the LF/HF ratio and 0V, together

with the reduction of 2UV symbols, are linked to an increase in

sympathetic and a decrease in parasympathetic cardiac

modulation, respectively (Porta et al., 2007b). Additionally,

the binary symbolic analysis showed that the occurrence of

1V patterns is reduced in all classes of OSA as compared to

healthy individuals. Studies by Cysarz et al. (2013) and

Spellenberg et al. (2020) discuss a possible interpretation of

the 1V of the binary method as a marker of parasympathetic

modulation since it is reduced with stressor tests. Therefore, our

findings corroborate several studies by showing that OSA

patients tend to have a sympathovagal balance shifted to the

TABLE 2 Cardiac interval and HRV indices calculated from normal individuals and patients with OSA at distinct classes of severity.

Normal (n = 24) Mild (n = 39) Mod. (n = 37) Severe (n = 57)

RR (ms) 875 (796–936) 886 (803–1,063) 905 (816–1,024) 876 (801–963)

SDNN (ms) 43 (29–64) 34 (28–44) 36 (31–51) 44 (34–68)

RMSSD (ms) 31 (17–60) 22 (12–34) 18 (13–30) 26 (17–36)

LF power (nu) 41 (29–52) 48 (31–65) 54 (40–70)* 51 (35–65)

HF power (ms2) 352 (127–1,183) 150 (57–344) 133 (54–326)* 285 (101–501)

LF/HF 1.1 (0.5–1.7) 1.4 (0.9–2.5) 1.8 (1.1–5.3)* 1.9 (0.7–3.4)*

0V (%) 26 (10–31) 31 (20–42) 35 (25–46)* 36 (22–44)*

1V (%) 47 (42–50) 45 (40–48) 44 (39–47) 44 (40–49)

2LV (%) 9.3 (5.3–16.8) 6.8 (4.2–9.5) 4.3 (2.9–7.8)* 5.5 (2.6–11.8)*

2UV (%) 18 (13–24) 16 (10–25) 14 (7–21) 12 (9–18)

DFA-α1 0.98 (0.84–1.17) 1.10 (0.93–1.34) 1.20 (1.08–1.43)* 1.27 (0.92–1.41)*

SampEn 1.84 (1.75–1.95) 1.81 (1.61–1.95) 1.79 (1.35–2.02) 1.66 (1.49–1.88)*

FuzzyEn 1.62 (1.53–1.88) 1.52 (1.33–1.75) 1.51 (1.16–1.64)* 1.37 (1.23–1.66)*

DistEn 0.64 (0.56–0.73) 0.58 (0.54–0.67) 0.59 (0.55–0.66) 0.62 (0.56–0.69)

PermEn 2.46 (2.43–2.51) 2.48 (2.43–2.53) 2.48 (2.41–2.55) 2.47 (2.43–2.52)

DispEn 4.46 (4.35–4.71) 4.35 (4.07–4.66) 4.28 (3.83–4.52)* 4.16 (3.96–4.47)*

AttEn 1.92 (1.56–2.06) 1.94 (1.65–2.30) 2.03 (1.69–2.60) 2.25 (1.87–2.44)*

PhaseEn 0.92 (0.91–0.93) 0.91 (0.89–0.92) 0.91 (0.89–0.92) 0.92 (0.91–0.93)

AC (ms) −12.3 (−17.9 to −7.7) −9.0 (−11.5 to −5.9) −8.2 (−11.3 to −5.5)* −11.4 (−15.9 to −6.8)

DC (ms) 11.5 (7.3–19.2) 8.8 (5.8–11.2) 8.5 (5.6–11.6) 11.2 (7.2–15.9)

Porta (%) 49.4 (48.1–52.0) 50.0 (48.3–51.3) 50.4 (49.4–51.7) 50.1 (48.4–52.3)

Guzik (%) 49.6 (48.9–53.5) 50.8 (48.6–52.3) 51.5 (49.7–52.6) 50.6 (48.5–52.8)

Ehlers 0.06 (-0.14–0.83) 0.11 (−0.12 to 0.69) 0.39 (−0.04 to 0.59) 0.18 (−0.24 to 0.70)

Bin-0V (%) 17.4 (11.7–21.1) 16.4 (11.0–25.4) 17.9 (10.6–31.7) 22.5 (15.5–27.1)

Bin-1V (%) 64.8 (62.1–73.1) 61.5 (55.4–67.6)* 61.3 (50.1–64.0)* 58.0 (52.9–64.8)*

Bin-2V (%) 16.0 (10.3–19.7) 19.6 (13.0–28.4) 18.9 (13.5–23.0) 17.3 (14.0–23.0)

PIP (%) 53.2 (49.3–58.5) 58.3 (52.8–62.2) 55.5 (51.5–61.0) 54.7 (50.2–60.3)

W0 (%) 3.16 (1.62–4.49) 3.84 (1.94–6.02) 4.29 (2.14–10.75) 6.20 (2.99–9.12)*#

W1 (%) 42.5 (30.8–51.0) 30.7 (21.0–41.7)* 33.4 (23.4–42.6)* 35.2 (26.6–44.5)

W2 (%) 42.2 (39.1–52.0) 47.0 (41.8–59.2) 46.7 (38.1–54.1) 42.9 (35.3–50.2)

W3 (%) 10.4 (5.3–13.3) 12.6 (9.9–19.7) 12.1 (9.2–21.1) 13.1 (7.8–17.9)

RR, mean RR interval; SDNN, standard deviation of normal-to-normal cardiac intervals; RMSSD, root mean square of successive RR differences; LF, low-frequency band; HF, high-

frequency band; LF/HF: the ratio between the powers at LF and HF bands; 0V, percentage of patterns with zero variations; 1V, percentage of patterns with one variation; 2LV, percentage of

patterns with two like variations; 2UV, rate of patterns with two unlike variations; SampEn, sample entropy; DFA-α1, detrended fluctuation analysis (5 ≤ n ≤ 15); FuzzyEn, fuzzy entropy;

DistEn, distribution entropy; PermEn, permutation entropy; DispEn, dispersion entropy; AttEn, attention entropy; PhaseEn, phase entropy; AC, acceleration capacity; DC, deceleration

capacity; Porta, Porta’s asymmetry index; Guzik, Guzik’s asymmetry index; Ehlers, Ehlers’ asymmetry index; Bin-0V, patterns with 0 variation (binary method); Bin-1V, patterns with one

variation (binary method); Bin-2V, patterns with two variations (binary method); PIP, percentage of inflection points;W0, percentage of patterns with zero inflection points; W1, percentage

of patterns with one inflection point; W2, percentage of patterns with two inflection points; W3, percentage of patterns with three inflection points; Values in bold are presented as median

(1° quartile, 3° quartile); *p < 0.05 versus normal; #p < 0.05 versus mild.
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sympathetic predominance as compared to healthy subjects.

Importantly, studies showed that this sympathetic

overactivation extends to the wake period, leading, therefore,

to a higher risk of developing cardiovascular diseases (Somers

et al., 1995; Porta et al., 2007b; Somers et al., 2008; Shaffer and

Ginsberg, 2017). It is believed that this autonomic imbalance

might be caused by the intermittent hypoxia that these patients

suffer during the night due to recurrent apneic events. The

physiopathology of sustained sympathetic overactivity may

undoubtedly be related to the frequent activation of

chemoreceptors in the carotid body, activating the sympatho-

excitatory neural pathways, trying to maintain blood gases

homeostasis (Gharibeh and Mehra, 2010).

From nonlinear methods, fractal and entropy measurements

were found altered in patients with OSA, which is in line with

several previous observations in the literature (Penzel et al.,

2003a; Al-Angari and Sahakian, 2007; Sequeira et al., 2019).

The DFA short-term fractal exponent (α1) used in this study

describes short-term fluctuations at different time scales (Shaffer

and Ginsberg, 2017), and was demonstrated to be a valuable

parameter for distinguishing the severity of OSA. Apropos,

Penzel et al. (2003b) showed that DFA-α1 was a better

predictive tool in OSA than the spectral analysis indices.

However, opposite findings were also reported, such as those

from Silva and co-workers (da Silva et al., 2015), showing that

both frequency domain indices and DFA-α1 do not differ

between OSA classes and are not significantly correlated with

PSG scores. From entropy measurements, results with SampEn,

FuzzyEn, and DispEn showed a very similar profile, decreasing

with the rise of OSA severity. In contrast, AttEn tends to increase

with OSA severity, whereas DistEn, PermEn, and PhaseEn did

not differ concerning the severity of the groups. Although AttEn

is a very recent and intricate method whose interpretation is still

to be better elucidated, SampEn, FuzzyEn, and DispEn are widely

recognized as irregularity or unpredictability measurements. In

this case, the higher the entropy, the higher the unpredictability

of the series. Al-Angari and Sahakian (2007) study also found a

significant reduction in SampEn in patients with OSA,

supporting the notion that these patients have a more

predictable heart rate oscillation. Altogether, those findings

with DFA and entropy indicate that patients with OSA have

altered fractal dynamics and decreased unpredictability of heart

rate oscillations, a condition consistent with loss of physiological

complexity in patients with OSA (Goldberger et al., 2002;

Burggren and Monticino, 2005; Porta et al., 2007a; Arsac and

Deschodt-Arsac, 2018).

FIGURE 2
Scatterplots and linear regression lines, showing the relationship between indices of HRV and PSG. Top left: DFA-α1 and AHI, top right: AttEn and
AI, bottom left: Bin-2V and T90, and bottom right: SampEn and SatMin.
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Although none of the asymmetry indices were found

different among groups, the acceleration capacity is decreased

in patients with moderate OSA. Therefore, OSA seems not to

affect the number of accelerations and decelerations but may

affect the magnitude of heart rate accelerations. In agreement

with this idea, the study from Guzik et al. (2013) showed that

patients with severe OSA had a reduction in short acceleration

and deceleration runs and an increase in long acceleration runs

compared with other OSA classes or healthy individuals.

Similarly, a study from Jiang et al. (2017) showed that OSA

reduces the short acceleration runs and increases both

acceleration and deceleration of long runs. Thus, the

magnitude of accelerations and decelerations seems to be an

important marker to be evaluated in patients with OSA under

different forms of severity.

Another promising nonlinear approach to evaluating HRV is

heart rate fragmentation. We showed that the occurrence of

W0 patterns is increased in severe OSA, while a reduction in

W1 patterns occurred in mild and moderate forms of OSA, when

compared to healthy subjects. In the first studies conducted by

Costa et al. (2017a), Costa et al. (2017b), fragmented indices

(such as PIP andW3) were demonstrated to be higher in patients

with high cardiovascular risk, whereas a reduced value of fluent

indices (such as W0 and W1) were observed in these patients

(Costa et al., 2017a; Costa et al., 2017b). However, the same

authors draw attention to the fact that W0 patterns should be

cautiously interpreted in special populations, such as patients

with OSA. An excessive percentage of W0 can be due to an

abnormal increase in long acceleration/deceleration runs, which

would not be related to a better prognosis. This hypothesis may

explain our findings with W0, which also agrees with the

observations that OSA increases the acceleration and

deceleration of long runs (Guzik et al., 2013; Jiang et al.,

2017). Nevertheless, compared to the control group, the lower

occurrence of W1 observed in patients with OSA suggests that

OSA diminishes the presence of fluent patterns, even though the

fragmented patterns (PIP and W3) did not increase.

Correlation between HRV and PSG indices

The correlation analysis showed that many HRV indices are

slightly but significantly correlated with PSG scores. In general,

AI showed higher correlation coefficients with HRV than those

with AHI, T90, or SatMin. This suggests that the autonomic

imbalance of OSA is more related to sleep fragmentation than to

the number of apneic/hypopneic events. This is in agreement

with several studies that evaluated the association of HRV with

several sleep disorders (Morrell et al., 2000; Sforza et al., 2007;

Taylor et al., 2016). Here, time-domain and asymmetry indices

did not show any significant correlations with PSG scores, but the

LF, LF/HF, and 0V showed a positive correlation with AHI and

AI, while 2LV and 2UV showed a negative relationship with

these PSG-indices. Previous studies reported similar findings.

Kim et al. (2019) showed that AI is an independent factor for an

increase in LF power of RR spectra, and both AHI and AI

independently contributed to a reduction of HF power and an

increase of LF/HF. In another study, Gong et al. (2016) found a

significant relationship between frequency domain indices and

the AHI and AI. Besides, in a multiple regression analysis, AI had

a substantial relationship with LF/HF. In addition, Park et al.

(2008) demonstrated that LF/HF showed a good correlation with

AHI. All these findings strengthen the notion that apneic events

and sleep fragmentation are important contributors to

sympathetic overactivity, leading to a higher risk of

developing cardiovascular diseases in patients with OSA.

Unlike studies with classical linear HRV approaches, far

fewer studies can be found evaluating the relationship

TABLE 3 Correlation coefficients between HRV and PSG indices.

AHI AI T90 SatMin

Mean RR −0.04 −0.13 −0.10 0.13

SDNN 0.13 0.11 −0.08 −0.05

RMSSD −0.04 −0.09 −0.10 0.01

LF power (nu) 0.21* 0.32* 0.13 −0.12

HF power (ms2) −0.05 −0.09 −0.15 0.03

LF/HF 0.24* 0.31* 0.16* −0.17*

0V 0.26* 0.30* 0.13 −0.10

1V −0.11 −0.02 −0.06 −0.01

2LV −0.24* −0.22* −0.20* 0.12

2UV −0.23* −0.35* 0.01 0.03

DFA-α1 0.30* 0.32* 0.19* −0.19*

SampEn −0.29* −0.31* −0.23* 0.24*

FuzzyEn −0.30* −0.34* −0.20* 0.18*

DistEn −0.01 0.00 −0.05 −0.15

PermEn −0.01 −0.19* 0.18* −0.06

DispEn −0.30* −0.34* −0.18* 0.17*

AttEn 0.29* 0.40* 0.05 −0.06

PhaseEn 0.08 0.17* −0.11 −0.01

AC 0.01 0.00 0.17* −0.04

DC 0.00 0.01 −0.17* 0.03

Porta 0.06 0.01 0.00 0.00

Guzik 0.06 0.00 −0.02 0.00

Ehlers 0.04 −0.02 −0.04 0.01

Bin-0V 0.23* 0.38* −0.01 −0.05

Bin-1V −0.28* −0.25* −0.23* 0.16

Bin-2V 0.10 −0.04 0.28* −0.17*

PIP 0.01 −0.14 0.23* −0.05

W0 0.30* 0.39* 0.05 −0.14

W1 −0.08 0.05 −0.26* 0.11

W2 −0.11 −0.23* 0.06 0.03

W3 0.17* 0.08 0.25* −0.09

Numbers in bold with an asterisk: significant relationship (p < 0.05).
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between nonlinear HRV and OSA. Here, we demonstrated that

DFA (short-term exponent) and some entropies are correlated,

although slightly, with the top PSG scores used to detect and

classify OSA, i.e., AHI, AI, T90, and SatMin. While SampEn,

FuzzyEn, and DispEn showed an inverse relationship with AHI

and MI, DFA-α1 and AttEn showed positive associations. The

importance of entropy and fractal dynamics in the prognosis of

diseases is widely demonstrated (Voss et al., 2009; Sassi et al.,

2015). Here, we showed that those HRV nonlinear indices

correlate to all the clinical scores studied, pointing to their

superiority over classical HRV indices and their importance

for OSA prognostication. The HRF, a recent and promising

tool, showed that both indices reflecting fragmented patterns

(PIP andW3) positively correlated with T90, whileW3 also had a

positive correlation with AHI. This direct association between

fragmented patterns and OSA severity points to the degradation

of heart rate control with OSA. On the other hand, W0, which is

usually considered a marker of fluent patterns, reached one of the

strongest correlations with both AHI and AI. However, as

mentioned before, the increase of W0 with OSA severity is

related to the long heart rate acceleration and deceleration

runs caused by the disease. Therefore, HRF indices seem to be

a valuable source of information to assess the severity of OSA.

The results presented here using a large number of HRV

indices advocates for the importance of using a comprehensive

set of HRV indices in the characterization of OSA and its severity.

Since no single HRV index was highly correlated to OSA severity

markers, the different HRV indices may provide complementary

information. Studies combining those indices through machine

learning models are being conducted to identify the importance

of each one when they are combined in a single predictive model.

Limitations

Finally, it is essential to highlight some limitations of our

study. First, the groups are unbalanced regarding the number of

patients because patients with severe OSA represent the most

prevalent group. Second, the segments of HRV obtained from

PSG recordings were not standardized regarding the sleep phase

or the presence of apneic/hypopneic episodes. And third, we did

not consider comorbidities and medications in use by the

patients. Further studies are necessary to evaluate the

influence of those factors on the predictive value of HRV

metrics in OSA.

Conclusion

In the present study we evaluated the relationship between a

wide variety of HRV indices and the presence/severity of OSA. In

addition to changes in several indices of HRV in patients with

OSA, we showed a significant relationship in a number of these

indices with important PSG scores commonly used to define the

presence and severity of this disease. More specifically, we

highlight LF/HF ratio, 2LV, DFA-α1, SampEn, FuzzyEn,

DispEn, and Bin-1V as the most relevant, since they showed

significant correlation to at least three out of four OSA severity

indices. Our findings point to HRV indices, especially nonlinear

ones, as proper adjuvant markers in OSA stratification, which

can help to screen these patients, aiming for a quick diagnosis

and prevention of the risk of developing the comorbidities related

to this clinical syndrome.
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