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Animal bodies maintain themselves with the help of networks of physiological

processes operating over awide range of timescales. Many physiological signals are

characterized by 1/f scaling where the amplitude is inversely proportional to

frequency, presumably reflecting the multi-scale nature of the underlying

network. Although there are many general theories of such scaling, it is less

clear how they are grounded on the specific constraints faced by biological

systems. To help understand the nature of this phenomenon, we propose to

pay attention not only to the geometry of scaling processes but also to their

energy. The first key assumption is that physiological action modes constitute

thermodynamic work cycles. This is formalized in terms of a theoretically defined

oscillator with dissipation and energy-pumping terms. The second assumption is

that the energy levels of the physiological actionmodes are balanced on average to

enable flexible switching among them. These ideas were addressed with a

modelling study. An ensemble of dissipative oscillators exhibited inverse scaling

of amplitude and frequency when the individual oscillators’ energies are held equal.

Furthermore, such ensembles behaved like the Weierstrass function and

reproduced the scaling phenomenon. Finally, the question is raised whether this

kindof constraint applies both to broadband aperiodic signals andperiodic, narrow-

band oscillations such as those found in electrical cortical activity.
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1 Introduction

Neural and cognitive function distributes its activity across a wide range of temporal

and spatial scales replete with feedback loops and noise (Buzsaki and Draguhn, 2004).

There is renewed interest in the scaling properties of aperiodic ensemble activity of neural

systems and the potential role of critical dynamic regimes (Sporns, 2022). Neural function

is also enmeshed with other faster and slower processes of autonomous physiological

control. Network physiology studies such nonlinear control across scales and the fluid

reorganization between distinct network modules and dynamic motifs (Ivanov, 2021).

One way to quantitatively address such networks would be to try to decompose them into

individual units and their interactions, which can be described as a micro-to-macro

approach. One can also seek theoretically-motivated meso- andmacro-variables that offer
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insight into the underlying complexity. For example, quantifying

the variability and distributional properties of a collection of

physiological time-series can help distinguish between

homeostatically regulated target dimensions and dynamic

response dimensions that absorb perturbations (Fossion et al.,

2018), in line with Ashby’s theoretical search for essential

variables (Ashby, 1960). Another possibility is to analyze and

interpret the observed inverse scaling relation between frequency

and power, in its most general form known as 1/f noise, as it has

been mapped to optimal and healthy ranges of performance

(Lipsitz and Goldberger, 1992; Stergiou et al., 2006).

The phenomenon of 1/f noise is observed in physical (Bak,

1999), neural (Buzsáki, 2009), and cognitive systems (Gilden

et al., 1995; Kello et al., 2007). Zipf’s law is a similar function,

observed universally in human languages, that consists of inverse

scaling between word-use frequency and its rank. Beginning with

Mandelbrot’s proposal (Mandelbrot, 1953), there has been a

tradition of explaining the ubiquity of such inverse scaling in

terms of maximizing information-theoretic quantities in multi-

scale systems (Zhang, 1991; Costa et al., 2002; Yu et al., 2005;

West et al., 2008). For example, the Zipfian scaling is consistent

with an optimal trade-off between the use of few words often to

minimize effort and the use of rare words to maximize

communication (Zipf, 1949; i Cancho and Solé, 2003).

In search for organizing principles for multi-scale network

physiology, we borrow from Arthur Iberall’s homeokinetics, a set of

ideas about homeostatic regulation in thermodynamically open

complex systems. Biological systems distribute their internal

regulation among multiple scales and operational modes of

activity. . Fluxes and potentials of metabolic energy are involved at

all levels and stages of operation; at every scale of description, our

bodies use energy and produce heat to do work (Iberall and Soodak,

1987). These can be seen as limit-cycles because of the rough

periodicity and relative resistance to perturbation. Importantly,

switching among such modes is most efficient if they are

energetically unbiased. As raising either the amplitude or frequency

of a real physical system takes energy, to be unbiased, physiological

action modes must exhibit a trade-off between frequency and

amplitude in the form of the well-known 1/f scaling, (Iberall and

Soodak, 1987; Iberall, 1995). This is a thermodynamic counterpart to

the information-theoretic arguments. Here we test this idea by

investigating the properties of a model that consists of an

ensemble of oscillatory dissipative units with a spectrum of

intrinsic frequencies but constrained by their energy levels.

2 Material and methods

2.1 An ensemble of canonical-dissipative
oscillators as a Weierstrass function

The model consists of superimposed independent processes

(Eliazar and Klafter, 2009). The individual units are not

stochastic signals, however, but oscillators with a physically-

interpretable energy parameter. The unit of the system is the

canonical-dissipative oscillator that consists of a conservative

part with a frequency parameter ω, a velocity-dependent

dissipative part, and noise term with parameter Q (Haken,

1973; Schweitzer et al., 2001; Frank, 2010; Mongkolsakulvong

and Frank, 2010; Frank et al., 2011).

€x � −ω2x − γ _x H − b( ) + ��
Q

√
Γ t( ) (1)

The energy of the oscillator is given by the following equation.

H � ω2x2

2
+ _x2

2
(2)

This is in analogy with Hamiltonian mechanics which aims to

express oscillatory dynamical systems not in kinematic

coordinates such as position but in a coordinate system of

potential and kinetic energy. The energy given by Eq. 2 is

balanced by a pumping parameter b. Due to the system’s

dissipative nature, in time H converges to the pumping

parameter b (Frank, 2010), and γ determines the speed of this

convergence. Interestingly, even though the initial motivation

was different, Eqs (1) and (2) together amount to the same

form as the so-called hybrid Van der Pol–Rayleigh (Kay et al.,

1987) oscillator, plus an added stochastic term. The

hybrid oscillator was a phenomenological model that

accounted for important characteristics of human rhythmic

movement, one of them being an inverse relation between

movement amplitude and frequency (Haken et al., 1985; Kay

et al., 1987). Note also that equations of the same form have

been introduced elsewhere as an ‘energy oscillator’ (Buchli

et al., 2006).

To complete the model, we defined an ensemble of N = 10

canonical-dissipative oscillators to be solved numerically, where

dot-notation indicates the time-derivative.

€xj � −ω2
jxj − γ _xj Hj − b( ) + ��

Q
√

Γj

Hj �
ω2
jx

2
j

2
+ _x2

j

2

(3)

The ensemble at time point i was the sum across the state

variables xj of the N oscillators.

yi � ΣN
j�1xji (4)

This reduces the N harmonic waves see Figure 1A to a one-

dimensional time series, the increments of which exhibit scaling

properties, see Figure 1B.

Importantly, this model works like a Weierstrass function

which also is a summation of harmonic waves with an inverse

scaling relation between amplitude and frequency.

Wα x( ) � ∑∞
n�0 b

−nα cos bnx( ) (5)

The Weierstrass function helped spur the study of fractal objects

by introducing a benchmark example of a function that is
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continuous in time yet everywhere-singular for certain

parameters (Mandelbrot, 1982). Its α parameter agrees well

with its Hurst exponent h (Zhao et al., 2013). In the same

vein, both Eq. 5 and the model in Eqs. 3, 4 are special cases

of a more general approach that generates Lévy laws and 1/f β

noises using random frequencies, random amplitudes, and any

seed pattern in lieu of harmonic waves (Eliazar and Klafter,

2009). Note that the fractal properties of theWeierstrass function

depend on its parameters. Similarly, the outcome of the present

approach depends on model and numerical integration

parameters such as dt, N, Q, and the range of ω. We used

hand-picked parameters as it is beyond the scope of the

present work to study the full parameter space. Eqs. 3 and 4

should be seen as a conceptual model of how a potentially

meaningful variable could constrain oscillatory physiologically

processes, not as a robust generative model of physiological

signals.

2.2 Simulations

We simulated trials by integrating the system and taking its

summed ensemble, Eqs. 3 and 4 with an Euler step of dt = 10–3,

random initial conditions, and a trial duration of 1 s plus an

initial transient part which was discarded. Each oscillator had a

different angular frequency, ωj = 2 π 1.6681j−1 rad*s−1, j=

{1,2,...,10}, resulting in a range from 1 to 100Hz. The other

two parameters were less relevant to the present question and

were identical across units, γ = 10 and Q = .01. γ determines how

quickly each oscillator settles on its limit cycle and would play a

more prominent role if transient dynamics and effects of

different initial conditions were to be investigated. Q scales

the magnitude of an additive Gaussian force, Γ ~ N (0, 1). To

simplify the analysis, Q was chosen to be negligible. The initial

phases were random and the oscillators were not coupled, in line

with the assumption that physiological processes need a degree of

independence to maintain their function (Iberall, 1995). They

were constrained, however, by an energy resource bj.

In addition to the primary scenario defined by equal energy

per unit, we investigated whether scaling properties depended on

the distribution of the energy pumping parameter. We simulated

ten trials in each of four different conditions. The first three

conditions were characterized by a pumping parameter that was

either monotonically increasing, constant, or monotonically

decreasing with respect to the intrinsic frequencies of the

oscillators. For the increasing condition, b was given by bj =

2.5.8j+2. The decreasing condition was the reverse of that. In the

constant condition, all bj = 102. In the fourth condition, the

parameter was selective, whereby one oscillator was given

privileged access to a larger pumping term, bj=5 = 103 and

bj≠5 = 101. At present, we do not address switching and

coordination among modes. Future work can explore the role

of competitive coupling to the energy resource.

3 Results

First, we verified that the energies of the individual oscillators

in Eq. 3 responded to the pumping parameter b. We pooled all

units from all trials (n = 400 from ten units in ten trials in four

conditions). The input parameters b was regressed against the

time-average of the observed energies H defined by Eq. 2. As

expected, the agreement was strong with R2 = .9999 and a slope of

1.0054. Next, we analyzed the scaling of oscillator amplitudes. In

each trial consisting of N = 10 parallel oscillators, we regressed

linearly in log-log space their observed trial-averaged half-

FIGURE 1
(A) Representative trial involving ten oscillators simulated using Eq. 3, 4 in the condition of constant energy b across oscillators. (B) Their
differenced ensemble summed activity, Eq. 4, has a scaling exponent of α = .9703.
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amplitudes with respect to their frequencies, see Figure 2A. As

expected, the scaling was inverse for constant b (a mean

M = −1.016 and standard deviation SD = 0.001 across the ten

simulation runs). This serves to confirm that the model defined

by Eq. 3 effectively mimics one aspect of the Weierstrass

function. The exponent was steeper for decreasing b, that is

with more energy at the low-frequency oscillators (M = −1.724,

SD = 0.012). Conversely, with an increasing b which put more

energy in the higher-frequency oscillators, the scaling was less

steep (M = −0.310, SD = 0.009). In the selective condition, the

regression yielded inverse scaling (M = −1.045, SD = 0.002),

consistent with the fact that nine out of ten oscillators had equal

energy. Importantly, Figure 2A also shows that the one privileged

oscillator produced a prominent peak.

Having computed the observed individual unit energies using

Eq. 2, we looked at their relation to amplitude and frequency. As

implied by the strong agreement between trial parameters b and

the observed energies, the energy profile was flat with respect to

the amplitude and frequency spectrum only in the equal energy

condition, see Figure 2B.

Next, we analyzed the scaling properties of the ensemble yi
defined by Eq. 4. We used detrended fluctuation analysis, a

method for the scaling exponent of self-affine signals that has

become one of the benchmark tools in the analysis of

physiological time-series (Peng et al., 1994; Buldyrev et al.,

1995). It gained prominence with its application to inter-beat

intervals in cardiac recordings (Peng et al., 1995). It relies on the

fact that aperiodic signals with scaling properties also exhibit

scaling of the amount of fluctuation, as quantified by the mean of

running windows of root-mean-square, relative to the size of the

windows, see Figure 2C. The analysis parameters consisted of

first-order detrending, a minimum window size of ten points,

and no integration of the input data because the increments of

the summed ensemble exhibited scaling. As Figure 2C shows, in

the constant b condition yi was a time-series with a scaling

exponent that approximated ideal α = 1 (M = 0.972, SD = 0.035

across the ten simulation runs). Favouring higher frequencies

with an energy parameter that increased with frequency reduced

the exponent (M = 0.398, SD = 0.007). Favouring the lower

frequencies increased the exponent (M = 1.551, SD = 0.096).

Having a mix of equal energy plus one emphasized frequency in

the selective b condition also increased the exponent (M = 1.282,

SD = 0.008). Note that scaling analysis in the spectral domain is

also motivated in the present scenario, although the results would

depend on how the frequency bins are aligned with the

frequencies of the component oscillators. This implies that

our method cannot be considered an ideal generative model

for 1/f noise, at least not until the role of more dense sets of

component oscillators is investigated.

The present ideas suggest the possibility that isolated narrow-

band modes would exhibit the same association between

amplitude and frequency. The scaling of individual

physiological oscillatory processes has not been investigated as

much from this perspective, aside from the observed inverse

relationship between amplitude and frequency in repetitive

movements (Haken et al., 1985; Kay et al., 1987). To this end,

here we propose a brief re-analysis of published summaries of

narrow-band ranges of electrical cortical activity (Stern, 2013;

Reilly, 2015).

Cortical activity as recorded on the surface of the scalp with

EEG can have pronounced narrow bands that reflect the

conscious state and ongoing cognitive activity of the

participant (Stern, 2013; Reilly, 2015). To name a few

examples, deep sleep is associated with increased activity in

FIGURE 2
(A) The relationship between amplitude and frequency of the individual canonical-dissipative oscillators in Eq. 3. Each of the ten lines in a given
condition corresponds to a simulated trial run comprising N =10 parallel oscillators, each with a different intrinsic frequency in the range from 1 to
100 Hz. Conditions are color-coded and refer to the distribution of the pumping parameter b relative to the oscillators’ frequencies. Specifically, b
could increase, decrease, stay constant, or stay constant and lowwith the exception of one selected privileged frequency. Lines were jittered for
visibility. (B) The same figure as (A) but with an added axis for the oscillators’ energies reveals that, according to the present definition of oscillator
energy in Eq. 2, 1/f scaling is associated with a flat energy spectrum. (C)DFA analysis of the ensemble-summed time-series. The fluctuation functions
confirm that constant pumping, or equal energy across the component oscillators, results in scaling exponent approximately equal to unity.

Frontiers in Network Physiology frontiersin.org04

Dotov 10.3389/fnetp.2022.974373

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.974373


the δ band (.1–4 Hz), drowsiness with the θ band (4–8 Hz),

awake but mentally relaxed state with α (8–13 Hz), focusing and

mental agitation with β (14–30 Hz), and multi-sensory

stimulation and integration with γ (30 + Hz). We pooled

together the EEG amplitude and frequency ranges per band

reported in sources (Stern, 2013; Reilly, 2015). We selected

these sources for convenience because they offered

representative summaries of standard EEG bands, not datasets

of raw EEG recordings. We fitted a power-law to the data points

characterizing the boundaries of the bands. Because there were

some discrepancies between the two sources, we used the extreme

values, namely maximum amplitude at minimum frequency and

minimum amplitude at maximum frequency. As Figure 3 shows,

the overall trend is close to inverse scaling of amplitude with

frequency, A ∝ f −.95. This question requires more thorough

dedicated investigation in the future. To confirm this

observation, the amplitude of focal EEG oscillatory activity

needs to be dissociated from the underlying broadband 1/f

profile of EEG (Donoghue et al., 2020).

4 Discussion

Here we presented a modelling study that investigated a

possible link between 1/f scaling of broadband physiological

signals and the energy that constrains the underlying

physiological control modes. We discovered that the

constraint on energy led our model system to mimic the

Weierstrass function. This is interesting because the latter is a

paramount example of a fractal object but, to our knowledge, it

does not have a physical grounding, originally being known as a

so-called mathematical monster (Mandelbrot, 1953). Similarly,

the canonical-dissipative oscillator was not designed for the

present purposes, we merely put a small number of units in

an ensemble characterized by a broad frequency spectrum and

applied a theoretically-motivated constraint on their energy

parameter. The canonical-dissipative oscillator is defined by an

intrinsic frequency, a dissipative part, and energy-pumping which

is balanced by the dissipation, allowing the system to settle on a

limit-cycle with an energy-dependent amplitude. (Haken, 1973;

Frank, 2010). This was motivated by ideas from Arthur Iberall’s

theory of complex systems (Soodak and Iberall, 1978; Iberall and

Soodak, 1987). According to Iberall, physiological signals reflect

multiple action modes existing on a broad spectrum of time- and

space-scales and these modes tend to have equal energies. The

equal-energy condition ensures that switching among them is

unbiased and catalytic, meaning that switching among modes is at

a considerably lower energy level than the modes themselves.

Understanding the role of catalytic processes in the self-

organization of biological function was advanced further by the

notion of autocatalytic sets (Kauffman, 1993; Kauffman, 1995).

This is related to a popular idea about scaling phenomena,

namely that they reflect a system poised in a critical state

where stability and adaptability are balanced optimally. This is

relevant to neural dynamics as well, given renewed interest in

critical phenomena in the brain (Sporns, 2022). We are yet to

determine how the idea of energy constraint fits within the

existing landscape of complex systems theories. For example,

the original sand-pile model employed a damped pendulum as a

physical metaphor for the constitutive unit of the system (Bak

et al., 1988), hence an analysis in terms of potential and kinetic

energy must be possible in principle. More recently, a novel

notion of complex system stability has gone beyond static

homeostasis. Systems with antifragility not only maintain the

stability of a target internal variable when exposed to a

perturbation but also grow and increase their capacity to

sustain future perturbations (Taleb, 2012). The connections

between criticality and antifragility are only beginning to be

explored computationally (Pineda et al., 2019).

The idea that a physical system needs more energy to increase

its amplitude and/or frequency is a simple one, yet its relevance to

neural oscillations is yet to be determined. There is a related

observation, however, an established time-mass relation in neural

electrophysiology: the magnitude and period of a wave tend to be

associated with the size of the underlying substrate of co-

activated neurons (Buzsaki and Draguhn, 2004; Grigolini

et al., 2009; Aru et al., 2015). It is important to point out that

the approach advanced in the present work does not fit easily with

current thinking about the nature of aperiodic and oscillatory neural

FIGURE 3
The ranges of narrow-band electrical cortical activity are
shown in terms of their respective upper left (maximum amplitude,
minimum frequency) and lower right (minimum amplitude,
maximum frequency) corners. The power-law fit through
these data is also shown.
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dynamics. These two kinds of dynamics tend to be associated with

different generative mechanisms (He, 2014), whereas our

assumption was that they both obey the same condition of

balancing energy. We adhere to the idea that physical constraints

on function and structure are simpler and more fundamental than

biological mechanisms and it is not impossible that different

biological mechanisms are subject to the same constraint.

It is an important reminder that power laws rarely provide an

ideal fit of empirical scaling phenomena in EEG (Bedard et al.,

2006) and generally in biological systems (Clauset et al., 2009).

Still, the overall trend is a fact and its source needs to be

identified. Indeed, biological structure and function often can

be seen as a combination of a global constraint based on physical

law and local constrains based on specific adaptations (West and

Goldberg, 1987). In addition to developing generative models of

self-organizing systems with scaling properties, it is important to

understand the various constraints that shape the evolution and

development of physiological networks.
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