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We used a recently advanced technique,morphometric similarity (MS), in a large

sample of lumbar disc herniation patients with chronic pain (LDH-CP) to

examine morphometric features derived from multimodal MRI data. To do

so, we evenly allocated 136 LDH-CPs to exploratory and validation groups with

matched healthy controls (HC), randomly chosen from the pool of 157 HCs. We

developed three MS-based models to discriminate LDH-CPs from HCs and to

predict the pain intensity of LDH-CPs. In addition, we created analogous

models using resting state functional connectivity (FC) to perform the above

discrimination and prediction of pain, in addition to comparing the performance

of FC- and MS-based models and investigating if an ensemble model,

combining morphometric features and resting-state signals, could improve

performance. We conclude that 1) MS-based models were able to discriminate

LDH-CPs from HCs and the MS networks (MSN) model performed best; 2) MSN

was able to predict the pain intensity of LDH-CPs; 3) FC networks constructed

were able to discriminate LDH-CPs from HCs, but they could not predict pain

intensity; and 4) the ensemble model neither improved discrimination nor pain

prediction performance. Generally, MSN is sensitive enough to uncover brain

morphology alterations associated with chronic pain and provides novel

insights regarding the neuropathology of chronic pain.
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1 Introduction

A new technique, morphometric similarity (MS) (Seidlitz

et al., 2018), estimates the similarity of multiple morphometric

features across brain regions using multimodal MRI data. MS can

account for 40% of between-subject variability of IQ across

308 participants (Seidlitz et al., 2018), highlighting its ability

to capture brain correlates of inter-individual differences.

Moreover, MSs from three independent studies of

schizophrenia patients were associated with both patients’

psychosis and genes (Morgan et al., 2019). Since this novel

approach reflects anatomical “networks” from both

histological and axonal connectivity similarity within an

individual human brain, these results suggest morphometric

similarity may be a promising approach to detect the

morphometric differences in patients with chronic pain (CP).

Lumbar disc herniation (LDH) is a common back pathology

that evokes back and/or leg pain, in which the annulus fibrosus

allows the nucleus pulposus to move into the spinal canal

(Kreiner et al., 2014; Amin et al., 2017). However, not all

LDH patients report satisfactory pain relief after medical

treatments (Sinmaz and Akansel 2021; Wakaizumi et al.,

2021). Thus, LDH is a major contributor to CP, which limits

physical activity, induces psychological distress, reduces social

functional capacity, and, in turn, remarkably diminishes patients’

quality of life (Goldberg and McGee 2011; Kose and Hatipoglu

2012). The neural mechanisms that underlie the development of

CP are poorly understood, thereby restricting clinicians from

further improving medical treatments for relieving pain.

We have investigated functional reorganization of LDH

patients with chronic pain (LDH-CP) by analyzing their

functional connectivity (FC) networks. LDH-CPs’ whole-brain

FC networks are disrupted compared with healthy controls

(HCs), and these disruptions are correlated with pain intensity

(Huang et al., 2019). However, we were unable to find reliable

morphometric biomarkers for LDH-CPs, suggesting that 1)

unlike other CP conditions, morphological properties are

unaffected by LDH (Apkarian et al., 2004; Schmidt-Wilcke

et al., 2005; Kuchinad et al., 2007; Schmidt-Wilcke et al.,

2007; Geha et al., 2008; Kim et al., 2008; Schweinhardt et al.,

2008; Valfre et al., 2008; Blankstein et al., 2010; Tu et al., 2010; Tu

et al., 2013; Cauda et al., 2014; Hubbard et al., 2014; Kim et al.,

2015; Lee et al., 2015; Coppieters et al., 2016; Sugimine et al.,

2016; Preissler et al., 2017; Liao et al., 2018; Tatu et al., 2018; Bhatt

et al., 2019; Barroso et al., 2020), or 2) our measures were not

sensitive enough (Good et al., 2001; Baliki et al., 2011). Thus, it is

imperative to find a more sensitive technique to reconcile the

aforementioned possibilities, and the novel method of

morphometric similarity is a good candidate for exploration.

In this paper, we evenly allocated 136 LDH-CPs to

exploratory and validation groups with matched HCs. We first

constructed a MS matrix for individual subjects. Second, we

developed three MS-based models to discriminate LDH-CPs

from HCs and compared their performance. Third, we

constructed a PCA-LASSO-GLM model to predict pain

intensity of LDH-CPs. Fourth, we created a model based on

FC to perform the above discrimination and the prediction and

the performance was compared. Finally, we investigated if an

ensemble model, combining MS and FC, could improve

performance.

2 Methods

2.1 Participants

One hundred thirty six LDH-CPs were recruited [87 males,

49 females; age (mean ± SD) = 44 ± 12 years old], diagnosed by

medical history, physical examination, and consistent MRI

assessment confirmed independently by two radiologists

(Kreiner et al., 2014), with chronic pain that persisted for at

least 12 weeks; 157 healthy volunteers were recruited as healthy

controls (HC) (77 males, 80 females; age (mean ± SD) = 40 ±

14 years old) without chronic pain for at least the last 52 weeks

(1 year). Participants were excluded if they 1) were less than 18 or

greater than 85 years old; 2) reported a history of head injury

and/or cerebral disease (e.g., stroke or encephalopathy); 3) had

diabetes or a psychiatric disease; 4) reported a history of brain

neurosurgical procedures and/or epilepsy; 5) were unable to

cooperate (e.g., psychogenic or cognitively impaired); 6)

reported pregnancy, drug dependence, or drug abuse; 7) were

not suitable for MRI scan. All participants were scanned for T1-

weighted structural image (T1), resting-state functional MRI

(RS-fMRI) and diffusion tensor imaging MRI (DTI).

This study was approved by the Institutional Review Board of

the Second Affiliated Hospital and Yuying Children’s Hospital of

Wenzhou Medical University, China, and all participants signed

a written informed consent.

2.2 Study design

The 136 LDH-CPs were evenly allocated to either an

exploratory group (Discovery) or a validation group

(Validation) with matched demographics and pain-related

data (Table 1). For each group, 68 HCs were randomly chosen

from the pool of 157 HCs with matched demographics to its

corresponding LDH-CPs (Table 1). Data exploration was

performed in Discovery (68 HCs vs. 68 LDH-CPs) and the

results acquired in Discovery were tested for corroboration in

Validation group (68 HCs vs. LDH-CPs). Education was

categorized to low education (middle school or below) and

high education (high school or above). The participants were

inquired their smoking status (Yes/No), daily alcohol and

exercise frequency (0: Not at all; 1: Sometimes; 2: Always).

For each demographic characteristic (age, sex, BMI, education
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level, smoking and alcohol status, and exercise), a two-way

ANOVA was performed to assess whether either of the two

independent variables (group: Discovery vs. Validation; pain

status: HC vs. LDH-CP) or their interaction are statistically

significant. For each pain-related characteristic (pain intensity

and duration), a one-way ANOVA was performed to assess the

significance of the difference between the Discovery and

Validation groups. For those statistically significant variables,

a Turkey post hoc test was performed for pairwise multiple

comparisons.

2.3 MRI scanning parameters

Subjects were scanned on a 3 T GE-Discovery 750. T1 images

were acquired with following parameters: voxel size = 1 × 1 ×

1 mm3; TR/TE = 7.7/3.4 ms; flip angle = 12°; in-plane resolution =

256 × 256; field of view = 256 × 256 mm2; slices per volume = 176.

RS-fMRI images were acquired with the following parameters:

voxel size = 3.4375 × 3.4375 × 3.5 mm3; TR/TE = 2500/30 ms; flip

angle = 90°; in-plane resolution = 64 × 64; field of view = 220 ×

220 mm2; number of volumes = 230; slices per volume = 42,

which covers the whole brain from the cerebellum to the vertex.

DTI images were acquired with the following parameters: voxel

size = 2 × 2 × 2 mm3; TE/TR = 75/8000 ms; flip angle = 900; in-

plane resolution = 128 × 128; field of view = 256 × 256 mm2; slices

per volume = 67; 2 shells with 23 directions (b-value = 1000 s/

mm2) and 49 directions (b value = 2000 s/mm2); at the beginning

of each shell, two images with b-value = 0 were scanned.

To minimize head motion, a head support system consisting

of two foam pads positioned on either side of the head was used,

along with earplugs for reducing scanner noise. Participants were

instructed to keep their eyes open and to remain as still as

possible during acquisition.

2.4 T1, RS-fMRI and DTI data
preprocessing

After individual T1 image was visually inspected for motion

artifacts, FreeSurfer v6.0 software (Fischl, 2012) was applied to

perform T1 preprocessing and cortical reconstruction processes.

Briefly, first, motion correction, conform, intensity

normalization, and skull strip; second, volumetric registration

and labeling; third, gray and white matter segmentation,

smoothing, and inflation; and fourth, spherical mapping and

registration, and cortical parcellation.

A similar preprocessing pipeline in (Huang et al., 2019) was

applied to all RS-fMRI data. Briefly, it consisted of removal of the

first 4 volumes (10 s) for magnetic field stabilization; motion

correction; slice-time correction; intensity normalization; high-

pass temporal filtering (0.008 Hz) for correcting low-frequency

signal drift; nuisance regression of 6 motion vectors, signal-

averaged overall voxels of the eroded white matter and

ventricle region, and global signal of the whole brain; motion-

volume censoring by detecting volumes with frame-wise

displacement larger than 0.5 mm, derivative variance root

mean square after Z-transformation larger than 2.3, and

standard deviation after Z-transformation larger than 2.3, and

scrubbing above detected (number of volume = i) and adjacent

four volumes (i - 2, i - 1, i + 1, i + 2) (Power et al., 2012; Power

et al., 2014); band-pass filtering (0.008–0.1 Hz) by applying a 4th-

order Butterworth filter. All pre-processed RS-fMRI data were

registered to theMNI152 template using a two-step procedure, in

which the mean of preprocessed fMRI data was registered with a

7-degree-of-freedom affine transformation to its corresponding

T1 brain (FLIRT); transformation parameters were computed by

nonlinearly registering individual T1 brains to the

MNI152 template (FNIRT). Combining the two

transformations by multiplying the matrices yielded

TABLE 1 Demographic and pain-related characteristics of HCs and LDH-CPs in the Discovery and the Validation groups. Two-way and one-way
ANOVAs were performed for each demographic and pain-related variables, respectively. The p values in the table corresponds to that of group
(Discovery vs. Validation), pain status (HC vs. LDH-CP), and their interaction. y/o: years old; SD: standard deviation; BMI: bodymass index; wks: weeks.
#: the p value of pain duration was calculated from log10 (pain duration) by a Wilcoxon signed-sum test.

Variables Discovery Validation p values

HC (n = 68) LDH-CP (N = 68) HC (n = 68) LDH-CP (N = 68)

Age (y/o) mean (SD) 43.65 (13.77) 43.57 (14.38) 44.01 (12.34) 44.04 (11.32) 0.989 0.791 0.974

Male n (%) 41 (60.29) 43 (63.23) 43 (63.23) 44 (63.76) 0.901 0.535 0.901

BMI mean (SD) 22.23 (2.62) 23.96 (3.04) 23.39 (3.15) 23.60 (3.54) 0.290 0.010 0.045

Low education n (%) 24 (35.29) 44 (64.71) 28 (41.18) 43 (63.23) 0.709 0.000 0.533

Current smoking n (%) 9 (13.23) 20 (29.41) 11 (16.18) 19 (27.94) 0.882 0.005 0.657

Alcohol mean (SD) 0.87 (0.91) 0.84 (0.86) 0.93 (0.90) 0.85 (0.89) 0.734 0.634 0.838

Exercise mean (SD) 1.00 (0.72) 0.85 (0.89) 1.13 (0.73) 0.88 (0.87) 0.408 0.043 0.598

Pain intensity mean (SD) — 49.33 (20.44) — 50.35 (21.02) — 0.766 —

Pain duration (wks) median, min, max — 80, 12, 664 — 104, 12, 1040 — 0.976# —
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transformation parameters that normalized the pre-processed

fMRI data to the standard space.

The two-shell DTI images were concatenated with

corresponding combined b-values and b-vectors. Afterwards,

DTI data were manually checked, volume by volume, for

obvious artifacts. By utilizing FMRIB’s Diffusion Toolbox

(FDT), eddy current and head motion correction was

performed. A diffusion tensor model was fit at each voxel to

generate voxel-wise fractional anisotropy (FA) and mean

diffusivity (MD) (Alexander et al., 2007).

2.5 Construction of morphometric
similarity matrix

As shown in Figure 1A, Freesurfer and FSL were used to

analyze the T1 and DTI images to generate 7 gray matter-related

(surface area, gray matter volume, cortical thickness, mean

curvature, intrinsic curvature, folding index, and curved

index) and 2 tractographic (fractional anisotropy and mean

diffusivity) feature maps, respectively. We reduced the

dimensionality of the analysis in a way that will leverage

small-world properties in anatomical cortical networks

(Romero-Garcia et al., 2012), which involved applying the

Desikan–Killiany atlas (Desikan et al., 2006) to a 308-

subregion template with approximately equal surface area

(Seidlitz et al., 2018). Following this, the 9 feature maps were

projected onto the 308-subregion template, extracting

9 subregional features averaged on each subregion. In the end,

after each feature was zscored Pearson’s correlations were

calculated between each pair of subregions to generate a

308 × 308 MS matrix. Mean MS (mMS) of each individual

subregion was calculated by averaging the off-diagonal elements

of a row or column in the similarity matrix (green dashed arrow

line in Figure 1A). Averaged pairwise Pearson correlation

coefficients between 9 subregional features over 68 HCs in the

Discovery group was shown in Figure 1B. Note that the

2 tractographic features were derived from gray matter since

the Desikan–Killiany atlas is a surface-cortical template.

2.6 Three models to discriminate pain
state of LDH-CPs from HCs

Three models derived from morphometric similarity

matrices were developed to discriminate LDH-CPs from HCs.

FIGURE 1
MSN generating process and averaged correlation coefficients between 9 subregional features and MSN. (A) MSN generating process for one
subject. We analyzed T1 and DTI brain images using Freesurfer and FSL to generate 7 gray matter-related and 2 tractographic feature maps,
respectively. The feature maps were projected onto a 308-subregion surface-cortical template derived from the Desikan-Killiay Atlas with
approximately equal surface area, extracting 9 subregional features averaged on each subregion. A 308 × 308 morphometric similarity matrix
was generated, consisting of pairwise Pearson correlation coefficients between the subregions. Mean morphometric similarity (mMS) of one of
308 subregions was calculated by averaging MSs over other 307 subregions (green dashed arrow line). (B) Averaged pairwise Pearson correlation
coefficients between 9 subregional features over 68 HCs in Discovery group (C) Averaged regional morphometric similarity over 68 HCs in
Discovery group, SA: surface area; GM: gray-matter volume; CT: cortical thickness; MC: mean curvature; IC: intrinsic curvature; FI: folding index; CI:
curved index; FA: fractional anisotropy; MD: mean diffusivity.
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The mMS-based univariable model was based on mMS,

calculated by averaging MSs over other 307 subregions (green

dashed arrow line in Figure 1A). This model assumed that the

mMS of each of the 308 subregion is independent; thus, for each

subregion, a t-statistic was calculated (age, sex, BMI, education

level, alcohol, and exercise as covariates) to discern participants’

pain state (Discovery data; 2 states: pain for 68 LDH-CPs and no

pain for 68 HCs; a matrix of 136 × 308). Only subregions that

were statistically significant (p value < 0.05) in Discovery and

replicated in Validation were regarded as a biomarker to

discriminate LDH-CP patients from HCs.

The mMS-based multivariable model arose from the β

estimated for each subregion. Logistic regression was

independently used to estimate βj for each subregion (j = 1, 2,

. . ., 308), where the response variable y ([y1, y2, . . ., y136]
T) was

pain state (yi = 1 for LDH-CPs and yi = 0 for HCs, i = 1, 2, . . .,

136) and the predictor x ([x1, x2, . . ., x136]
T) was mMS for

subregion j in the Discovery group, with age, sex, BMI,

education level, alcohol, and exercise set as covariates. For a

given subject, the dot product of the β vector ([β1, β2, . . ., β308]
T)

and mMS vector ([mMS1, mMS2, . . ., mMS308]
T) was the so-

called “linear predictor” used to discriminate between groups.

The MSN-based multivariable model took advantage of the

morphometric similarity network, assigning β to each edge

(connectivity) in the upper/lower triangular matrix since the

network is bidirectional. To overcome overfitting β, principal

component analysis (PCA) was performed before fitting the

logistic regression. Briefly, first, for each subject i (i = 1, 2,

. . ., 136), the upper triangular matrix of each MSNi was

vectorized to a row vector ri = ([r1, r2, . . ., r47278]); all ri were
row-wise concatenated, generating a 136 × 47,278 matrix R;
second, PCA was performed on R to reduce dimensions,

generating a 136 × 136 PCA matrix, RPCA; third, logistic

regression was used to estimate βPCAj corresponding to each

component of RPCA(:, j) (j = 1, 2, . . ., 136) where the response

y ([y1, y2, . . ., y136]
T) was pain state (yi = 1 for LDH-CPs and

yi = 0 for HCs, i = 1, 2, . . ., 136) and the columns of RPCA were

regressors, with age, sex, BMI, education level, alcohol, and

exercise set as covariates; fourth, we projected the principal

component coefficients, βPCA ([βPCA1, βPCA2, . . ., βPCA136]
T)

back to β ([β1, β2, . . ., β47278]
T) and transformed the result

into an upper triangular matrix, βupper. Similarly, the dot

product of βupper and upper triangular of each subject’sMSNj,

defined a p̂sj , served as the “linear predictor” of each

subject’s pain state (LDH-CP vs. HC), thus generating a

column vector of estimate of pain state, ̂ps
([p̂s1 , p̂s2 , ..., p̂s136]

T). Considering that this decoding

model is “backward” from which the visualization of

activation brain is uninterpretable and even misleading, β

was transformed to activation pattern A using the following

equation, A = ΣR *β/var ( ̂ps), where ΣR is the covariance

matrix of R, and var ( ̂ps) is the variance of ̂ps (Haufe et al.,

2014; Zhou et al., 2021).

To assess the performance of the three models for

discriminating LDH-CPs from HCs, the models developed in

the Discovery group were corroborated in the Validation group

and the area under the receiver operating characteristic curve

(AUC) was calculated and compared. In addition, to examine the

sampling variability, the Discovery and Validation groups were

switched, and the discriminating performance was reassessed.

2.7 PCA-LASSO-GLM for predicting pain
intensity of LDH-CPs

The least absolute shrinkage and selection operator (LASSO)

(Tibshirani, 1996) was used with principal components

regression to predict pain intensity of LDH-CPs. This

involved applying PCA to the predictor matrix before fitting a

regression with L1 regularization. Briefly, first, for each subject of

LDH-CP i (i = 1, 2, . . ., 68), the upper triangular matrix of each

MSNi was vectorized to a row vector ri = ([r1, r2, . . ., r47278]); all ri
were row-wise concatenated, generating a 68 × 47,278 matrix R;
second, PCA was performed on R to reduce the number of

dimensions, generating a 68 × 68 PCA matrix, RPCA; third, when

y ([y1, y2, . . ., y68]T) was pain intensity and the columns of RPCA

were regressors, with age, sex, BMI, education level, alcohol, and

exercise set as covariates, we used MATLAB’s lassoglm function

with leave-one-out cross-validation on the training data of LDH-

CPs in the Discovery group, choosing the hyperparameter λ with

minimum expected deviance; fourth, with the specified

hyperparameter λ, lassoglm was run again to estimate βPCAj
corresponding to each component of RPCA(:, j) (j = 1, 2, . . .,

68); finally, we projected the principal component coefficients,

βPCA ([βPCA1, βPCA2, . . . , βPCA68]
T) back to β ([β1, β2, . . ., β47278]

T)

and transformed the estimates to an upper triangular matrix,

βupper. Thus, for a given subject j, the dot product of βupper and

upper triangular of its MSNj, defined as ̂NRSj , would predict

their pain intensity, ̂NRS ([̂NRS1 , ̂NRS2 , ..., ̂NRS68]T). To assess

the model’s performance, we applied the model to the Validation

group and calculated the Pearson correlation coefficients

between the dot product and observed pain. Similar to 2.6, β

was also transformed to activation pattern A as well for

interpretation using the following equation, A = ΣR *β/var (
̂NRS ), where ΣR is the covariance matrix of R, and var (̂NRS) is
the variance of ̂NRS.

2.8 Functional connectivity vs.
morphometric similarity

On the same 308-subregin template, brain FC was

estimated from RS-fMRI data, from which two models

were developed to discriminate LDH-CP patients from

HCs and to predict pain intensity of LDH-CP patients.

Briefly, first, BOLD signals were extracted by averaging the
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BOLD signals from each subregion; second, a correlation

matrix (308 × 308) was generated by calculating subregion-

wise Pearson correlation coefficients of the BOLD signals;

third, mean FC (mFC) of individual subregion was calculated

by averaging the off-diagonal elements of a row or column in

the correlation matrix; fourth, the same procedures

performed in mMS and MSN (Section 2.6 and Section 2.7)

were applied to mFC and FC network (FCN) and model

performances were compared.

2.9 Ensemble model with morphometric
features and resting-state signals

We evaluated performance of an ensemble model that

combines both morphometric features and BOLD signals for

discriminating group membership and predicting pain

intensity of LDH-CPs. Briefly, for each subregion, the

9 morphometric features and averaged BOLD signals from

the subregion were independently z-scored and concatenated

to one vector; second, the weight of morphometric similarity,

wms, varied from 0 to 1 (0: no MS effect; 1: no FC effect). The

weight vector of the mixture, w, defined as w �
[[wms wms ...wms ]

9
[ 1−wms 1−wms ... 1−wms ]

Num. ofVolumes ]T , was used to generate a

weighted correlation matrix (MATLAB function

weightedcorrs); third, for each wms, we applied the same

procedures of MSN model (see Section 2.6 and Section

2.7) to this ensemble model; finally, we verified the model

using the Validation group, as described for the other models.

3 Results

3.1 Demographics and pain characteristics
of LDH-CPs in Discovery and Validation

Table 1 summarizes the pain characteristics of the LDH-

CPs. Mean pain intensity (0–100; 0 = no pain, 100 = worst

pain imaginable) was 49/100 and 50/100 with a standard

deviation (SD) of 20 and 21 for patients in Discovery and

Validation groups, respectively (p = 0.766). Median pain

duration was 80 and 104 weeks, and the range of pain

duration was between 12 and 644 weeks and 104 weeks and

between 12 and 1040 weeks for patients in Discovery and

Validation groups, respectively (p = 0.976, calculated using

log10 (pain-duration)). For LDH-CPs, the groups also had

similar means for all demographic variables (age, sex, BMI,

education level, smoking and alcohol status, and exercise). In

addition, there was a statistically significant difference

between HCs and LDH-CPs for BMI (p = 0.01), education

level (p < 0.001), smoking status (p = 0.005), and exercise (p =

0.043) and significant interaction of BMI between HCs and

LDH-CPs (p = 0.045).

3.2 Mean morphometric similarity

Averaged regional morphometric similarity of 68 HCs

(Figure 1C) revealed that subregions were relatively similar to

temporal association cortex and relatively distinct from occipital

cortex, replicating the findings of (Seidlitz et al., 2018).

Compared with HCs, morphometric similarity of LDH-CPs

in the Discovery group was increased in left rostral middle frontal

cortex (uncorrected p = 0.025; Supplementary Table S1 red row)

and left middle temporal cortex (uncorrected p = 0.011;

Supplementary Table S1 red row) and decreased in right

fusiform cortex (uncorrected p = 0.049; Supplementary Table

S1 blue row) and right supramarginal cortex (uncorrected p =

0.017; Supplementary Table S1 blue row). Thus, morphometric

similarity was able to uncover cortical structural differences in

LDH-CPs. Note that there did not exist significantly different

subregions after Bonferroni multiple-comparison correction.

3.3 Discrimination of LDH-CPs from HCs

Three models derived from morphometric similarity were

developed to discriminate LDH-CPs from HCs. The mMS-based

univariable model revealed that left rostral-middle-frontal-

part8 [(−24, 56, 14); Supplementary Figures S1A,B] was the

only subregion mMS that statistically significantly

discriminated the pain state of LDH-PCs in the Discovery

group (t134 = 2.25, p = 0.025, Supplementary Figure S1C left)

and the result was replicated in the Validation group (t134 = 2.01,

p = 0.047, Supplementary Figure S1C right).

The mMS-based multivariable model, which estimated the β

of each of 308 subregions, also discriminated between groups

(Discovery: t134 = 6.75, p < 0.001; Validation: t134 = 3.12, p =

0.002, Figure 2A); the distribution of βs and their cortical

locations are shown in Figures 2B,C, respectively;

Supplementary Table S1 illustrates the details of the top 10%

βs (hemisphere, subregion location, β value, and its centroid

coordinates). The top 10% of βs (absolute value) were from the

frontal, fusiform, temporal, lingual, insula, cingulate, parietal,

and precuneus cortex.

The MSN-based multivariable model was able to distinguish

LDH-CPs from HCs (Discovery: W = 4,624, p < 0.001;

Validation: W = 3,705, p < 0.001, Figure 3A). Wilcoxon-

Mann-Whitney test was performed for both groups because

the distribution of results (Discovery group) was not normal.

The top 0.1% of linkages are illustrated in Figure 3B and detailed

in Supplementary Table S2, respectively, which covered linkages

between occipital, cuneus, superior and middle frontal,

precuneus, anterior cingulate, insula, pre- and postcentral, and

middle temporal cortex. Thus, all three MS-based models were

able to discriminate LDH-CPs from HC and they provide

additional information to increase our understanding of the

neuropathology in LDH-CP patients.
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FIGURE 2
Mean MS of 308 subregions can discriminate patients from controls. (A) Violin plots of dot products in discovery (left, t134 = 6.75, p < 0.001) and
validation (right, t134 = 3.12, p = 0.002) groups. (B) Histogram of betas from the 308 subregions derived from discovery group. (C) Beta map in
MNI152 space.

FIGURE 3
MSN performed best for discriminating patients from controls. (A) Violin plots of dot products in discovery (left, W = 4,624, p < 0.001) and
validation (right, W = 3,705, p < 0.001) groups. Wilcoxon-Mann-Whitney test was performed for both groups. (B) The top 0.1% MSN model. Nodes
indicate centroids of the 308 subregions and the nodes with identical color were from the same region of Desikan-Killiay Atlas. The size of each edge
reflects the beta value for the two subregions and the red and blue colors represent positive (Pain: 1 and No Pain: 0) and negative beta values,
respectively. (C) ROC curves of three models for validation data. (D) MS correlation coefficients averaged over 68 HCs (upper diagonal matrix) and
68 LDH-CPs (lower diagonal matrix) in discovery group.
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In addition, as shown in Figure 3C, after the models were

developed using the Discovery dataset, they tested in the

Validation dataset by calculating the AUC of three models. The

MSN-based model had the best performance as compared to the

other two (AUC= 80.1% vs. 59.0% and 64.1%). In this case, themore

information included in the model, the better prediction accuracy for

the model, indicating the model was not overfit. Moreover, sampling

variability did not affect the performance, which was observed in

Supplementary Figure S2 (AUC 79.4%, 60.1%, and 59.8% for above

3 models) after the Discovery and Validation groups were switched.

3.4 Prediction of pain intensity of LDH-CPs

Figure 4A depicts the relationship between the dot product

(linear predictor) and the pain intensity from LDH-CPs in the

Discovery (r = 0.39, p = 0.001, R2 = 0.15, RSME = 19.0) and the

Validation (r = 0.27, p = 0.026, R2 = 0.07, RSME = 20.4) groups. The

top 0.1% of linkages between two subregions and their information is

illustrated in Figure 4B and detailed in Supplementary Table S3,

respectively, which covered linkages between superior, middle, and

lateral-orbital frontal, precuneus, isthmus cingulate, insula, inferior

parietal, pars opercularis, precentral, and inferior temporal cortex.

Thus, with a PCA-LASSO-GLM algorithm, MSN could predict pain

intensity of LDH-CPS.

3.5 FC discriminating pain state of LDH-PC
patients from HCs

Compared to morphometric similarity, FC was more

bilaterally symmetric (Figures 3D, 5A). Although functional

connectivity and morphometric similarity have unique

patterns—sharing only 5.6% of their variance (Figure 5B) on

the same 308-subregional template—both mFC- (Discovery:

t134 = 4.20, p < 0.001; Validation: t134 = 2.67, p = 0.008;

Figure 5C) and FCN-based (Discovery: t134 = 33.20, p <
0.001; Validation: t134 = 5.64, p < 0.001; Figure 5D) models

were able to discriminate LDH-PCs from HCs. However, neither

model was able to predict pain intensity in LDH-PCs (Validation:

p = 0.812 and p = 0.605). In addition, the FCN-based model had

greater discrimination accuracy than the mFC-based (75.9% vs.

64.3% AUC, Figure 5E), but lesser than MSN (80.1% AUC

Figure 3C). The top 0.1% of linkages are illustrated in

Figure 5F and detailed in Supplementary Table S4,

respectively, which covered linkages between superior and

middle frontal, precuneus, inferior parietal, pars opercularis,

para-, pre- and postcentral, and inferior temporal cortex.

3.6 Performance of the ensemble model
combined both morphometric features
and resting-state signals

AUC was used as a criterion to evaluate the performance of

the ensemble network model that combined both morphometric

features and BOLD signals for discriminating LDH-CP patients

from HCs and predicting pain intensity of LDH-CP patients. As

shown in Figure 6A, as the weight of MS varied from 0 to 1, the

range of AUC (Validation dataset) was between 0.7 and 0.8,

indicating that for discriminating LDH-CPs from HCs, the

discrimination ability of the ensemble network was high, and

the changes in discrimination performance were minor when the

weight of MS was changed. However, for predicting pain

intensity, only greater MS weights (wms ≥ 0.8) had statistically

significantly improved prediction performance (Figure 6B).

FIGURE 4
MSN can predict pain intensity of LDH-PC patients. (A) Scatter plot of the relationship between dot products and pain intensity of patients in the
Discovery (r = 0.39, p = 0.001, R2 = 0.15, RSME = 19.0) and Validation groups (r = 0.27, p = 0.026, R2 = 0.07, RSME = 20.4). (B) Visualization of the top
0.1% of beta map of MSN. Nodes indicated centroid brain locations of 308 subregions and the nodes with identical color are from the same region
from the Desikan-Killiay Atlas. The size of each edge reflects the beta value for the two subregions and the red and blue colors represents
positive and negative beta value, respectively.
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Compared to FCN, MSN-based model not only discerns LDH-

CPs from HC, but also predicts pain intensity of LDH-CPs.

4 Discussions

In this paper, we used morphometric similarity to study LDH

patients with CP.We reveal that 1)MS-basedmodels were able to

discriminate LDH-CPs from HCs and the MSN model

performed best; 2) MSN was able to predict the pain intensity

of LDH-CPs; 3) functional connectivity networks constructed

from the same template were able to discriminate LDH-CPs from

HCs, but they could not predict pain intensity; and 4) an

ensemble model, which combined both with morphometric

features and resting-state signals, neither improved

discrimination nor pain prediction performance.

FIGURE 5
FC on the same subregions can discriminating patients from controls. (A) FC correlation coefficients averaged over 68 HCs in the discovery
group. (B) The relationship betweenMS and FC averaged over HCs in discovery group. MS and FC only shared 5.6% of covariance. Visualization of the
top 0.1% FCN. (C) and (D) Violin plots of dot products in Discovery (left, t134 = 4.20, p < 0.001; t134 = 33.20.20, p < 0.001) and Validation (right, t134 =
2.67, p = 0.008; t134 = 5.64, p < 0.001) groups for mean FS and FSNmodels, respectively. (E) ROC curves of the twomodels using the validation
dataset. (F) Nodes of the 308 subregions and the nodes with identical color were from the same region of the Desikan-Killiay Atlas. The size of each
edge reflects the beta value for the two subregions and the red and blue colors represents positive (Pain: 1 and No Pain: 0) and negative beta values,
respectively.

Frontiers in Network Physiology frontiersin.org09

Yang et al. 10.3389/fnetp.2022.992662

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.992662


To the best of our knowledge, this study is the first to

successfully apply MS to CP data. This robust approach,

which estimates the inter-subregional correlations using

multimodal structural MRI variables in individual subjects

(Seidlitz et al., 2018) has the capacity to extract different

anatomical indices from both gray matter and tractography

features. The finding from the mMS-based univariable model

of the frontal polar [(−24, 56, 14); Supplementary Figures S1A,B]

similarity abnormality as the only subregion that could

discriminate the pain state of LDH-CPs from HC duplicates

the previous findings of abnormalities in this subregion

(Rodriguez-Raecke et al., 2009; Ong et al., 2019) in a new

manner. Furthermore, MSN’s ability to discriminate between

LDH-CPs and HCs and predict pain intensity demonstrates that

MSN is sensitive enough to uncover brain morphology

alterations associated with chronic pain (at least for LDH-CP

patients). Unlike structural covariance analysis, which is based on

a single morphometric feature (e.g., GM density) across subjects

to construct anatomical “networks” (Baliki et al., 2011), MS

quantifies the similarity in terms of multiple features within a

subject, representing very different constructs. Thus, MS may

pave a new way to explore anatomical brain alterations in disease

states in general and specifically in chronic pain.

The top 0.1% of cortical regions that distinguished LDH-CP

fromHC are in frontal, precuneus, anterior cingulate, insula, pre-

and postcentral, parahippocampal, and middle temporal cortex.

Most of these regions overlap with those found by Baliki et al.

(Baliki et al., 2011), where decreased GM density compared to

HCs was found in frontal, insula, secondary somatosensory pre-

and postcentral cortex, hippocampus, and temporal lobes. This

regional overlap is unlikely coincidental, especially considering

that the studies used two different neuroanatomical atlases (308-

subregion template converted from Desikan-Killiay Atlas

(Desikan et al., 2006) vs. 82-subregion template converted

from WFU_Pick Atlas (Maldjian et al., 2003)), two different

approaches (linkages fromMSN vs. ROI-based GM density from

univariable comparison), and were applied to two different CP

populations (LDH-CP vs. CBP). Instead, these overlapping

regions must be reflective of brain regions commonly

changing for different types of chronic pain.

There is an ongoing debate whether pain is related to local

brain subregions or is broadly “represented” within and

across brain networks (Baliki and Apkarian 2015). Our

data are more consistent with the latter. The three MS-

based models for distinguishing LDH-PCs from HCs reveal

that the more information integrated into the model, the

better the discrimination (AUC: 80.1%, 64.1%, and 59.0% for

MS network, 308 subregions, 1 subregion, respectively,

Figure 3C). For LDH patients with chronic pain, the brain

morphological differences associated with chronic pain not

only arose from local subregions defined in the 308-subregion

template, but from highly interconnected subregions.

However, while LDH-CPs could be differentiated from

HCs through the MSN model, and the intensity of

associations between subregions and their locations (βupper,

Figure 3B; Supplementary Table S2) could be identified, it

remains unknown how these associations are specifically

related to the neuropathology underlying chronic pain

(Tracey and Bushnell 2009). More data from different

chronic pain conditions need to be incorporated in future

investigations to reveal the similarities and differences

between types of chronic pain.

FIGURE 6
Performance of the mixed model (A) The relationship between AUC and weight of morphometric similarity in the validation group. (B) The
relationship between the correlation coefficient between dot product and pain intensity of patients and weight of morphometric similarity in
validation group. * indicates that the correlation at this weight was statistically significant compared to a null model of r = 0 (p < 0.05). (0: functional
connectivity only; 1: morphometric similarity network only).
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The success of distinguishing patients from HCs and

predicting the pain intensity of LDH-CPs naturally inspired

our curiosity of how a model based on functional connectivity

network performed when using the same 308-subregion template

that was transformed from Desikan–Killiany atlas. Although the

Desikan–Killiany atlas is not based on functional ROIs or

parcellations (Power et al., 2011; Gordon et al., 2016), we

found that the FCN-based model had similar performance to

that of the MSN-based one for distinguishing LDH-CPs from

HCs (AUC: 80.1%, MSN, Figure 3C; 75.9%, FCN, Figure 5E). In

addition, we observed that MSN and FCN only shared 5.6% of

their respective variance (Figure 5B), indicating that MSN and

FCN were relatively independent on the 308-subregion template.

As observed in other clinical chronic pain conditions (Barroso

et al., 2020; Barroso et al., 2021), chronic pain contributes to both

neocortical morphological and functional connectivity

reorganization. For LDH-CP patients, both MSN and FCN

networks can be considered a pain-related state signature,

reflecting patients’ pain history and accompanying negative

emotion, anxiety, and depression (Baliki and Apkarian 2015).

However, as we pushed further to investigate if an ensemble of

the two networks would improve the performance of the

discrimination, the results were not as favorable as we

expected (Figure 5B). One reason might be that both models

were based on an anatomical template, and moreover, the best

model may not be a simple weighted average of functional and

anatomical parameters. Questions remain regarding if and how a

combination of MSN on the 308-subregion and FCN on a

functional template would improve the discrimination, which

requires future studies.

Studies have reported that morphological differences in

patients with chronic pain were associated with pain duration

as well as intensity (Geha et al., 2008; Wang et al., 2022). A meta-

analysis of 39 studies demonstrated that pain duration correlated

with gray matter in the insula, striatum, putamen, and amygdala,

and right anterior cingulate gyrus (positive relationship) and

frontal gyrus (negative relationship), respectively (Wang et al.,

2022). Considering the observed relationship between the dot

product derived from MSN and pain intensity (Figure 4A), MSN

seems sensitive tomorphological alterations (Seidlitz et al., 2018).

Despite our large sample sizes, we failed to find statistically

significant associations between dot products derived from the

MSN model and pain duration, in addition to the interaction

between pain intensity and pain duration (Geha et al., 2008). The

failure may be attributed to different consequences of neuronal

plasticity due to pain intensity and pain duration. Pain intensity

can be understood as the magnitude of experienced pain and

subtle neuronal changes associated with the experience could be

caught by the morphometric similarity mapping; i.e., inter-

subregion pair-wise correlation within an individual subject.

However, pain duration may indirectly lead to neuronal

plasticity associated with pain-related suffering and negative

moods; the neuronal change is estimated by contrasting to

matched healthy controls or performing linear regression

within a group while the neuronal plasticity changes are more

affected by age rather than pain duration. In other words, pain

duration may be confounded and dominated by age effects.

An important limitation in this study is that we did not

further explore two beta maps that relate to pain state (LDH-CPs

vs. HCs) and pain intensity. For example, the correlation between

local beta clusters and pain-related components [pain emotion,

pain intensity, and pain sensitivity (Huang et al., 2019)]. The

local beta values may be linked to these components. In the

future, we plan to take advantage of our chronic pain database

(https://openpain.org) to investigate local differences in beta

maps across different chronic pain conditions by applying

MSN models. Another limitation is relatively small sample

sizes in this study that can increase variability of prediction

(Varoquaux, 2018; Yang et al., 2020) and the conclusions drawn

from the RS-FC analyses have not been corroborated in other

pain clinical conditions while we have these image data, which

will be done in the future.

5 Conclusion

With a large sample of LDH-CP patients and an unbiased

validation strategy, MS mapping demonstrated to be a robust

approach to distinguish brain morphological differences in

patients with chronic pain. Three MS-based models were able

to discriminate LDH-CPs from HCs and predict pain

intensity of LDH-CPs with a PCA-LASSO-GLM model.

The MSN-based model performed best among the three

models. In addition, the relationship between MSN and

functional connectivity derived from RS-fMRI was

investigated on the same neuroanatomical template. FCN

had similar performance to MSN for discriminating

patients from controls but failed to predict pain intensity.

An ensemble model combining both MSN and FCN did not

appreciably improve the performance. Generally, MSN

provides additional information to increase our

understanding of the neuropathology of CP patients.
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SUPPLEMENTARY FIGURE S1
Mean MS in left rostral-middle-frontal-part8 can discriminate pain state
of LDH-CP patients. (A) t-statistics of regional LDH-HC differences in
the Discovery group. (B) left rostral-middle-frontal-part8 was the only
subregion with a mean MS that statistically significantly discriminated
(uncorrected p < 0.05) LDH-PC patients from HC; the result was
replicated in validation group [centroid coordinates in MNI152 space:
(−24, 56, 14)]. (C) Violin plots displayed the mean MS (red point) and its
standard error bar of the left rostral-middle-frontal-part8 in discovery
(left, t134 = 2.25, p = 0.025) and validation (right, t134 = 2.01, p = 0.047)
groups.

SUPPLEMENTARY FIGURE S2
ROC curves of three models for discovery data after the Discovery and
Validation groups were switched.

SUPPLEMENTARY TABLE S1
Information of the top 10% of betas from the mean MS across
308 subregions. Colored row indicates the subregion morphometric
similarity of which was increased (red) or decreased (blue) compared
with HCs (p < 0.05).

SUPPLEMENTARY TABLE S2
Information of the top 0.1% betas from the MSN model.

SUPPLEMENTARY TABLE S3
Information of the top 0.1% of betas that predicts pain intensity.

SUPPLEMENTARY TABLE S4
Information of the top 0.1% of betas from the FCN model.
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