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Biological rhythms are natural, endogenous cycles with period lengths ranging
from less than 24 h (ultradian rhythms) to more than 24 h (infradian rhythms). The
impact of the circadian rhythm (approximately 24 h) and ultradian rhythms on
spectral characteristics of electroencephalographic (EEG) signals has been
investigated for more than half a century. Yet, only little is known on how
biological rhythms influence the properties of EEG-derived evolving functional
brain networks. Here, we derive such networks from multiday, multichannel EEG
recordings and use different centrality concepts to assess the time-varying
importance hierarchy of the networks’ vertices and edges as well as the
various aspects of their structural integration in the network. We observe
strong circadian and ultradian influences that highlight distinct subnetworks in
the evolving functional brain networks. Our findings indicate the existence of a
vital and fundamental subnetwork that is rather generally involved in ongoing brain
activities during wakefulness and sleep.
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1 Introduction

While describing natural complex dynamical systems is a notoriously difficult endeavor, the
network approach (Boccaletti et al., 2006; 2014; Newman, 2018) has been repeatedly shown to
provide novel and important insights into such systems in various research areas ranging from
neurosciences (Bullmore and Sporns, 2009; Lehnertz et al., 2014) via genomics (Tyler et al., 2009)
and proteomics (Uetz et al., 2000) to ecology (Hegland et al., 2009; Olesen et al., 2011; Delmas
et al., 2019; Halekotte and Feudel, 2020), climatology (Donges et al., 2009; Zhou et al., 2015), and
sociology (Onnela et al., 2007; Palla et al., 2007). This broad applicability is not least explained by
the largemanifold of networkmetrics, describing global aspects to local aspects in network terms,
which in principle can be directly related to the properties of the described system. Identifying key
network constituents is highly relevant when it comes to improving the understanding and
control of networks, as it allows us to gain insights about the importance hierarchy of its
constituents with respect to the network structure and dynamics. The characterization of a
constituent’s role in the network structure and dynamics can be achieved through different
concepts and a growing number of metrics such as centralities. Most of these concepts focus on
the description of vertices or groups of such [e.g., hubs (Newman, 2003), hub regions in the brain
(Stanley et al., 2013; Chung, 2019), and k-core decompositions (Kong et al., 2019)], while only a
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few metrics assess the centrality of an edge. We recently proposed a
novel strength-based edge-centrality concept (Bröhl and Lehnertz,
2022) and introduced modifications to vertex closeness and vertex
eigenvector centrality concepts yielding corresponding edge centrality
concepts (Bröhl and Lehnertz, 2019). We demonstrated that these edge
centralities—together with edge betweenness centrality (Freeman, 1977;
Girvan and Newman, 2002)—provide additional information about the
network constituents for various topologies. These four centrality
concepts, while different in their definition, can be considered
complementary in the description of a constituent’s structural
integration in the network.

Many early studies assumed networks to be static; however, the
recent paradigm shift toward time-dependent (or evolving)
networks (Holme and Saramäki, 2012; Kivelä et al., 2014) allows
one to describe many systems more accurately. This particularly
holds true for biological networks, such as the brain, for which time
dependencies on different scales have been observed. Both
exogenous and endogenous biological rhythms are expected to
assert influences on the level of the network description (Kuhnert
et al., 2010; Lehnertz et al., 2017; Mitsis et al., 2020; Kurth et al., 2021;
Lehnertz et al., 2021) and therefore on network metrics such as
centralities (Geier et al., 2015; Geier and Lehnertz, 2017; Lehnertz
et al., 2017; Lehnertz et al., 2021).

For more than 50 years, it has been known that the circadian
rhythm and ultradian rhythms impact electroencephalographic
(EEG) signals [see Lehnertz et al. (2021) for a recent overview].
Many former studies, however, were based on EEG recordings that
either assessed the dynamics of few brain regions only or/and
covered timescales ranging only from few seconds to hours.
Here, we extend the recent studies and observations (Spoormaker
et al., 2011; Chu et al., 2012; Park et al., 2012; Liu et al., 2015;
Farahani et al., 2021) and investigate how biological rhythms,
particularly the circadian rhythm (with a period length of
approximately 24 h), influence the importance hierarchies of the
constituents of evolving functional brain networks. Therefore, we
focus on both the networks’ vertices that are associated with the
sampled brain regions and networks’ edges that represent time-
evolving interactions between brain regions.

2 Materials and methods

2.1 Data

We analyzed electroencephalographic signals obtained from eight
subjects (three females, age 19–81 years) with (five subjects) and
without disorders (three subjects) of the central nervous system
(CNS). All subjects were under stable CNS medication (if taking
any). The EEG data were recorded continuously over 4 to 8 days
from 19 electrodes placed according to the 10–20 EEG system (Klem
et al., 1999) (Cz served as a physical reference) with a sampling rate of
256 Hz, using a 16-bit analog-to-digital converter (Micromed, S.p.A.,
Mogliano Veneto, Italy). Data were band-pass filtered offline
(bandwidth: 1–45 Hz; fourth-order Butterworth characteristic), and a
notch filter (third order) was used to suppress contributions at the line
frequency (50 Hz). Data used in this study were visually inspected to
remove segments containing strong artifacts (e.g., subjectmovements or
amplifier saturation).

2.2 Deriving evolving functional brain
networks

Time-dependent, fully connected, weighted functional brain
networks were constructed through a time-resolved synchronization
analysis of an EEG recording (Mormann et al., 2000; Osterhage et al.,
2007; Kuhnert et al., 2010; Goodfellow et al., 2022) to track the changes
in the importance hierarchies of network constituents (Geier and
Lehnertz, 2017; Rings et al., 2019; Fruengel et al., 2020) possibly
related to biological rhythms (Lehnertz et al., 2021). To perform
this, network vertices were associated with brain regions whose
dynamics were sampled by electrodes and network edges were
associated with time-varying estimates of the strength of interactions
between the dynamics of the pairs of those brain regions, regardless of
their anatomical connections. As an estimate of the strength of the
interaction, we employed mean phase coherence (R) (Mormann et al.,
2000), which assesses the degree of synchronization between two phase
time series (R = 1 indicates fully phase-synchronized brain regions, and
R = 0 indicates no phase synchronization). A non-overlapping sliding
windowwith a duration of 20 s (5,120 data points) was used to calculate
R in a time-resolved manner. The chosen duration of a window can be
considered a compromise between the required statistical accuracy for
the calculation of R and the approximate stationarity within the
window’s length (Lehnertz et al., 2017). For each window, we
derived the instantaneous phase time series via the Hilbert
transform of the EEG time series. An important property of this
analytic signal approach (particularly in the case of two or more
superimposed oscillatory components) is that the instantaneous
frequency relates to the predominant frequency in the Fourier
spectrum (Boashash, 1992). The predominant frequency may be
subjected to fluctuations in the EEG time series. Thus, the
instantaneous frequency can vary rhythmically around the
predominant frequency, which results in spurious estimates of the
instantaneous phase. By taking the temporal average, these effects can
be reduced. From an electrophysiological point of view, we consider it
more reasonable to look adaptively (e.g., via the Hilbert transform) at
interactions between predominant rhythms in EEG rather than to look
at interactions in some a priori fixed frequency bands (e.g., via wavelet
transform) for which there is no power in the time series (Osterhage
et al., 2007; Frei et al., 2010). Following these steps of analysis for each
window, we end up with a temporal sequence of snapshot functional
brain networks, each of which consists of V vertices and E edges
and can be described by a weight matrixW ∈ [0, 1]V×V, whereW ij

refers to the edge weight (strength of the interaction) between
vertices i and j. The number of actual windows per subject
depended on the respective recording duration, thus yielding
approximately 9,500–26,000 windows.

2.3 Estimating the importance of network
constituents

In order to further investigate the temporal sequence of snapshot
functional brain networks, different approaches may be adopted.
Estimating distance or (dis-)similarity between two networks might
be one such approach, although finding suitable distance metrics still
remains a challenge (Mheich et al., 2020). Another approach consists of
the so-far insufficiently studied concept of multilayer networks (De
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Domenico, 2017). Yet, due to some fundamental limitations, a
meaningful interpretation of multilayer brain networks remains to
be explored (Buldú and Papo, 2018). Therefore, here, we pursue the
investigation of the time series of networks’ characteristics (Lehnertz
et al., 2014; 2017) and utilize the following centrality metrics to estimate
importance of each network’s vertices and edges.

Strength centrality of a vertex i is the sum of the weights of all
edges connected to this vertex:

CS
v i( ) � ∑

V

j�0
W ij. (1)

The higher the vertex’s degree/strength, themore central it is considered
to be. A related metric for edges is nearest-neighbor centrality, which
considers an edge to be more central when its weight is larger and the
strengths of the vertices that are connected by that edge aremore similar
and higher. Nearest-neighbor centrality of an edge k between vertices a
and b is defined as follows (Bröhl and Lehnertz, 2022):

CS
e k( ) � CS

v a( ) + CS
v b( ) − 2wk

|CS
v a( ) − CS

v b( )| + 1
wk, (2)

where k ∈ 1, . . . , E{ }, (a, b) ∈ {1, . . ., V}, and wk � Wab denotes the
weight of edge k connecting vertices a and b. Similar to strength
centrality of a vertex, nearest-neighbor centrality of an edge is only
influenced by its adjacent constituents. Hence, vertices (brain regions)
and edges (interactions between pairs of brain regions) that have high
CS values are largely interconnected with the neighboring vertices and
edges. When structurally viewed, these neighboring constituents would
be located in either the same areas of the brain or an adjacent area; from
a functional perspective, they might be associated with any area of the
brain. Hence, constituents with high CS values are highly interconnected
within the functional network, although not necessarily allowing a
structural interpretation.

Eigenvector centrality considers the influence of a vertex/edge
on the network as a whole, where a vertex/edge is considered central
if the vertex/edge adjacent to it is also central, and it is defined as

CE
v,e i( ) � 1

λmax
∑
l

Mil CE
v,e l( ). (3)

In case of vertices, (i, l) ∈ {1, . . ., V} and M denotes the weight matrix
W(v) ∈ [0, 1]V×V, where W(v)

il denotes the weight of an edge between
vertices i and l. We defineW(v)

ii :� 0 ∀ i with i ∈ 1, . . . , V{ }. In the case
of edges, (i, l) ∈ {1, . . ., E} and M denotes the weight matrix
W(e) ∈ [0, 1]E×E, whose entries W(e)

il are assigned to the average
weight of edges i and l, if these edges are connected to the same
vertex, and 0 otherwise. As mentioned previously, we define W(e)

ii :�
0 ∀ i with k ∈ 1, . . . , E{ }. Equation 3 is applied iteratively until
eigenvector centrality values remain stable. Hence, eigenvector
centrality can be considered a strength-based centrality concept,
which, due to its recursive definition, relates a vertex/edge to all the
other vertices/edges in the network. Similar to strength/nearest-neighbor
centrality, constituents with high CE values are gradiently stronger
connected to closer constituents than to those that are far off. Again,
distance-related descriptions, such as “close” or “far-off,” relate to the
functional network and, hence, do not necessarily allow a structural
interpretation, meaning constituents with large CE values are highly
connected to the functional network in a rather general sense. This high
inter-connectedness refers to many and/or possibly strong interactions

with constituents either associated with the same brain area or possibly
with any other area.

Closeness centrality considers the distance between a vertex/
edge and all the other vertices/edges in the network. A vertex/edge
with high closeness centrality is considered central as information
obtained from this vertex/edge can reach all the other constituents in
the network via short paths and so the vertex/edge can exert a more
direct influence on the network. Closeness centrality of vertex k is
defined as (Bavelas, 1950)

CC
v n( ) � V − 1

∑mdnm
, (4)

where (n,m) ∈ 1, . . . , V{ } and dnm represents the length of the shortest
path between vertices n and m, which is calculated as the sum of the
inverse of all edge weights on the path. Closeness centrality of edge k
between vertices a and b can be defined as (Bröhl and Lehnertz, 2019)

CC
e k( ) � E − 1

∑i dia + dib( ) �
E − 1

1

CC
v a( ) +

1

CC
v b( )

� E − 1( ) CC
v a( )CC

v b( )
CC
v a( ) + CC

v b( ),
(5)

where k ∈ 1, . . . , E{ } and (a, b, i) ∈ {1, . . ., V}. Hence, closeness
centrality can be considered a path-based centrality concept, which
is therefore influenced by the network as a whole. High closeness
centrality points toward a constituent, which is associated with any
brain area that is functionally “close” to any other constituent
associated with any brain area. Hence, certain parts (with high
CC) of certain brain areas interact strongly with many other parts in
the same area, while also interacting with many other brain areas.

Betweenness centrality is a measure of how frequently the
shortest path traverses a given vertex/edge. A vertex/edge with
high betweenness centrality is considered central because it acts
as a bridge between other brain regions. Vertex/edge betweenness
centrality (of vertex/edge i) can be defined as (Freeman, 1977;
Brandes, 2001; Girvan and Newman, 2002)

CB
v,e i( ) � 2

F
∑
n≠m

qnm i( )
Gnm

, (6)

where i ∈ 1, . . . ,V{ }, i ∈ 1, . . . , E{ }, and n,m{ } ∈ 1, . . . , V{ }; qnm(i)
represents the number of shortest paths between vertices n and m
running through vertex/edge i, and Gnm represents the total number of
shortest paths between vertices n and m. The length of a path is
calculated as the sum of the inverse of all edge weights on that path.
The normalization factor is given as F = (V−1) (V−2) in the case of
vertices and F = V(V−1) in the case of edges. Hence, betweenness
centrality can be considered a path-based centrality concept, which is
therefore influenced by the network as a whole. Constituents with high
betweenness centrality are likely to be part of bottleneck-like structures
spanning between brain areas, both in a structural and functional sense.

In order to facilitate a qualitative comparision of the results
obtained with the different centrality concepts, we utilized centrality
value-based importance ranking of constituents (Liao et al., 2017). A
vertex/edge with the largest centrality value gets assigned to rank 1.
The rank increases in increments of 1 for the vertex/edge with the
second largest centrality value, third largest centrality value, etc.,
yielding an increasing rank as the centrality values decrease. This
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ranking can be further normalized, yielding a relative ranking with
the highest relative rank being 1 (most important) and the lowest
relative rank being 0 (least important). Hence, we can deduce an
importance hierarchy for the vertices and edges of each snapshot
functional brain network.

2.4 Characterizing the influence of
biological rhythms on the importance of
network constituents

The aforementioned steps of analysis provide us with a temporal
sequence of vertex/edge importance hierarchies of an evolving
functional brain network and enable the investigation of how

biological rhythms impact this hierarchy. To this end, we proceed as
described in Lehnertz et al. (2021) and estimate the power spectral
densities [Lomb–Scargle periodogram (Press et al., 1989)] of the
respective temporal sequences. Eventually, we quantified the
influence of the circadian rhythm on each such sequence as the
portion of power for period lengths in the range of 20–28 h relative
to the total power in the range of 1–36 h. We refer to this ratio as P24 in
the following sections.

3 Results

We observe contributions of rhythms with period lengths of
approximately 24 h (and to a lesser extent from rhythms of

FIGURE 1
Exemplary observations: (A) temporal sequences of the importance of arbitrarily chosen vertices (here, FP2 and PZ) and edges (FP2–PZ and T8–O1)
estimated with CSv and CSe, respectively. (B) Lomb–Scargle periodograms of sequences in (A). (C) Temporal evolution of the relative rank (color-coded) of
all network constituents (ant., anterior; post., posterior; ll, left-hemispheric interactions; rr, right-hemispheric interactions; lr, inter-hemispheric
interactions; white vertical lines depict recording gaps). Electrode contacts are displayed in the following descending order (top to bottom)
respectively: ant. – post.: Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, C4, T8, P7, P3, Pz, P4, P8, O1, O2; ll: Fp1-F7, Fp1-F3, Fp1-Fz, Fp1-T7, Fp1-C3, Fp1-P7, Fp1-P3,
Fp1-Pz, Fp1-O1, F7-F3, F7-Fz, F7-T7, F7-C3, F7-P7, F7-P3, F7-Pz, F7-O1, F3-Fz, F3-T7, F3-C3, F3-P7, F3-P3, F3-Pz, F3-O1, Fz-T7, Fz-C3, Fz-P7, Fz-P3, Fz-
O1, T7-C3, T7-P7, T7-P3, T7-Pz, T7-O1, C3-P7, C3-P3, C3-Pz, C3-O1, P7-P3, P7-Pz, P7-O1, P3-Pz, P3-O1, Pz-O1; rr: Fp2-Fz, Fp2-F4, Fp2-F8, Fp2-C4,
Fp2-T8, Fp2-Pz, Fp2-P4, Fp2-P8, Fp2-O2, Fz-F4, Fz-F8, Fz-C4, Fz-T8, Fz-P4, Fz-P8, Fz-O2, F4-F8, F4-C4, F4-T8, F4-Pz, F4-P4, F4-P8, F4-O2, F8-C4,
F8-T8, F8-Pz, F8-P4, F8-P8, F8-O2, C4-T8, C4-Pz, C4-P4, C4-P8, C4-O2, T8-Pz, T8-P4, T8-P8, T8-O2, Pz-P4, Pz-P8, Pz-O2, P4-P8, P4-O2, P8-O2; lr:
Fp1-Fp2, Fp1-F4, Fp1-F8, Fp1-C4, Fp1-T8, Fp1-P4, Fp1-P8, Fp1-O2, Fp2-F7, Fp2-F3, Fp2-T7, Fp2-C3, Fp2-P7, Fp2-P3, Fp2-O1, F7-F4, F7-F8, F7-C4, F7-
T8, F7-P4, F7-P8, F7-O2, F3-F4, F3-F8, F3-C4, F3-T8, F3-P4, F3-P8, F3-O2, Fz-Pz, F4-T7, F4-C3, F4-P7, F4-P3, F4-O1, F8-T7, F8-C3, F8-P7, F8-P3, F8-
O1, T7-C4, T7-T8, T7-P4, T7-P8, T7-O2, C3-C4, C3-T8, C3-P4, C3-P8, C3-O2, C4-P7, C4-P3, C4-O1, T8-P7, T8-P3, T8-O1, P7-P4, P7-P8, P7-O2, P3-
P4, P3-P8, P3-O2, P4-O1, P8-O1, O1-O2. (D,E) Fraction of the recording time during which a respective constituent was the most/least important. (F)
Average relative centrality values (CSv and CSe, respectively, normalized to the maximum value) over the recording time.
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approximately 12 h or shorter) in all temporal sequences of
importance (centrality values and ranks) of the respective
network constituents from each subject. However, and contrary
to the expectation, we found that these circadian and ultradian
contributions are more pronounced in the sequences of some
vertices and edges, i.e., some brain regions, as well as the
interactions between their dynamics (see Figure 1).

Interestingly, we also observe that the strength of circadian
contributions differs for temporal sequences derived with
different centrality metrics. This is to be expected, at least to
some extent, since the metrics highlight different structural
aspects of a network, such as the path-structure or strength
distribution. Nevertheless, these observations suggest that the
circadian rhythm affects these different structural aspects.
Figure 2 demonstrates that this rather unspecific relation
regarding path/strength-based centrality metrics for vertices and
edges can be observed in the data from all the investigated subjects.
Moreover, it becomes quite apparent from this figure that by
combining the results yielded by different centrality concepts,
almost all network constituents are impacted by the circadian
rhythm in all subjects.

Yet, it can also be observed that there is no trivial relation
between the influence of the circadian rhythm (estimated with P24)
and a constituent’s importance (cf. Figure 3). Neither for the most
nor for the least important network constituents do we observe a
generally specific influence of the circadian rhythm (as well as for
ultradian rhythms (data not shown)).

Furthermore, we find that different centrality metrics identify
different constituents as the most important (on average over the

whole observation time, in line with previous studies) (see, e.g.,
Kuhnert et al. (2012); Bröhl and Lehnertz (2019); Bröhl and
Lehnertz (2022); and the references therein). One needs to take
into account that the constituents deemed the most important on
average do not always coincide with the constituents that are
deemed the most important for the largest fraction of the
recording time (cf. Figure 4). Likewise, constituents, for which
the temporal profiles of importance are impacted strongly by the
circadian rhythm, neither coincide with those constituents that
are deemed the most important on average nor with those
constituents that are deemed the most important for most of
the recording time. This discrepancy cannot be traced back to the
ceiling or floor effects, resulting from the definitions of their
respective centrality metrics. Overall, we observe a rather
unspecific influence of primarily the circadian rhythm on
many structural aspects of network constituents: each brain
region (vertex) and even interactions between such regions
(edges) appear to be influenced, at least to some extent, in
their structural integration.

In order to improve on the findings achieved so far, we
investigate whether there exists a day/night pattern in the
temporal evolution of the importance of vertices and edges (cf.
Figures 1A, C). Interestingly, we observe that the largest differences
in the importance of network constituents between night- and
daytimes are related to very distinct brain areas along with their
interactions (see Figure 5). These vertices and edges not only exhibit
the largest change in centrality values when functional brain
networks transit from night- to daytimes but are also further
identified as the most important constituent on average and for

FIGURE 2
Influence of the circadian rhythm (estimated with P24) on centrality values of network constituents (assessed with betweenness centrality CB,
closeness centrality CC, eigenvector centrality CE, and strength/nearest-neighbor centrality CS). Pale blue: P24 ≤ 0.5; red: P24 > 0.5.
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FIGURE 3
Influence of the circadian rhythm (P24; color-coded) and the average importance over the recording time (the size of vertices/edges; the larger they
are, the more important they are). Importance estimated with betweenness centrality CB, closeness centrality CC, eigenvector centrality CE, and strength/
nearest-neighbor centrality CS. Networks are depicted in the layout of the 10–20 EEG system (Klem et al., 1999). Examples a and b (left and middle
columns) represent the observed opposing extreme cases from two subjects, either showing an overall little (example a) or strong (example b)
influence of the circadian rhythm. The right column shows the group average over all the subjects.
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the largest fraction of the total recording time. While betweenness
centrality highlights bilateral frontotemporal vertices and edges,
closeness centrality highlights the predominantly left

temporoparietal vertices and edges. Both strength-based
centralities (eigenvector centrality and nearest-neighbor
centrality) predominantly highlight the left temporoparietal and

FIGURE 4
Relation between constituents’ average relative rank over the total recording time and their fraction of the recording time, for which the constituents
are deemed the most important. Marker colors encode the different subjects, and marker sizes encode the relative power corresponding to the 24-h
peak related to the circadian rhythm.
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left parietooccipital vertices and edges. Independent of the employed
centrality metric, temporoparietal network constituents (vertices T7,
T8, and P7 as well as their associated edges) are identified as the most

important during daytime (here, 12:00 to 16:00 h). In contrast,
during nighttime (here, 24:00 to 4:00 h), the importance shifts to
parietal network constituents (vertices P3, P4, and PZ as well as their

FIGURE 5
(A) Fraction of the recording time during which a network constituent is the most important (color-coded) and the average relative rank of the
constituent (size-coded). Importance assessed with betweenness centrality CB, closeness centrality CC, eigenvector centrality CE, and strength/nearest-
neighbor centrality CS. Middle column: Absolute night–day differences in the fraction of the recording time during which the respective constituent is the
most important (color-coded, green/purple indicating a higher fraction of the recording time during night/day) and the absolute value of the
absolute difference in the constituents’ relative rankings (size-coded). (B) Absolute night–day difference in constituents’ relative rankings (color-coded,
red/blue indicating a higher relative ranking during night/day) and the absolute value of the absolute difference in the fraction of the recording time during
which a network constituent is themost important (size-coded). The respective data are averaged over all subjects and their respective night/day periods.

Frontiers in Network Physiology frontiersin.org08

Bröhl et al. 10.3389/fnetp.2023.1237004

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1237004


associated edges). Apart from this night–daytime-related spatial
shift of the importance of a few network components, our
findings also point toward a key arrangement of connected
vertices and edges, relating to a subnetwork that comprises
vertices T7, P7, P3 PZ, and P4 together with their associated
edges. This subnetwork, which is slightly more dominantly
located on the left brain hemisphere, is possibly involved in
ongoing activities during wakefulness and sleep.

4 Discussion

We investigated how the circadian rhythm impacts the time-
dependent importance hierarchy of the vertices and edges of an
evolving functional brain network. We employed different path- and
strength-based centrality metrics for vertices and edges to
comprehensively characterize the importance hierarchy of these
network constituents. At the single-constituent level, we observed
that their time-dependent changes in importance are clearly
modulated by the circadian rhythm although to a varying degree.
Irrespective of their interindividual variabilities, we observed
pronounced differences in the constituents’ importance hierarchy
when contrasting data obtained during daytimes and nighttimes.
This may point to a local, circadian rhythm-driven modulation of
the dynamics of various brain regions alongside their interactions.
These brain regions form vital and fundamental subnetworks within the
evolving functional brain networks.

The subnetwork highlighted with betweenness centrality comprises
temporofrontal brain regions from both hemispheres. It is rather
unexpected that the subnetworks, as highlighted with closeness,
eigenvector, and strength/nearest-neighbor centrality metrics (but
not with betweenness centrality), are largely overlapping, despite the
fact that the different centrality metrics assess different structural
aspects of network constituents. This subnetwork is predominantly
restricted to the temporoparietal brain regions, with a left-hemispheric
dominance during the nighttime. However, whether the subnetworks
observed here are related to the resting-state network needs further
investigation (Raichle, 2015).

Studies revealed that the hippocampus, deep inside the temporal
lobe, and the visual cortex are simultaneously involved in the
reactivation of coherent memory traces during sleep, which points
toward a contribution to the memory consolidation process
(Prabhakaran et al., 2000; Albouy et al., 2013). The interaction
between those brain regions might possibly relate to the T7–P7 (–T8)
structure in the observed vital subnetworks as these vertices and
edges, associated with these electrodes and interactions between the
sampled brain regions, are deemed more important in general and
for a larger fraction of time during the nighttime compared to the
daytime.

During the daytime, the vertices and edges associated with the
parietal lobes (PZ, P3, and P4) are deemed more important and for a
larger fraction of time compared to the nighttime. These areas
consolidate spatial and visual information and integrate
perceptions with other sensory inputs, resulting in the
recognition of the trajectories of moving objects. These areas also
mediate proprioception (perception of the position of the body in
space) and are involved in skills such as arithmetic, writing,
left–right orientation, and finger perception (see Rizzolatti et al.

(1997) for an overview). Since these functions may also be involved
during dream phases (which account for approximately 25% of the
sleep period), these vertices and edges are nonetheless important
during nighttimes although for shorter periods of time.

Overall, we observe that circadian (and ultradian) biological
rhythms strongly influence the importance hierarchy, as assessed
with different centrality concepts, of the constituents in time-
dependent functional brain networks. These observations highlight,
for each employed centrality concept, distinct subnetworks in evolving
functional brain networks. The structural composition of these
networks, however, largely coincides, which points toward the
existence of a vital and fundamental subnetwork that is rather
generally involved in ongoing brain activities.
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