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1 Introduction

Long-term adaptation to exercise, consisting of the cumulative, delayed, and residual
effects (Issurin, 2009), is a consequence of task-dependent functionally integrated
physiological networks and their interaction with the environment. However, principles
of dynamic integration of these networks remain partially unknown (Ivanov and Bartsch,
2014; Balagué et al., 2020; Ivanov et al., 2021a; Ivanov et al., 2021b; Ivanov, 2021; Rogers,
Mourot, Doucende, and Gronwald, 2021; Romero-Ortuño et al., 2021; Garcia-Retortillo and
Ivanov, 2022). Particularly, the long-term effects of exercise on network dynamics are a
much less researched area (e.g., Balague et al., 2016; Vázquez et al., 2016). A long-recognized
general characteristic to the dynamics of the long-term effects is the tendency toward the
slowing down of fitness1 record value2 occurrence, on average, on a large variety of time
scales (e.g., Platonov, 1988). Moreover, the long-term rate of decay of the achieved fitness
level, after temporary or permanent cessation of exercise, is inversely proportional to the
accumulated training time (e.g., Zatsiorsky and Kraemer, 2006). This highly reproducible
effect has been known since Hettinger’s early works on isometric strength (Hettinger, 1966).
“Soon ripe, soon rotten” is a common catchphrase that depicts this effect. The causes of this
phenomenon, however, are still unknown (Gavanda, Geisler, et al., 2020). In this opinion
paper, our aim is to suggest that the previously mentioned phenomena may be successfully,
theoretically, and methodologically approached by conceptualizing them as multilevel-
physiological-network aging phenomena, known from condensed matter physics (see, e.g.,;
Bouchaud, 2000)3. Before explicitly discussing this possibility, we briefly build an argument
for our case.

Supercompensation, the process of increasing the substrate and functional possibilities
of biological systems above the levels that precede an acute exercise perturbation, is the most
fundamental multilevel process that underpins exercise-induced long-term adaptation.
Recently, it has been conceptualized in terms of a strong anticipation phenomenon
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1 Under “fitness,” here, we understand any exercise-induced adaptation in components such as
strength, power, types of endurance, speed, complex perceptual-motor skills, and flexibility, as
well as the generalized adaptations which emerge from the interactions among these components.

2 The record value is the highest value measured in some fitness variables in some period of time for a
certain individual.

3 The concept of “aging,” in this paper, refers to the phenomenon of “physical aging” present in, e.g.,
complex disordered systems. It does not refer to human biological aging. The reader should not
conflate both phenomena.
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(Hristovski and Balagué, 2020). With this respect, important
developments suggest that this kind of adaptive anticipatory
process can be understood in terms of multiplicative cascades
synchronized to the statistical structure of the environmental
dynamics (Stephen and Dixon, 2011). Multiplicative cascades
were recently discussed as formal characterization of anomalous
diffusion processes (Mangalam, Metzler, and Kelty-Stephen, 2023),
which are ubiquitous in hierarchical energy/entropy landscapes,
characteristic for aging complex systems with many metastable
states (Bouchaud, 2000). Complex, and by extension biological,
networks may contain a very large number of metastable states.
Metastable states are states in which the network may reside for a
prolonged time but which eventually are being abandoned.
Metastability has already been shown to exist in many types of
biological networks, e.g., neural, transcriptomic, and endocrine
networks (see Gili, Ciullo, Spalletta, 2018; Helmling, C., Klötzner,
et al., 2018; Avila-Varela, Hidalgo-Lopez, et al., 2023). The
metastable states in biological systems are constrained by the
interactions between a vast number of multiscale co-adaptive
networks, such as neuromuscular, fascial, cardiorespiratory,
hormonal, immune, and the -omics networks, in cells, blood, etc.
(Balagué et al., 2020). One of the main consequences of the
heterogeneity of multiscale networks is the wide difference of
time-scales of different variables that influence the biological
network dynamics and, hence, the nested landscape of network-
wide metastable states (i.e., minima), in which the fitness level may
be temporarily trapped (Bouchaud, 2000). The metastable states are
separated by energy/entropy barriers4. The depth of the trapping
minima is proportional to the height of the barriers that surround
them. On the other hand, the height of the barriers is roughly
proportional to the quantity of stabilized reconfigurations that
occurred in the network during its evolution. In this view,
exercise-induced fitness can be considered a strong anticipation-
based collective variable (Hristovski et al., 2010) generated by
heterogenous network-wide hierarchical multiplicative cascade
processes each time it is measured.

2 A heuristic model of the exercise-
induced aging process

Aging is manifested in two basic facts: 1) The longer the fitness
evolves (i.e., ages) under a certain sequence of perturbations (i.e., exercise
stimuli), the more it slows down; and 2) the longer the fitness variables
evolve, the longer the achieved fitness effects last after the cessation of the
perturbations. Aged variables become ‘inert’ and resist change either for
further enhancement or decay. The aging of the fitness variables can be
measured by some macroscopic variables, that is, global fitness measure
(e.g., max-power, strength, endurance, skill-related variables etc.), and/or
some network-specific (e.g., network excitability, connectivity, efficiency,

or energy flux) fitness variables. Aging is reflected in the increasingly
longer waiting times for the record values of the fitness variable (Jensen
and Sibani, 2013), ormore technically as _μ∝ at−1, where _μ represents the
rate of decay of the average number of record values of the variable per
unit time t and a represents a constant.

Hence, in our heuristicmodel, aging is an exercise-activated process
of relaxation (equilibration) of metastable multilevel-network
configurations (see Bouchaud, 2000 for details). The core of this
model includes the mutual parametrizing interactions of processes
that relax on different characteristic time-scales. This means that,
after some exercise time, the network’s faster evolving variables (e.g.,
enzymatic or signaling network activity, neural excitability, etc.) may
have already relaxed and stabilized, the more slowly evolving variables
(e.g., muscle; tendon; bone and heart remodeling; intra-, inter muscle,
and interlimb coordination; capillarization, etc.) have not yet. Then, the
stabilized network processes parametrize (i.e., constrain) the dynamics
of the slower processes. As a result, hierarchical, network-wide, adaptive
processes are being trapped, i.e., stabilized, between increasingly higher
energy/entropy barriers (Bouchaud, 2000). Consequently, the response
to exercise perturbations often decelerates and plateaus (Gorostiaga,
Izquierdo, et al., 1999).

Plateauing (Gorostiaga et al., 1999) is captured
phenomenologically by general, experimentally found,
decelerating (e.g., logarithmic) laws of learning (Harris, 2022).
Hence, the decelerating scenario of fitness growth as relaxation
over hierarchical energy and/or entropy landscape (Bouchaud,
2000) directly predicts empirically detected laws. In order to
enhance the system further, one must exert a change in the
perturbations, e.g., directed variation in the load. The ultimate
plateauing phases of the aging process may be detected on
different time scales, from novices who practice their first weeks
of exercise to individuals who exercise for decades (Platonov, 1988).

2.1 Rejuvenation and memory effects

Increasing the specificity (directed reduction of the variability5 of
exercise perturbations) (Gamble, 2006) can initiate a fitness increase (on
scales of months to decades). This is exactly what the phenomenon of
rejuvenation means in physically aging systems. By reducing the
variability of perturbations, i.e., increasing their specificity, the
previously acquired coarser organization network modes stay stable,
but more specific detailed configurational refinements are being
activated (see Bouchaud, 2000). The finer structure of the network
energy/entropy landscape is being revealed. The system restarts the
aging process. Here, the measure of susceptibility (receptivity) χmay be
used, which is defined as a change in some fitness function (f) per
constant unit change in the accumulated exercise perturbations (p), or
χ � df(p)

dp . As a consequence of the increase in the specificity, the
susceptibility to the new specific perturbations again increases, which
further improves the values of the fitness function (f). This is usually
an effect of exploring the more detailed structure of the landscape of
task-specific physiological/biomechanical metastable configurations

4 In networks, the term energy barrier may or may not refer to physical
energy. It may refer simply to the difficulty of overcoming some state.
Entropy barriers, on the other hand, correspond to the possibilities (paths)
that the system can use to escape the current metastable state. The more
paths are afforded, the smaller is the entropy barrier and the higher is the
probability of escaping and switching to another metastable state (see,
e.g., Jensen and Sibani, 2013).

5 In the general formulation of the Fokker–Planck equation, the variance
corresponds to the temperature term in physical systems.
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(Stone et al., 2022). When variability of perturbations is returned to the
previous (less specific and more variable) level, the susceptibility to
exercise perturbations χ returns to the values characteristic for the states
before the increment of the exercise specificity. The network energy/
entropy landscape recovers the pre-rejuvenation coarser form. As a
consequence, when measured, the system is still able to organize the
previously stabilized coarser, less specific, structure (as in the bicycling
skill). This is called a memory effect in physically aging systems
(Bouchaud, 2000). Likely, different modalities of transfer may show
different influences on network rejuvenation and memory effects
(Brearley and Bishop, 2019). It is also possible that rejuvenation and
memory effects exist only in some fitness variables, and detecting these
variables would provide information about the structure of the
biological networks.

2.2 The detraining effects of aging

Detraining effects of aging are measured starting from the
highest fitness value achieved after switching-off of perturbations
that acted on the system while it aged for time te. The main effect of
aging detraining dynamics can be written down in both a stretched
exponential form f(te,te + t)∝ e−(γ(te)t)

p(te )
and power law form

f(te,te + t)∝ at(−pte), where f(te, te+t) represents the fitness
function, t represents detraining time, a is a constant which may
depend on te, and constants γ and p depend on te and control the rate
of decay of the fitness function.

The longer the aging process, i.e., the accumulated exercise time (te)
of the system, the longer it takes the system to lose its memory of the
past states, acquired during aging and vice versa. This very effect is
typical in long-term detraining effects (e.g., Hettinger, 1966; Zatsiorsky
and Kraemer, 2006). In the theoretical framework of physical aging, this
results from the network being trapped in a deep minimum (i.e., the
exceedingly stable state) due to the accumulated aging of the slow
variables (Jensen and Sibani, 2013). As a consequence, escaping from
that state would require much more time, proportional to the quantity
of the required reverse (detraining) reconfigurations of the network,
compared to the time required to escape from much shallower minima
(i.e., less stable states), characteristic for networks with less accumulated
exercise time (te). However, the biological reasons for this stabilization
are yet unknown (Gavanda, Geisler, et al., 2020).

For some fitness components (e.g., strength), one may attribute this
effect, at least partially, to the phenomenon of muscle memory (see
Sharples, and Turner, 2023). Skeletal muscle memory, which is
hypothesized to comprise the synergistic action of cellular
(myonuclear) and epigenetic network processes responsible for
hypertrophy, would enable the quick recovery of fitness function (e.g.,
strength) during retraining, after longer periods of detraining. However,
in Hettinger (1966), the smaller the maximal acquired strength and the
longer it has been acquired (larger accumulated exercise time), the slower
was the rate of its decay during the detraining period and vice versa. In
other words, it was not the maximal level of acquired strength and
hypertrophy but the accumulated exercise time, which had a positive
effect on the strength stability during the detraining period. Certainly,
longer accumulated exercise time often brings about a higher level of
strength as well. However, the said work shows that, when partialized
with respect to the acquired maximal strength level, the accumulate
exercise time, alone, is the generator of the strength stability. Thus, the

following question is raised: How does the accumulated exercise time (te)
stabilize the multilevel-network processes, including possible myonuclear
and epigenetic mechanisms, which positively contribute to the fitness
stability during detraining?

Moreover, the “soon ripe soon rotten” phenomenon is also present in
the domain of skill acquisition (e.g., Yin et al., 2009), where the early
acquired skill is easily subject to decay, but after prolonged use, it may last
a lifetime. Hence the said phenomenon cannot be explained by the same
cellular processes/mechanisms as muscular hypertrophy. In this respect,
different aging phenomena may consist of different local processes/
mechanisms but may also have common mechanisms. Hence, we
hypothesize that it is the mutually parametrizing (constraining) role of
multi-network fast and slow processes, which is the general principle that
generates the diverse physical aging phenomena.

3 Research program

The heuristic model described previously remains largely qualitative,
and to become quantitatively predictive, a research program focused
(though not exclusively) on the following directions is required: 1.
Establishing the essential network variables and their characteristic time-
scales at each organism level (e.g., rate constants, connectivity measures,
reciprocally compensating, i.e., synergic couplings, etc.), which potentially
age and rejuvenate. In our opinion, the best approachwould be the research
on the long-term evolution of a macroscopic fitness variable (e.g., strength)
and one ormore nested networks associated with themacroscopic variable
(see, e.g., for muscle-network connectivity measures during acute fatigue
Garcia-Retortillo et al., 2023); 2. determination of networks’ energy/entropy
landscapes; for example, the landscape of connectivity measures of
intermuscular or endocrine interactions; 3. research on the dynamic
mechanisms of aging of synergies between multilevel-network processes;
4. empirical and modeling work on the heterochronicity of multilevel
network variables that age and rejuvenate and, hence, constrain the
reconfiguration process of the physiological network fitness level at
different time-scales. It is highly likely that heterochronicity has large
interindividual variability and different organic systems, so the networks
mayhave a strong individual imprint; 5. how the change in the variability of
exercises (less-more specificity) affects the multilevel aging and
rejuvenation of network configurations; 6. defining the multilevel
network bio-markers that can explain and assess the long-term
exercise-induced fitness effects of aging, rejuvenation, and memory.
This research program requires effort and time, but in the long run, it
may prove beneficial for science and the society.
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