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Heteroclinic networks are a mathematical concept in dynamic systems theory that
is suited to describe metastable states and switching events in brain dynamics. The
framework is sensitive to external input and, at the same time, reproducible and
robust against perturbations. Solutions of the corresponding differential equations
are spatiotemporal patterns that are supposed to encode information both in
space and time coordinates. We focus on the concept of winnerless competition
as realized in generalized Lotka—Volterra equations and report on results for
binding and chunking dynamics, synchronization on spatial grids, and entrainment
to heteroclinic motion. We summarize proposals of how to design heteroclinic
networks as desired in view of reproducing experimental observations from
neuronal networks and discuss the subtle role of noise. The review is on a
phenomenological level with possible applications to brain dynamics, while we
refer to the literature for a rigorous mathematical treatment. We conclude with
promising perspectives for future research.
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1 Introduction

Reproducible sequential neural activity is experimentally found in sequential memory
processes and fast recognition of stimuli by olfactory and auditory sensory systems. It is
reproducible in the sense that similar stimuli lead to similar sequences. Examples are the
insect olfactory system (Laurent et al.,, 2001; Galan et al., 2004), vocal tract of songbirds
(Hahnloser et al., 2002), and mollusk sensory motor system (Varona et al., 2002; Levi et al.,
2004). One of the first experimental hints for features of what is nowadays called winnerless
competition was the complex intrinsic dynamics in the antennal lobe of insects that
transform static sensory stimuli into spatiotemporal patterns of neural activity (Laurent
et al, 2001; Galdn et al., 2004). Winnerless competition is an overarching concept which,
when applied to neurodynamics, means that, temporarily, certain neurons or subpopulations
of neurons become dominant, while others are silent so that the winner of a competition
changes with time. Many hints exist that typical states in the brain are metastable (Tognoli
and Kelso, 2014), and the structure of these metastable states is reflected in functional
neuroimage experiments. In particular, with respect to cognitive processes, common
phenomenological features of brain dynamics are (i) that sensory information is coded
both in space and time (!); (ii) cognitive modes do sensitively depend on the stimulus and the
executed function; (iii) cognitive behavior is deterministic if the environment is the same and
highly reproducible; and (iv) cognitive modes are robust against noise of diverse origin
(Rabinovich et al., 2008a). Cognitive phenomena rely on transient dynamics such as working
memory and decision making (Rabinovich et al., 2006a; Rabinovich et al., 2008b; Rabinovich
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et al., 2012), besides spatiotemporal sensory encoding (Rabinovich
M. et al., 2008) and robust rhythmic generation (Rabinovich et al.,
2006b).

Based on these observations, a mathematical framework should
satisfy the following requirements: ® in mathematical terms, the
dynamics should be dissipative so that its orbits rapidly forget its
initial state as soon as the stimulus is present; @ variables should
represent neural activities in brain modes such as firing rates; ® the
dynamical equations should have solutions that amount to
metastable states; ® the order of sequential switching between
such states must be robust and based on mutual interaction
between many individual cells; yet, the dynamics should be very
sensible to external input; ® the dynamics should be controlled by
inhibition (in particular, for cognitive processes) and combined and
balanced by excitatory interactions; and e it should be sensitive to
prior neural or ongoing environmental input, so it should be
possible to implement memory (Rabinovich et al., 2015a).

Naturally, the question arises as to which mathematical
framework is suited to satisfy as many of these postulates as
possible. Certainly, concepts from asymptotic dynamics, that is,
long-time limits, large volumes, and (thermodynamic) equilibrium
situations, are not suited, although in these limiting cases, the
mathematics usually simplifies considerably. The simplest long-
term asymptotic dynamics is a stable equilibrium (in the sense of
a fixed point of dynamical systems theory rather than of
thermodynamic equilibrium), or a stable limit cycle, or a chaotic
attractor. These are typical invariant sets, in which the system
remains forever unless parameter values change or other external
perturbations occur, but activities of our mind are intrinsically
transient and thoughts are elusive, even if they are well reproducible.

Nevertheless, in a first attempt, one may start with coding via a
number of different fixed-point attractors. For example, what would
such a coding mean for the olfactory system? Coding with attractors
of Hopfield networks (Floréen and Orponen, 1989; Gopalsamy and
He, 1994; Maass and Natschlager, 1997) would imply that each odor
is represented by a specific behavior (attractor) of the neural
network. The number of different attractors would determine the
number of distinguishable stimuli that can be represented and
recognized. Obviously, the system must be multistable, and for
each odor, an attractor should be generated. Once the attractor
landscape has formed in a Hopfield network, it is static after
convergence. It is also robust or resistant to corruption of the
input unless it is overloaded. However, the number m of stimuli
allowed in a system of N neurons is very limited m < 0.14 N (Hertz
et al., 1991) due to boundaries between basins of attraction which
should not overlap; otherwise, the error rates in the retrieval of
patterns of stimuli are large.

Other neurodynamic frameworks are coordination dynamics
(Kelso, 1995; Rabinovich et al., 2001; Bressler, 2003; Tognoli and
Kelso, 2014) and chaotic itinerancy (Kaneko and Tsuda, 2003;
Tsuda, 2015), networks of Milnor attractors (Kaneko, 1998;
Ashwin and Timme, 2005), cycling chaos with connections
between chaotic saddles (Dellnitz et al, 1995; Ashwin and
Rucklidge, 1998), and, last but not the least, HD with winnerless
competition (Rabinovich and Varona, 2011; Ashwin et al., 2016a).
Common to these approaches, neural computation is mediated by
reproducible spatiotemporal patterns that amount to attempts of
providing a mathematical solution. The specific realization of these
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accounts differs in what the states are in the mathematical
description: fixed points in Hopfield models (Hopfield, 1982;
Cohen and Grossberg, 1983), attractor ruins in chaotic itinerancy
(Tsuda, 2015), and saddles, such as saddle equilibria, connected by
heteroclinic orbits in HD, as further discussed in this review.

In contrast to Hopfield models, in heteroclinic networks (HNs),
the repertoire of possibly stored patterns is considerably increased;
since time is used as an additional coordinate for storage of
information, the patterns are spatiotemporal and dynamically
retrievable. For brain dynamics, heteroclinic networks are not a
description on a neurophysiological level; neither are they restricted
to a specific spatial or temporal scale of the brain or to a specific
brain area nor do they account for physical aspects related to energy
consumption or metabolism. What this framework of dynamical
systems theory is suited for is a description of switching events
where the considered system, such as a neuron population, spends
some dwell time in a certain state and suddenly switches to another
state. This is the case when brain dynamics proceeds via sequential
segmentation of information that is manifest in sequences of
electroencephalography (EEG) microstates (Michel and Koenig,
2018). In relation to motor processing in the brain, heterocyclic
cycles are supposed to provide a possible explanation for various
gaits in animal and human motion. In view of perception and
learning and cognitive processes, HD captures the intrinsically
transient nature of these processes, together with their precise
reproducibility and the option of a low-dimensional encoding in
spatiotemporal patterns.

This review is organized as follows. Section 2 provides some
basic notions and definitions needed for understanding HD on a
phenomenological level, while we refer to the literature for
mathematically rigorous definitions and notions of stability.
Section 3 focuses on a realization of HD via generalized
Lotka-Volterra (GLV) equations; here, we concretize this abstract
concept and provide examples from typical realizations. We discuss
binding and chunking dynamics in phase space, dimensional
reduction and synchronization of heteroclinic networks if
assigned to a spatial grid, and entrainment to heteroclinic motion
via pacemakers. Section 4 is devoted to the design of heteroclinic
networks and its generalizations toward the inclusion of excitable
networks in phase space. A possible goal of such constructions is to
explain and reproduce features from experiments such as switching
statistics, for which we provide some examples, in particular, from
chaotic heteroclinic networks. The role of noise in relation to HD
can be rather versatile and subtle, as discussed in Section 5, together
with an application of external driving. We conclude in Section 6
with an outlook to promising perspectives for further work. For
excellent extended reviews which include sections on HD, we refer
to previous studies (Rabinovich and Varona, 2011; Ashwin et al.,
2016a).

2 Basic definitions, notations, and
stability issues of heteroclinic networks

When the unstable manifold of a saddle equilibrium intersects
the stable manifold of another saddle, the intersection is called a
heteroclinic connection (or orbit) (Figure 1A). A heteroclinic cycle
(HC) is a closed loop in phase space consisting of a sequence of
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FIGURE 1

(A) Two saddle equilibria (full dots) with a heteroclinic connection (along the dashed line connecting them) and a possible trajectory (full line) in its
vicinity. (B) Heteroclinic cycle between three saddle equilibria, composed of connections along the three dashed lines of the triangle, and a trajectory (full
line) approaching the heteroclinic cycle. (C) Heteroclinic sequence, connecting a number of saddles. In all cases (A—C), the unstable direction of one

saddle becomes the stable direction of the subsequent one.

FIGURE 2

Heteroclinic network, composed of heteroclinic cycles, with nine saddles and possible heteroclinic connections between the vertices, but different
heteroclinic network attractors (A,B). Each saddle has two unstable directions, different from those shown in Figure 1. (A) Three small heteroclinic cycles (orange
triangles), connected by heteroclinic connections of large heteroclinic cycles (black triangles). (B) Three large heteroclinic cycles (orange triangles) connected by
small heteroclinic cycles (black triangles). (A) A possible sequence of visited saddles is (1,2,3) — (6,4,5) — (8,9,7), in (B) (1L4,7) — (8,2,5) — (6,9,3). Each saddle
represents a metastable state in which a certain subpopulation of neurons is temporarily excited (Thakur and Meyer-Ortmanns, 2022).

heteroclinic connections (Figure 1B). Figure 1C shows a
heteroclinic sequence. An entire HN is a set of vertices,
saddles, edges,
heteroclinic connections (Figure 2). It should be noticed that

representing connected by which are

“saddles” are not restricted to saddle equilibria but refer to any
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invariant set, possessing non-trivial stable and unstable
manifolds. When heteroclinic dynamics (HD) as HCs or HNs
are assigned to a single site of a spatial grid, we term the
corresponding ordinary differential (ODE) a

heteroclinic unit (HU).

equation
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To become more precise, in the literature, different versions of
definitions of HNs coexist. A compact one is as follows: consider an
ODE x = f (x) with smooth f(x) that defines a flow on x € R A
closed invariant set X ¢ R? is an HN for this flow if it is the union of
a finite set of equilibria, such that the invariant set is chain transitive
(Ashwin and Field, 1999; Ashwin and Postlethwaite, 2013). We refer
to alternative definitions in Supplementary Appendix. The HN X is
robust if (subject to specified constraints such as symmetries and
smoothness) there is an open set of perturbations of f that have a
nearby HN that is homeomorphic to the original. The HN is an
attractor if it is an attractor in some well-defined sense, such as being
asymptotically stable. It should be noticed that the notion of a
network attractor as introduced by Ashwin et al. (2016b) refers to an
invariant object in phase space that comprises not only local
invariant sets but also the interconnections between them. An
HN attractor is just a special case, the excitable network attractor
(Section 4.1) another one. In particular, in the presence of additive
noise, trajectories starting in the vicinity of a noisy heteroclinic
attractor remain close to it for long periods of time and realize what
is termed a heteroclinic channel by Rabinovich et al. (2012).

Concerning the asymptotic stability of HNs (rather than of
individual HCs), Ashwin and Postlethwaite (2013) made the
following conjecture: a sufficient (but not necessary) condition
for asymptotic stability of the HN is that all the contracting
eigenvalues are greater in absolute value than all the expanding
eigenvalues, and all transverse and radial eigenvalues are negative.
Contracting (expanding) eigenvalues mean a negative (positive)
in the
(outgoing) heteroclinic connection to an equilibrium.

eigenvalue direction associated with an incoming

When HNs are attractors, invariant subspaces allow the option
of robust connections between the saddles. The subspaces may be of
different origins, in particular fixed-point subspaces induced by
symmetry. In a simple realization, one has to deal with equilibria or
periodic orbits as nodes with unstable manifolds such that there is a
robust saddle-to-sink connection between the nodes within some
invariant subspace. Such HNs can be attracting as precisely specified
in previous studies (Melbourne et al., 1989; Krupa, 1997; Krupa and
Melbourne, 2004). For the special case of an HC connecting saddle
equilibria &, ..., &, a sufficient condition for its stability is
2A9ND 51 for all i, where ) (A?) is an eigenvalue in the
stable (unstable) direction of DAE),
discussions on stability issues are provided by Guckenheimer and
Holmes (1988), Field and Swift (1991), and Kirk and Silber (1994).

Robust heteroclinic attractors can be found in various systems,

respectively. Further

for example, in phase oscillator networks,
——=w+ey w;H(6;-6;), (1)

where H(0) = sin(6 — «) — rsin(26) and ew;; is the weight of the
connection from node j to node i and parameters « and r.
Bifurcations occur as a function of a and r, and robust
heteroclinic attractors are found for large N (Hansel et al., 1993).
For small N, one can only find attractive robust heteroclinic
attractors for N > 4 (Ashwin et al, 2008). Furthermore,
Hodgkin-Huxley-type with  delayed
synaptic coupling show similar heteroclinic attractors (Ashwin

limit-cycle  oscillators

et al, 2011). Another set of phase oscillator dynamics is
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considered by Ashwin et al. (2007), where various cluster states
form alarge HN that is an attractor and can serve to encode a variety
of inputs such as heterogeneities in the natural frequencies (Orosz
et al., 2009). Furthermore, locally coupled phase oscillators can lead
to robust heteroclinic attractors if enough invariant subspaces exist
for robust connections (Karabacak, Ashwin, 2010). In the following
sections, we focus on HNs which realize the concept of winnerless
competition in GLV equations.

3 Winnerless competition in GLV
equations

When heteroclinic connections should realize a concept of
winnerless competition, usually, GLV equations are considered.
In the context of neuroscience, they describe the firing rate A(t)
of a neuron or a group of neurons. A number of different reviews
exist on different versions of GLV equations and their accordingly
varying interpretations in relation to brain dynamics, referring to
cognition, emotion, attention, decision making, consciousness,
creativity, (Rabinovich et al, 2006a;
Rabinovich and Muezzinoglu, 2010; Rabinovich and Varona,
2011; 2012; 2015b;
Rabinovich et al,, 2020). Here, we start with a generic set of these

and other modalities

Rabinovich et al, Rabinovich et al.,
equations and indicate its general structure and meaning of different
terms. It reads

d N
T AT (£) = AT (1)) 01 (S, A" R) = ) py (AT R)AT (1) | + AT (07 (1),
j=1

i=1,..,N m=1,...,L @)

for the i-th neural activity A7 of modality m. If a single modality,
such as cognition, is considered with only one relevant time scale,
the time constant 7;,, would be absorbed on the right-hand side;
here, it is spelled out to indicate the applicability to different time
scales and the possibility of coexisting time scales, in particular of
other modalities. In Eq. (2) we explicitly indicated other possible
modalities A", n # m € {1,..., L}. The excitatory first term depends
on 0; (S, A", R), which is, in general, a function of the sensory input
S, possible resources R, and neural activities of other modalities A”.
If A™ represents cognition, A” may represent emotion, and for A",
here, a GLV equation of the same type is postulated as in Eq. 2. The
second inhibitory term in Eq. (2) represents the competition for
resources and contains couplings p;;(A",R), which may be
functions of resources and the nodes of other modalities. In
particular, the inhibitory term can be split into inhibitory
couplings between modes of the same modality or different
modalities. An example for such a splitting is given in Eq. 4. In
general, a multiplicative noise term is added, specific to the dynamics
on the respective time scale 7, ,, of modality m with #(f) often chosen
as Gaussian white noise. When GLV equations for different
modalities are coupled, they usually differ in the HD; they need
not even admit heteroclinic sequences individually. Resources R or
external input S are assumed to obey their own dynamics, again of
the GLV type or different ones such as gradient dynamics as in the
study by Rabinovich et al. (2006c¢).

In the following sections, we discuss a few simple special cases
without explicit modeling of the dependence of the excitatory and
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inhibitory couplings on external input, resources, or other
modalities. Equation 2 then reduces to

dA; N
E:A,-(ai—z;pijAj) (3)
=

in a simple but important special case. Already, since the work of
May and Leonard (1975), it is known that Eq. 3 can have robust
heteroclinic attractors for N > 3 and for an open set of parameter
choices 0; and p;;. The variety of equilibria range from coexistence
equilibria where several A; are different from zero to temporary
winner-takes-all (A; > 0 and A; = 0 for all j # i) to periodic or chaotic
dynamics. The winnerless competition amounts to sequences of
saddles joined by robust connections. They are robust because of the
lack of firing of one neuron or a group of neurons, since A; = 0 is
preserved by the dynamics (Hahnloser et al, 2002). A simple
example for winnerless competition for N = 3 corresponds to a
rock-paper-scissors game with cyclic inhibition of the neurons in
one direction of the ring and cyclic excitation in the opposite
direction such that dA;/dt = A(1 — A; — aA;1 — BA;,) with i =
1,2,3mod 3,and « + > 2,0 < a < 1 (May and Leonard, 1975). The
local behavior near this type of heteroclinic attractors was termed
stable heteroclinic channels (Rabinovich et al., 2012). As further
special cases of Eq. 2 we discuss binding and chunking dynamics in
the following subsections because of their physical meaning with
respect to brain dynamics.

3.1 Binding dynamics

A widely discussed question in neuroscience is the binding
problem, formulated and reviewed by Von der Malsburg (1999).
It refers to the need of a coherent representation of an object
provided by associating all its features such as shape, color,
sound, smell, taste, location, and speed. Only the binding of all
these features allows a unified perception of the respective object.
Von Der Malsburg and Schneider (1986) suggested that temporal
synchrony of neural activities may provide a solution of the binding
problem. Neurons can be temporary members of different cell
assemblies at different instants of time. In relation to HD, a
possible realization of binding may be two HCs, representing two
modalities, such as visual and auditory ones, “bound” by heteroclinic
connections (between these cycles) and heteroclinic sequences
within these cycles, which become synchronized. This may
realize the coordinated perception of visual and auditory inputs
as belonging to the same object.

A concrete mathematical implementation was discussed by
Rabinovich et al. (2010) and Afraimovich et al. (2015) and given as

d—Ai—A’ a’—i ’A’—iiflmA”’ (4)

ar il 9 j:lpij j 4 & R
wherei=1,...,N,I=1,..., L and Al is the activity level of the i-th
mode in the l-th informational modality (visual, odor, auditory,
etc.). The total number of modes from different brain areas is then
N-L. The coupling parameters pﬁj describe the inhibitory
connections between modes i and j in the same modality /, while

EZ” refer to connections between mode i of modality / and mode j of
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modality m. Furthermore, 0! denotes the strength of the stimulation
of the mode i in the I-th modality. In this formulation, the
parameters Ef;ﬂ control the options for possible binding. The
authors prove the existence of heteroclinic channels in the
neighborhood of the considered HNs. For L = 3 modalities (of
what is termed sequential memory), it was numerically illustrated by
Afraimovich et al. (2015) that the dynamics is sensitive to external
input, robust, and reproducible, and in particular, that HCs exist
which are joined (“bound”) by heteroclinic connections.

It should be noted that at least two-dimensional unstable
manifolds are required at the saddles to allow the trajectory
either to (preferably) remain in the same modality or (less
preferably, but possibly) to escape along a heteroclinic
connection to another modality. Higher-dimensional unstable
manifolds are needed if a trajectory should have possible exits to
a number of different modalities. The conjecture is that winnerless
competition (if realized in this framework of binding dynamics)
plays a basic role in different kinds of sequential memory (episodic
or working memory), i.e., memory that has to deal with a sequential
order of thoughts or events which need to be “bound together” to

achieve higher levels of cognition.

3.2 Hierarchical HNs, chunking dynamics,
and magic numbers

As mentioned previously, the idea is that brain activity is
through
metastable states (Kelso, 1995; Friston, 1997), in particular the

organized in spatiotemporal patterns transient
processing of sequential cognitive activity. Particularly during
cognition, it is evident that the brain does select a subset of
relevant metastable states, suppressing the irrelevant ones in view
of a given task, while it relies on hierarchical organization of the
global brain networks. In view of reproducing effectively low-
dimensional brain dynamics, the external and internal stimuli
leading to a cognitive task should be efficiently encoded, and
only a moderate number of brain excitation modes should
become excited upon the performance.

Here, the concept of hierarchical HNs is a suitable framework as
it allows us to describe chunking dynamics. Chunking is a widely
observed phenomenon in processes such as perception, learning,
and cognition. It refers to splitting long information sequences into
shorter parts, so-called chunks, for better storing and processing the
information. It is similar to the structure of language, composed of
novels, sections, sentences, and words, the rhythm in poems, or,
more banal, from memorizing credit card numbers as four chunks of
four numbers each. The concept of chunks goes back to the work of
Miller (1956). Chunking consists of the segmentation of long strings
into shorter segments as well as the concatenation of these segments.
Obviously, such a procedure can be iterated a number of times and is
intrinsically hierarchical. This is a desired feature in view of the
experimental facts that activities of functional networks in the brain
are hierarchically organized if one has to deal with perception,
cognition, behavioral sequential activity or motor control
(Grossman, 1980; Rosenbaum et al., 1983; Musso et al., 2003;
Tettamanti and Weniger, 2006), or specific movements
(Bahlmann et al., 2008; Bahlmann et al., 2009; Kotz et al., 2010).
If a chunk or superchunk represents an entire block or a set of blocks
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FIGURE 3

Temporal evolution of three different chunks (red, green, and

blue) of increasing duration with time in a hierarchical HN, each chunk
composed of fast oscillations between three shades of red, green, and
blue, respectively, and corresponding to nine types of firing
activities of different subpopulations, here, s; = A; (Voit and Meyer-
Ortmanns, 2020), where s; was chosen in reminiscence of species in
an ecological context.

on lower organization levels, this goes along with a strong reduction
in the degrees of freedom which may be the relevant ones for the
specific task.

A hierarchical HN is composed of hierarchically connected HCs
or heteroclinic sequences, if we extend the definition of an HN to
include sequences as a special case. A formal expression, as
considered by Afraimovich et al. (2014), is sets of GLV
equations, one for each hierarchy level, that is, in the case of
three levels, the level of elementary information items, the level
of chunks, and the level of superchunks. The hierarchy in time scales
is explicitly implemented via parameters scaling the time in the
corresponding equations. The variables interact within and between
the different hierarchy levels. Important for the structural stability
are the asymmetric inhibitory connections. A concrete example of
chunking dynamics was given by Afraimovich et al. (2014) with
three hierarchy levels. In a time series, the oscillating envelopes of
elementary items are chunks, and the envelopes of chunks are
superchunks, with each chunk here composed of six elementary
items and each of the three superchunks composed of six chunks in
the study by Afraimovich et al. (2014). This amounts to a reduction
from 108 items on the elementary level to three degrees of freedom
on the superchunk level. On the chunk level, fast oscillations are
modulated by slow oscillations, and on the superchunk level, slow
oscillations are modulated by super-slow oscillations, features as
they are found in brain dynamics.

An alternative approach of modeling hierarchical HNs was
pursued in previous studies (Voit and Meyer-Ortmanns, 2018;
Voit and Meyer-Ortmanns, 2019a; Voit and Meyer-Ortmanns,
2019b; Voit and Meyer-Ortmanns, 2019; Voit and Meyer-
Ortmanns, 2020), where the hierarchy in attractor space and in
time scales was exclusively implemented in the rate matrix p;; in a
single GLV equation. The choice of rates or competition strengths
was assumed to be selected by external or internal signals. The
choice was such that the absolute values of eigenvalues of
contracting directions are larger than those for the expanding
directions, and eigenvalues in the radial and transverse directions
are negative. According to the conjecture of Ashwin and
Postlethwaite (2013), this choice realizes sufficient conditions for

Frontiers in Network Physiology

10.3389/fnetp.2023.1276401

asymptotic stability of the embedding HN (for details, see the work
of Ashwin and Postlethwaite (2013) and Voit and Meyer-Ortmanns
(2018)). This way, an HC of three HCs, each between three saddle
equilibria, is constructed, with a long time scale corresponding to a
revolution between the three HCs and a short time scale for a
revolution between the three saddle equilibria, that is, chunking
dynamics with two hierarchy levels. Figure 3 is from such a
simulated chunking dynamics with three types of chunks (red,
green, and blue) (Voit and Meyer-Ortmanns, 2020), similar to
Figure 4 in the presence of noise to avoid slowing down upon
approaching the HCs (Voit and Meyer-Ortmanns, 2019).

Bick and Rabinovich (2009) attempted to explain the dynamical
origin of the effective storage capacity of the working memory on the
basis of GLV equations . They derive conditions for allowing a stable
heteroclinic channel, given a fixed stimulus and inhibitory
couplings, randomly picked within certain bounds. The longer
the sequence, which should be kept in the working memory, the
more the need of excitation support, since longer sequences lead to
the activation of more inhibitory connections. The ratio of randomly
selected inhibitory connections relative to the lateral connections,
which are responsible for the temporal order along the heteroclinic
sequence, is shown to be lower bounded by a function that increases
with the length of the sequence in terms of the number of saddles.
On the other hand, the relative connection strengths are biologically
also upper bounded. To satisfy the inequalities, this upper bound
imposes a constraint on the maximal number of saddles that leads to
a stable heteroclinic channel. The order of magnitude derived within
this chunking dynamics model is compatible with Miller’s magic
number 7 + 2 (Miller, 1956), and, more importantly, the work
illustrates a possible dynamical origin (in terms of stability) of the
limited storage capacity in the working memory.

So far, we used the notion of “chunk” in the usual vague way as a
set of items (oscillations) that are treated as a single unit on the
chunking level. A quantitatively more precise conception was
derived by Mathy and Feldman (2012) from the notion of
Kolmogorov complexity and compressibility, in which a chunk is
a unit in a maximally compressed code. In agreement with
experiments, the authors conclude that the true limit of the
short-term memory capacity is approximately three or four
distinct chunks after compression, which is said to be equivalent
to approximately items of typical
compressibility. This is consistent with both Miller’s magic
number 7 + 2 and, as more recently stated, 4 + 1 chunks for the

seven uncompressed

capacity of short-term memory.

3.3 Heteroclinic dynamics on spatial grids

HNs are networks in phase space. Already, the dynamics of
small HNs may be rather rich with intricate bifurcation diagrams
(Voit et al,, 2020). Thus, one may wonder why to add spatial
dimensions and assign HNs to a spatial grid. In general, the
interest is in spatial patterns or in collective dynamics if many
HNs of the same type are coupled. Spatial coupling is obviously
relevant not only in ecological applications of population dynamics
but also in neuronal dynamics when HCs are coupled from different
areas of the brain for binding their provided information. Moreover,
HN’s on a spatial grid seem to realize a postulate of Grossberg (2000),
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that is, the “complementary brain” in contrast to a brain that is
organized into modules. With examples from perception, learning,
action, and cognition, Grossberg (2000) argued as to why the
organizational structure should be described in terms of parallel
processing streams with complementary properties, hierarchical
interactions within each stream, and parallel interactions between
the streams. In the framework of HNs assigned to a spatial grid,
parallel processing may go on between different HNs, assigned to
different spatial locations, while hierarchically organized streams are
realized as hierarchical HNs in phase space.

Previous work on HN's on one- or two-dimensional spatial grids
dealt with rock—paper-scissors games (Li et al., 2012; Postlethwaite
and Rucklidge, 2017; Postlethwaite and Rucklidge, 2019) for small
grids, spatiotemporal chaos in large one-dimensional grids with
Lotka-Volterra equations (Orihashi and Aizawa, 2011), or the
quasi-periodic route to chaos for such a set (Sprott et al., 2005).
Voit et al. (2020) considered small sets of coupled HCs, which
display a variety of dynamic behaviors such as limit cycles, slowing-
down states, quasi-periodic motion, transient chaos, and chaos.

In view of brain dynamics, we focus on synchronization
properties of spatially coupled hierarchical HNs. A simple way of
introducing spatial interaction between such HNs is via diffusion,’
leading to the GLV equation of the form (Voit and Meyer-
Ortmanns, 2020)

QA; = OV2A; + 0A — YA = Y p AiA; + I (b)), (5)

j#H

where the competition rate matrix p;; is chosen as in the study by
Voit and Meyer-Ortmanns (2018) to induce a hierarchy in time

1 What is specific for a coupling of HUs on a spatial grid is coupling via
diffusion between repetitive units; an alternative interpretation of this set is
a system of specifically coupled HUs in a large phase space (assigned to a
single site).
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14, reflecting the chunks, and (B) time evolution of the underlying firing activity levels s; = A; (Voit and Meyer-Ortmanns, 2019).

scales, ¢ is the diffusion rate, Vi is the two-dimensional grid
Laplacian on an L x L-grid, o is chosen as 1 to set the time scale,
y denotes the death rate, # is the noise amplitude, and &(t) is the
Gaussian white noise. Coupling via diffusion amounts to an
attractive interaction. Thus, it is not surprising that the HN can
synchronize on a spatial grid to the dynamics of a single hierarchical
HN. For weak diffusion, the hierarchy in time scales translates to a
hierarchy in the generated spatial scales, visible in nested spirals
whose arms are chasing each other if the time evolution is visualized
in a movie. Given a grid size, for sufficiently strong diffusion, the
synchronization proceeds such that, first, the large HCs at different
sites choose the same small HC out of the three available ones in our
example; next, the same saddle equilibrium out of the three saddles
of the small HC. The entire grid then flips in synchrony between the
nine different neuron populations, ending up with a uniform saddle
choice on the entire grid (Voit and Meyer-Ortmanns, 2019). Such a
strong dimensional reduction is of interest in view of brain dynamics
as cognition makes heavy use of dimensionally reduced
representations.

Possible effects of diffusive coupling may go far beyond simple
synchronization of the entire grid. When its effect is studied for
cyclic competition between four species in one dimension and the
system is described in a steady-state traveling frame of reference, a
bifurcation analysis, in particular as a function of the speed of the
wave, becomes possible and reveals additional HNs with additional
heteroclinic orbits due to the diffusive coupling (Dijkema and
Postlethwaite, 2022). The traveling wave solutions amount to
periodic orbits in ODEs in this new reference frame. Within this
approach, it seems possible to reproduce the formation of alliances
between players in cyclic competition games (Durney et al,, 2011;
2012; 2018; Dijkema and
Postlethwaite, 2022) if the variables A; represent concentrations

Roman et al., Dobramysl et al,
of ecological or social species rather than neural activities. It seems
open whether the formation of alliances in ecological or social
systems has

a counterpart of interpretation in cognitive
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Time evolution of nine types of neural activity levels (three shades of red, blue, and green) in a chain of coupled hierarchical heteroclinic units: one
pacemaker at site 1 of the chain and 15 driven units at the remaining 15 positions, completely synchronized (same color along a vertical stripe) to the
motion of the pacemaker. The difference in the resulting patterns as a function of time in the right and left panels reflects different heteroclinic network
attractors, here, corresponding to those of Figures 2A, B, respectively. This means that different sequences of the nine excitation patterns, supposed

to encode information, are transferred over the grid as a result of entrainment (Thakur and Meyer-Ortmanns, 2022).

processes. The dynamical framework allows a variety of such
“games”.

3.4 Entrainment to heteroclinic motion

Diffusion amounts to a special type of attractive coupling,
certainly not the only option for choosing couplings. Neither is a
homogeneous choice of parameters g, y, p;; and 7 all over the grid a
realistic feature. For brain dynamics, the interest is, in general, in
partial synchronization of subpopulations of neurons and under
heterogeneous parameter conditions. In view of the latter aspect, the
question arises as to whether HUs in a resting state may be entrained
by other units, which are in the mode of heteroclinic cycling. As
discussed by Thakur and Meyer-Ortmanns (2022), this is possible if
we consider a set of HUs which individually perform (hierarchical)
heteroclinic oscillations (the pacemakers), and these units are
directionally coupled to units in a resting state (the driven units).
Unless the driven units become entrained, individually, they would
approach a coexistence equilibrium, termed the resting state. The
coupling may be unidirectional or asymmetric bidirectional. The
entrainment range turns out to depend on the type of coupling, the
spatial location, individual bifurcation parameters of the pacemaker
and the driven units.

In view of entrainment, let us recall that information is encoded,
in particular, in temporal patterns. The patterns are composed of a
sequence of transiently excited neural populations, where the
specificity of this information depends on the selected path of
approached saddles in the HN of the pacemaker. If this
pacemaker entrains units in a resting state to synchronize with
its heteroclinic oscillations, this means that the temporal
information of the pacemaker is processed over the spatial grid.
An example of how the temporal information pattern differs as a
function of the chosen HN attractor is shown in Figure 5 for two
network attractors, characterized by the temporal sequence of visited
saddles: left panel (1,2,3) — (6,4,5) — (8,9,7), right panel (1,4,7) —
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(8,2,5) — (6,9,3), where the integers label the saddles. These paths
are schematically shown in Figure 2. The uniformly colored vertical
stripes reflect the synchronization across the chain. If instead of a
chain, the pacemakers are arranged in a local disc in the center of a
two-dimensional grid, the processed information is visible as target
waves emitted from the disc, where the information decays with the
distance to the pacemakers (Thakur and Meyer-Ortmanns, 2022).
Notably, the individual parameters of the resting units were chosen
heterogeneously. It seems worthwhile to further explore how to
control the synchronization patterns via the spatial coupling
between pacemakers and driven units.

So far, we discussed HNs for realizing the concept of winnerless
competition exclusively by means of GLV equations. Alternative to
GLV equations, winnerless competition is found in coupled cell
networks (Aguiar et al, 2011), or in delayed pulse-coupled
oscillators (Kori, 2003; Neves and Timme, 2012), or designed by
construction as demonstrated by Ashwin and Postlethwaite (2013),
or along with excitable networks (Ashwin et al., 2016b). Design of
HNs is discussed in the following section.

4 D_esigning heteroclinic networks as
desire

Given the experimental data, it may not be possible to directly
identify the relevant degrees of freedom or the metastable states. In
such a case, data-driven modeling may first be applied, such as
principal component analysis (Kato et al., 2015; Kutz et al.,, 2016;
Brunton and Kutz, 2019), hidden Markov models (Westhead et al.,
2017), or, more recently, a Koopman approximation (Klus et al.,
2020). However, a theoretical approach in terms of designed HN's is
promising if the dimension of the considered system can be reduced,
when it has a finite number of dominant metastable states and a
focus on a small set of degrees of freedom is possible. Coupled HNs
often come in disguise in the sense that they manifest themselves as
limit cycles, slowing-down states, quasi-periodic motion, transient
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chaos, and chaos, although the building blocks of the dynamics are
only a few coupled HCs, such as two or three per site, or small
networks of two units, each consisting of two coupled HCs. The
dynamics is very flexible and versatile (Voit et al., 2020). Therefore,
an attempt to reproduce experimental data in terms of the designed
HD is promising: forming an HN by realizing heteroclinic
connections between saddles as the main building blocks of the
dynamics comprises a rich variety of dynamical features.

In general, given a directed graph, in our context with nodes
corresponding to metastable states and with edges representing
possible transitions between these states, it is far from unique to
find a dynamical representation in terms of ODEs, which means
that the vector fields are not unique which can support the
existence of an HN corresponding to this graph. Therefore, on the
mathematical side, a number of constructions of HNs have been
proposed related to homogeneous or heterogeneous cell systems
(Field, 2015), patterns of desynchronization and resynchronization
(Field, 2016), discrete and continuous dynamics (Weinberger et al.,
2018), HNss with specific properties such as robustness, completeness,
and equability (Ashwin et al., 2020), or low-dimensional realizations of
systems in spite of many equilibria and possible connections (Castro
and Lohse, 2023). One may look for applications of such constructions
to brain dynamics and search for mathematical properties that have a
counterpart in properties from brain dynamics.

In the following sections, we present two approaches in more
detail, which are of interest in relation to brain dynamics; the first one
amounts to designing (noisy) heteroclinic networks from graphs (with
extensions to excitable networks) (Ashwin and Postlethwaite, 2013;
Ashwin and Postlethwaite, 2016; Ashwin et al., 2016b; Ashwin and
Postlethwaite, 2018; Ceni et al., 2020; Creaser et al., 2021), and the
second one amounts to constructing chaotic heteroclinic networks
(Morrison and Young, 2022). In the latter, chaotic features of a
deterministic description reproduce randomly looking decisions
in the data.

4.1 Designing heteroclinic networks from
graphs

Hierarchical HNs, as considered by Voit and Meyer-Ortmanns
(2018), were already designed to reproduce a hierarchy in time
scales, where slow oscillations modulate fast oscillations, and when
assigned to a spatial grid, a hierarchy in spatial scales is ensued. The
construction via an appropriate choice of rates was based on the
work by Ashwin and Postlethwaite (2013) and their conjecture that
HNs are asymptotically stable for an appropriate choice of
eigenvalues, as indicated in Section 2. Let us go into more detail
of the work by Ashwin and Postlethwaite (2013) and assume that
motivated by experimental observations, we want to consider a
particular directed graph whose nodes correspond to metastable
states and want to realize this graph as an attracting robust HN
between these states in phase space. Ashwin and Postlethwaite
(2013) presented two methods of realizing such a graph as a
robust HN for flows, generated by ODEs, where the vertices of
the graph represent the saddle equilibria and the edges represent the
heteroclinic connections between the vertices. Here, we sketch only
one of the two methods, the so-called simplex realization that
assumes graphs free of one cycle and two cycles. The graph is
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then realized as an invariant set within an attractor, and the flow of
the vector field on x € R™ obeys the ODE

dx; L
e x,(l |x|* + 21 a,,x,.>+(w, (1), (6)
where xj €R,j=1,...,n,n,is the number of vertices, |x|2 = jxﬁ,

and w; represents i.i.d. white noise with amplitude 0 < {. The claim
then is that for { = 0, the rates ajj can be chosen so that the graph has
an HN X. This realization is robust to perturbations that respect the
symmetry given by reflection in the coordinate planes. It should be
noted that the proposition of Ashwin and Postlethwaite (2013)
provides an open set of functions that lead to embedding in a
heteroclinic attractor, not a set of unique parameters of fif f denotes
the right-hand side of Eq. 6 apart from the noise term. However, the
statistics of residence times in the vicinity of saddles and the
transition probabilities at decision points are very sensitive to the
actual choice of parameter values.

In extension of the work by Ashwin and Postlethwaite (2013),
Ashwin and Postlethwaite (2016b) considered two types of cell
networks, given by

dp; = [f(pj yi) |t +n,dw;,

7
dyc = [g(pj> yi)|dt + 1, dwi, @)

forj=1,...,Mandk=1,..., Q, where M represents the number of
states and Q is the number of possible transitions between states.
Each cell type has its own dynamics, specified with concrete
expressions for f and g by Ashwin and Postlethwaite (2016b).
One type (p-cells) consists of a network of mutually inhibiting
cells with multiple attractors, while the second one (y-cells) is made
up of cells that selectively strongly excite certain states of p-cells
while inhibiting other states of p-cells and simultaneously inhibiting
each other; y-cells become active only when there is a transition
between vertices. The quantities w; and wj{ are independent
identically distributed noise processes with noise amplitudes 7,
and #,, . All this is in reminiscence to neuronal networks.

This way, the work provides an explicit construction of how any
desired finite graph (without simple self-loops) can be realized as a
network attractor between states in phase space, where the network
is either heteroclinic or excitable in the following sense. In the
excitable case, a perturbation exceeding a finite threshold (but
possibly a very small one) is needed for a transition between
stable fixed points, which are sensitive to perturbations in
directions corresponding to the edges of the graph.” In the
heteroclinic case, transitions occur spontaneously without noise
or external input, and the vertices are saddle equilibria with
heteroclinic connections as edges. Remarkably, it is possible to
tune the edges of the network from representing excitable
connections to heteroclinic ones by a single parameter. While HN
attractors are only stable as long as special structures in phase space,

2 Note that the excitable network here refers to a network in phase space,
where connections between states in phase space become possible when
a finite threshold is overcome. Excitable networks in ordinary space, such
as a two-dimensional grid, refer to individually excitable cells, coupled
across the grid; an example of such a network is considered by Labavi¢ and
Meyer-Ortmanns (2014) for repressive coupling.
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such as symmetries or invariant subspaces, protect them, network
attractors joining stable fixed points do not encounter these restrictions.

Notable is, here, a possible application to brain dynamics. The
simple switch of connections between heteroclinic and excitable
behavior (due to the variation of a single parameter) may imitate a
change in the concentration of neuromodulators such as dopamine,
serotonin, or GABA (gamma-aminobutyric acid). Reducing the
excitability of states in the model may represent the action of a
neuromodulator  that excitability  (Ashwin
Postlethwaite, 2016b).

The construction of Eq. 7 turns out to be very sensitive to noise

depresses and

in terms of which part of phase space is visited and in which order.
Under the action of noise of strength 7, the dwell time T near
equilibria depends on whether we have to deal with the heteroclinic
(T o< — Inn) or the excitable realization (given by Kramer’s law)
(Ashwin and Postlethwaite, 2016). Application of anisotropic noise
suggests that the construction allows the design of noisy attractors
with arbitrary Markov transition rates and dwell times.

When it comes to using noisy attractor models for reproducing
measured transitions between EEG microstates collected from healthy
subjects at rest, the model of Eq. 7 can reproduce the transition
probabilities between microstates but not the heavy-tailed dwell time
distributions. For their reproduction, further extensions of the noisy
network attractor model are needed. One option is with an additional
hidden node at each state, while the second option is with an additional
layer that controls the switching frequency in the original network.
With these extensions, dwell time distributions, transition probabilities,
and long-range temporal correlations of experimental EEG data can be
captured (Creaser et al.,, 2021).

When, in addition to noise, deterministic external input is also
included in the model, together with a function of finite-state
computations (Ashwin and Postlethwaite, 2018), it is shown that the
so-constructed network attractor can indeed perform finite-state
computations. Mathematically, the model amounts to a nonlinear
stochastic differential equation, where deterministic (external signal)
and stochastic (noise) input are applied to any element. The
deterministic input is determined by a symbol on a finite-state Turing
machine. The accuracy and speed of computation depend on whether the
system runs in the excitable or heteroclinic regime: The heteroclinic one is
extremely sensitive to input and can be used as long as the input
dominates noise. A reduction in the excitability is analogous to a
neuromodulator that depresses excitability, reduces the speed of
computation, and changes the error rates. This may shed some light
on the effect of neuromodulators on cognitive functions such as
computations via the brain. Thus, on one hand, the model allows us
to analyze the competition between heteroclinic transitions and excitable
connections between states, the heteroclinic transitions occurring
spontaneously with characteristic dwell times in the vicinity of saddles,
and the excitable ones requiring a finite threshold to be overcome for a
transition to another state. On the other hand, the model allows us to
study the competition between noise and external input and its impact on
properties of computation such as speed and error rates. In spite of
characteristic ~ differences, common to both realizations, faster
performance goes along with more errors, while fewer errors occur
with slower performance, including some counterintuitive behavior of
non-monotonic dependence as a function of noise.

Artificial recurrent neural networks are appreciated for their
utility to recognize speech or handwriting or time series forecasting,
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and nowadays, techniques for training these networks make use of
reservoir computing with echo state networks as a special case
(Jaeger et al,, 2007; Maass et al., 2007). Usually, these methods
from machine learning amount to a black box in the sense that one
does not understand the “strategy” of how the machine finds the
solution. Neither understood are possible similarities to how the
brain finds the solutions for problems, such as recognition, so fast
and efficiently. Here, an attempt to understand the recurrent neural
network behavior was made by Ceni et al. (2020) by proposing an
algorithm to extract excitable network attractors from the
trajectories generated by the neural networks upon solving tasks.
The extracted network attractors live in a dimensionally reduced
space and should reveal a coarse-grained description, thus providing
an understanding of how a solution is achieved: exploiting long
transients for prediction or fast switching for classification tasks and
the like, basic “strategies” or mechanisms for solving tasks.

4.2 Designing deterministic chaotic
heteroclinic networks

When activities in brain networks are manifest in transitions
between metastable states that correspond to different types of
behavior, or decisions, or other dominant biological states, these
transitions look often quite random as if driven by a source of
random noise. A first approach to reproduce random transitions is
via Markov chains as a stochastic description. However, even if the
switching statistics would be correctly reproduced in Markov models,
they can neither explain the cause of the switching nor the variation in
the target state with the dwell time (see, for example, the work of
Nichols et al. (2017)). Moreover, the Markov assumption may not be
applicable if the transitions depend on the history of the sequence. At a
first place, one may think of a deterministic description complemented
by additive noise, such as noisy HNs mentioned in Section 4.1; the role
of noise is considered in more detail in Section 5.

Yet, there is a deterministic alternative. From dynamic systems
theory, it is well known that what looks random may result from
fully deterministic but underlying chaotic dynamics (chaos can act
like a perfect random number generator; see, for example, the more
recent work by Kaszds et al. (2019)). Such an approach of chaotic
HNs was pursued by Morrison and Young (2022). Morrison and
Young (2022) succeeded in reproducing the switching dynamics of
C. elegans as experimentally measured in laboratory experiments,’
although the switching events between some simple types of

3 This formulation is a shortcut to a sequence of preceding steps.
Experimental measurements of neural activity in C. elegans are based
on whole-brain calcium imaging with cellular resolution (Kato et al., 2015;
Nguyen et al., 2016), simultaneous whole-animal 3D imaging of neural
activity by light-field microscopy (Prevedel et al., 2014), or brain-wide 3D
imaging of neural activity with sculpted light (Schrod et al., 2013). As a next
step, such measured activity was represented in low-dimensional PCA
space, where metastable states correspond to stereotypical behaviors of
C. elegans with probabilities of transitions between these states (Kato et al.,
2015; Nichols et al, 2017; Linderman et al, 2019). Only after these
preceding steps, the work of Morrison and Young (2022) aims at
reproducing characteristic features of the PCA results: for transition
probabilities between states from the work of Nichols et al. (2017) and
indications on dwell times from the work of Linderman et al. (2019).
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behaviors look quite random. Examples for these behaviors are
forward crawling, turns, reversals, and quiescence in the case of C.
elegans, and the metastable states represent transient excited
subpopulations which
behaviors. The transitions seem not to be evoked by external

of neurons represent these specific
stimuli as they appear mostly spontaneously.

Morrison and Young (2022) provide a constructive description
of how to tailor a chaotic HN that can reproduce the dwell times in
the vicinity of the saddle equilibria, or the branching probabilities
when decisions are taken, or other features of the transition statistics.
The construction is based on maps (discrete in time) of two-
dimensional flows of a vector field, where heteroclinic orbits
connect saddle-fixed points in an HN along with the geometry of
stable and unstable manifolds and their non-trivial intersections to
control the switching dynamics. Starting from a desired set of
saddle-fixed points, global dynamics are composed by
interpolating local dynamics f;(X) with weighting functions
dx/dt =Y w; (X) fi (%) with

X=(xp)€ R?, and functions w;(X), which weight the local

w; (X) according to
dynamics in each local dynamics region, and i labels these
regions with m regions in total. A two-dimensional map is then
constructed from this continuous time version, and deterministic
perturbations are applied to the heteroclinic orbits prior to each
stable direction of a fixed point in the map. Due to the designed
perturbations, the unstable manifolds of saddle & and stable
manifold of saddle &, intersect non-trivially and allow for
branching behavior of the trajectory toward the up-or-down
branch of the unstable manifold of &,,;.

So far, the construction by Morrison and Young (2022) dealt
with simple saddle equilibria and may be generalized to heteroclinic
connections between hyperbolic invariant sets such as periodic
orbits, invariant tori supporting quasi-periodic motion, or chaotic
dynamics themselves. Alternatives for implementing the option of
branching to those by Morrison and Young (2022) exist and are
realized via a selected choice of eigenvalues at the saddles with high-
dimensional unstable manifolds (see, for example, the work of Voit
(2018),
manifolds). Currently, it seems open whether a successful

and Meyer-Ortmanns for two-dimensional unstable
effective modeling via chaotic HNs reveals the actual physical
mechanisms behind the irregularly looking switching dynamics,
but what looks random may indeed result from deterministic
rules, and there is a chance to uncover such rules via this kind of
modeling.

5 Heteroclinic networks under the
action of noise and external forcing

The role of noise in HNs may be rather subtle even if it is weak.
In general, it has a strong impact on the period of heteroclinic
oscillations, and the average dwell time in the vicinity of a saddle
scales as a function of the noise amplitude. Often, for weak noise, its
role is to prevent the slowing down of heteroclinic motion as the
stochastic fluctuations keep the trajectory at some distance from the
saddle equilibria. Furthermore, noise may facilitate synchronization
of coupled heteroclinic units (Thakur and Meyer-Ortmanns, 2022)
if it prevents a detailed resolution of the fine structure of the attractor
landscape. This observation provides an explanation of the result
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obtained by Rana and Barato (2020) on the thermodynamic cost for
achieving precise patterns. Rana and Barato (2020) addressed the
relation between a stochastic Turing pattern in a Brusselator model
and the thermodynamic cost: the precision of the patterns is
maximized for an intermediate thermodynamic cost that is paid
for the suppression of fluctuations. This means that tolerating a
certain strength of fluctuations can have a positive effect on the
precision of the pattern. This may be due to the fact that an intricate
substructure of the attractor space is not resolved in the presence of
noise, so the trajectories of different units become more similar in
phase space and synchronize more easily to produce precise
patterns.

The strength of noise can also act as a control parameter,
similar to a bifurcation parameter. In the example of a
hierarchical HN, an increase in the noise strength changed the
dynamics from two to one hierarchy level to a global coexistence
equilibrium. Similarly, it influences the entrainment range of
pacemakers: the stronger the noise, the more difficult the
entrainment to heteroclinic oscillations becomes (Thakur and
Meyer-Ortmanns, 2022).

So far, we referred to actual observations of the role of noise in
concrete systems. In general, care is needed even for very small noise
strength, as careful analyses (Stone and Armbruster, 1999;
2003; Bakhtin, 2010; Ashwin
Postlethwaite, 2013; Manicom, 2021) have previously shown.

Armbruster et al, and
Stone and Armbruster (1999) considered HCs connecting saddle
equilibria with one-dimensional unstable manifolds under the
influence of noise. They derived a Fokker-Planck equation for
the evolution of the probability distribution of trajectories near
HCs. Solving the Fokker-Planck equation showed the impact of
the stable and unstable eigenvalues at the fixed points and the
impact of noise on the location and shape of the probability
distribution. The probability distribution then explains the noise-
induced jumping of solution trajectories in and out of invariant
subspaces of the deterministic system.

More generally, Armbruster et al. (2003) analyzed the influence
of small noise on the dynamics of HNs with a focus on noise-
induced switching between cycles within the network. Three
different types of switching are distinguished: random switching
between heteroclinic cycles, determined by the linearized dynamics
near one of the saddles; counterintuitive noise-induced stability of a
cycle; and intermittent switching between cycles. Essential are the
size of stable and unstable eigenvalues at the saddle equilibria. What
may happen close to equilibria in the presence of noise is a so-called
lift-off from the coordinate axes in the probability distribution of
outgoing trajectories, moving past a saddle-type equilibrium. This
means that the bundle of trajectories making up the distribution is
lifted away from the noise-free heteroclinic connection as a result of
a positive saddle quantity o=, +A, with eigenvalues
Ay, <A, < ... <A, <0 and A, > Oat the saddle. Lift-offs change
the intersections of the distribution of incoming trajectories into the
neighborhood of a saddle and outgoing trajectories to a given next
saddle. This way, they can induce memory in the sense that the
transition probability between vertices depends not only on the current
vertex but also on the past few vertices visited previously. On the other
hand, if the transition probabilities are independent of the prior itinerary,
an attracting HN is memoryless under the action of noise; in this case,
the dynamics for low noise amounts to a one-step Markov process.
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Since the presence or absence of this specific type of memory can
be controlled by tuning the size of the contracting versus expanding
eigenvalues, a possible application in view of cognitive processes is
task switching. Starting or switching the attention between tasks is
common to executive functions in cognitive processes that define
behavior such as learning, paying attention, organizing, or planning.
Task switching depends on memory as the performance of one task
depends on an earlier task. Manicom (2021) used a model of task
switching that makes use of a mixed heteroclinic and excitable
network with non-autonomous input, which is shown to produce a
similar memory effect to noise. In particular, the time it takes to
complete a cycle of the network depends on whichever cycle was
most recently completed.

In summary, depending on how noise interacts with the
underlying deterministic dynamics of an HN, it may lead to a
one-step Markov process, or to long-term memory in the
mathematical sense (of dealing with a non-Markovian process).
Results on this subtle role are important in view of designing HNs
for controlling decisions at branching points, i.e., at saddles with
high-dimensional unstable manifolds. For the control, eigenvalues
should be accordingly tuned together with noise amplitudes or
entire noise distributions.

Apart from the response to noise, external forcing plays an
important role for HD as the very selection of specific heteroclinic
sequences is supposed to result from external input. Usually, for
attractive coupling of nonlinear oscillators, a weak periodic external
force can lock a nonlinear oscillator at a frequency close to the input
frequency while for stronger forcing also at subharmonic bands. In
contrast, once competition is included, such as for GLV equations,
with a weak external signal, synchronization of ultra-subharmonics
is dominant over the frequency close to that of the input. A forced
system near a heteroclinic orbit seems to be very flexible to lock in a
wide range of ultra-subharmonic frequencies (Rabinovich et al.,
2006d). These results suggest speculating that the observed
synchronization behavior is at the origin for synchronization
between experimentally observed slow and fast brain rhythms
(Tass et al., 1998; Palva et al,, 2005). A more detailed analysis of
the same system by Tsai and Dawes (2011) shows that it is the ratio
of contracting to expanding eigenvalue & = c/e that determines
whether this flexible frequency locking is observed or not. For § > 1,
no frequency locking is observed; for intermediate &, the results
obtained by Rabinovich et al. (2006d) are confirmed; and for 6 = 1,
the dynamics resembles a forced damped pendulum.

6 Learning in heteroclinic dynamics

We discussed synchronization of heteroclinic networks in
Sections 3.3, 3.4. As mentioned previously, synchronization is
usually achieved via the transmission of signals from one
oscillator to another by coupling the state variables. In contrast,
Selskii and Makarov (2016) showed that synchronization of HNs
results from learning in coupled neural networks. A driver network
(the master or teacher) exhibits winnerless competition dynamics,
while a driven network (the slave) tunes its internal couplings
according to the oscillations observed in the teacher. The
observation follows a learning rule that includes memory effects,
as the incoming information is integrated over some time. This way,
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the learner can learn the coupling structure from the teacher and
synchronize with the teacher by adapting the expanding eigenvalues
only. The learning works for an intermediate memory length. Tapia
et al. (2018) extended this approach by an additional step that
identifies the sequence of saddles in a discrete manner but is still
limited to circular topologies.

Most of the models of associative sequential memory are based
on the generalization of the Hopfield associative memory network
(Hopfield, 1982). However, Seliger et al. (2002) showed that the
learning dynamics leads to the formation of a winnerless
competition network that is capable of the associative retrieval of
pattern sequences which were recorded previously. The model of the
sequential spatial memory in the hippocampus is implemented in a
two-layer neuronal structure, where the first layer serves as a sensory
input for the second layer, which performs winnerless competition
among representative principal neurons. The learning mechanism
that alters and adapts the competition matrix is realized via delay
differential equations.

Learning from a teacher in view of inference of an underlying
dynamics (that may have produced a given dataset) was considered
by Voit and Meyer-Ortmanns (2019b), who showed how the
topology and connection strength of an HN can be inferred from
data in a dynamical way. A template system is unidirectionally
linearly coupled to the input in a master—slave fashion so that it is
forced to follow the same sequence of saddles which are approached
by the master. At the same time, its eigenvalues are adapted to
minimize the difference of template dynamics and input sequence.
The dynamics of a master and slave may be different, but the
template system learns to mimic an input sequence of metastable
states under the assumption that the data were generated by HD.

7 Conclusion and perspectives

As mentioned, the framework of HD is abstract enough that the
basic variables may represent the firing rates of single neurons or
groups of neurons on different time scales and from different brain
areas. The combination of excitatory and inhibitory interactions
within and between different groups of neurons admits solutions
which can, in principle, reproduce features of typical switching
patterns of metastable states, as observed in experiments. The
sensitivity to external input and the subtle role of noise allow an
adaptation of the switching statistics to experimental data,
characterized by dwell times and transition probabilities between
metastable states. As a very promising extension of differential
equations with a heteroclinic attractor appears a set of stochastic
differential equations that also includes an excitable attractor in
phase space. Sets of stochastic differential equations can be designed
to reproduce a network whose nodes correspond to experimentally
identified metastable states and whose edges represent heteroclinic
or excitable connections, which are assumed to mediate the
transitions. When details of the switching statistics, such as
heavy-tailed dwell time probability distributions, should be
captured, a more nested set of differential equations may be
needed rather than a simple set of GLV equations.

So far, we discussed disorder as induced by additive or
multiplicative noise. Other sources of disorder and their role in
HNs may be further explored, such as heterogeneous choices of
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parameters such as rates of birth, decay, or competition strengths.
Further types of spatial couplings of HNs beyond diffusive coupling
should be considered in view of controlling partial synchronization
and information processing across spatial grids.

Moreover, a new aspect from the physics perspective is
worthwhile being pursued. Heteroclinic dynamics is appreciated
for combining features of precise reproducibility with a high
sensitivity to external input. What is the behavior if the external
input suddenly changes and a fast response to the new input is
required? This question was recently addressed by Aravind and
Meyer-Ortmanns (2023). Aravind and Meyer-Ortmanns (2023)
assumed external input to be encoded in the very selection of the
rates in the competition rate matrix. New external input is realized as a
quench of the bifurcation parameter from a regime of heteroclinic
oscillations to a regime of equilibrium states. This way, the question is
reduced to measure the relaxation time that the system needs to arrest
its oscillations toward a resting state. The relaxation turns out to be
underdamped and to depend on the size of the attractor basin, the
depth of the quench, the level of noise, the nesting of the attractor
space, and the coupling type, strength, and synchronization. This
means that the relaxation time can be pronounced. Here, we speculate
that a possible manifestation of underdamped heteroclinic motion
may be visible in a malfunction of brain dynamics, for example, when
heteroclinic cycles dynamically realize gaits and an undesired delay is
observed in arresting motion at wish. Such a delay is one of the
symptoms of Parkinson’s disease. Therefore, investigations of how to
control relaxation times and fast adaptation to new input in HD
deserve further attention (Aravind and Meyer-Ortmanns, 2023).

In view of cognitive processes, it is most interesting to extend
analyses of how learning can be realized in HD, in particular and as a
further step the thermodynamic cost for learning. Based on results
obtained by Goldt and Seifert (2017a) and Goldt and Seifert (2017b),
one would expect that the information that can be acquired by learning
via HD will be bound by the thermodynamic cost of learning, similar to
the cost for Hebbian learning, which restrains the accessible
information. Beyond the application to learning, future modeling of
HD (possibly in combination with excitable dynamics in phase space)
should include the cost in terms of energy usage, “disc space”, and time,
as limited disc space may require overwriting and time enters the
performance speed. A reliable performance in the presence of noise and
at a reasonable speed is certainly not for free. The tradeoff between
precision in performance when high precision is needed, speed of its
execution, and cost for both performance and maintenance of function
should be well balanced. It is an open and fascinating question as to how
the brain achieves such a balance over a long time span in spite of error-
prone reading, writing, and overwriting on the finite “disc” of the brain.
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